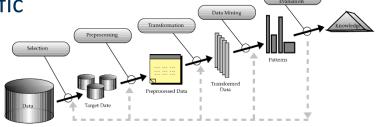
Introduction to Student Projects

IE500 Data Mining

Outline

- 1. Requirements for the Student Projects
- 2. Requirements for the Project Reports
- 3. Final Exam
- 4. Team Formation

Student Projects



Goals

- Gain practical experience with the complete data mining process
- Get to know additional problem-specific
 - preprocessing methods
 - data mining methods

Expectation

- You select an interesting data mining problem of your choice
- You solve the problem using
 - the data mining methods that we have learned so far, including
 - proper hyperparameter optimization
 - problem-specific pre-processing and smart feature engineering
 - additional data mining methods which might be helpful for solving the problem and build on what we learned in class

Procedure

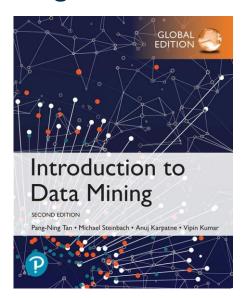
- Teams of five to six students
 - realize a data mining project
 - write a 12-page summary of the project and the methods employed in the project
 - present the project results to the other students
 - 10 minutes presentation + 5 minutes discussion

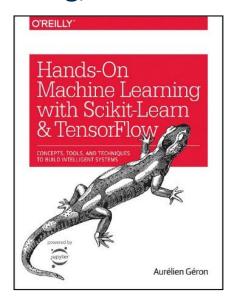
Data registries

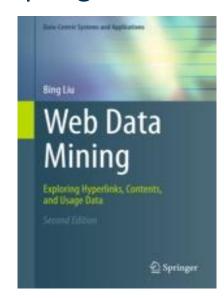
- Datasets hosted on Amazon AWS https://registry.opendata.aws
- Google's Dataset Search: https://datasetsearch.research.google.com/
- Microsoft Datasets: https://msropendata.com/
- Yahoo Webscope Datasets: http://webscope.sandbox.yahoo.com/
- Dataset collection on Github:
 https://github.com/awesomedata/awesome-public-datasets
- Data Hub: http://datahub.io
- Linked Open Data Cloud: http://lod-cloud.net/
- Stanford Large Network Dataset Collection:
 http://snap.stanford.edu/data/index.html
- Huggingface: https://huggingface.co/datasets

- Public sector data
 - US government: https://www.data.gov
 - UK government: https://data.gov.uk
 - EU: https://www.europeandataportal.eu
 - CIA World Fact Book:
 https://www.cia.gov/library/publications/the-world-factbook/
 - Health data (over 125 years): https://www.healthdata.gov/

- Competitions
 - Kaggle: https://www.kaggle.com/
 - Data Mining Cup: http://www.data-mining-cup.de
 - KDD Cup: https://www.kdd.org/kdd-cup
 - DrivenData: https://www.drivendata.org
 - CrowdAnalytix: https://www.crowdanalytix.com
- If you use a competitions task:
 You have to compare your results to results from the competition's forum!




- Language resources
 - WordNet: https://wordnet.princeton.edu
 - EuroWordNet: http://projects.illc.uva.nl/EuroWordNet/
 - Project Gutenberg (36.000 ebooks): http://www.gutenberg.org/
 - New York Times (starts 1851): http://developer.nytimes.com/docs
 - Wikitionary: https://www.wiktionary.org
 as KG: https://kaiko.getalp.org/about-dbnary/
- Knowledge graphs
 - Wikidata: https://www.wikidata.org
 - BabelNet: https://babelnet.org
 - DBpedia: http://wiki.dbpedia.org

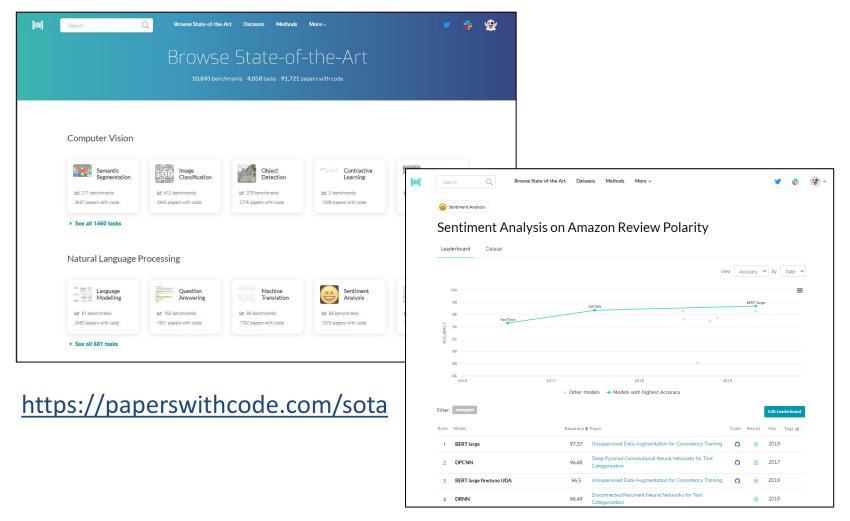

Where to Find Additional Information

- Pang-Ning Tan, Michael Steinbach, Vipin Kumar:
 Introduction to Data Mining, Pearson / Addison Wesley.
- Aurélien Géron: Hands-on Machine Learning with Scikit-Learn. O'Reilly.
- Bing Liu: Web Data Mining, 2nd Edition, Springer.

Where to Find Additional Information

- Check out the solutions to your problem that other people have tried.
 - by looking into the Kaggle discussion groups and code
 - by investigating the state-of-the-art for your your task on Papers with Code
 - by looking at submissions of the KDD Cup or Data Mining Cup
 - or search for relevant scientific papers using Google Scholar, search term:

"task name + survey"



State of the Art for Specific Tasks

Some Project Ideas (not binding)

- Web Log Mining
 - Learn a classifier for the categorizing the visitors of your website.
 - Which features matter? Number of pages visited, time on site, ...
 - Learn and evaluate classifier
- Wikipedia Contributors / Hoax Articles
 - Examine the edit history of Wikipedia contributors
 - Cluster users by different attributes (no of edits, edits/day, topic, ...)
 - Or learn a classifier for categorizing Wikipedia contributors
- Sentiment Analysis for Discussion Forum / Rating Site / Tweets
 - Are people positive or negative about topic / product? (Bing Liu 11.x)
- SPAM Detection
 - eMail, blog or discussion forum (Bing Liu 6.10, 11.9)
 - You Tube comments

Some Projects realized in previous Semesters

- Twitter data
 - humor / hate speech detection
 - Sentiment Analysis of Tweets about Movies
 - Learned classifier from IMDB movie reviews
 - Applied and tested with tweets afterwards
- Airbnb (done very often)
 - predict the prices of new apartments
- Bundesliga Betting Rules
 - Find rules that help you to predict the outcome of a Bundesliga game
- last.fm Playlist Analysis
 - Cluster last.fm users according to the style of the songs they are listening to
 - Find commons sets of songs for the different clusters
- Analysis of Training Data of a Fitness Center
 - Find different customer groups by clustering exercise data
 - Find frequent combinations of exercises
- Sentiment Analysis of Tweets about Movies

Some Projects realized in previous Semesters

- Twitter data
 - humor / hate speech detection
 - Sentiment Analysis of Tweets about Movies
 - Learned classifier from IMDB movie reviews
 - Applied and tested with tweets afterwards
- Airbnb (done very often)
- Choose a task/dataset where you have a ground truth Bundes (or can easily generate one)
 - Find rules that new ve
- last.fm Playlist Analysis
 - Cluster last.fm users according to the style of the songs they are listening to
 - Find commons sets of songs for the different clusters
- Analysis of Training Data of a Fitness Center
 - Find different customer groups by clustering exercise data
 - Find frequent combinations of exercises
- Sentiment Analysis of Tweets about Movies

Dataset Selection: Key Considerations

- Pros

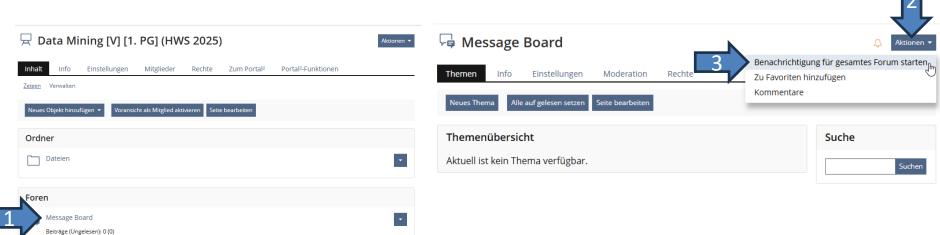
- Rich Feature Space: Datasets should have multiple, diverse features that allow for creative feature engineering.
- Adequate Sample Size: Aim for datasets with at least 10,000 examples to ensure robust modeling.
- Balanced Complexity: A dataset should be complex enough to challenge students without being computationally prohibitive.
- **High Data Quality:** Ensure key columns are well-populated (e.g., <5% missing values) so that the data can be effectively used.
- **Novelty:** Prefer datasets that haven't been overused in existing challenges, offering room for innovative approaches.

Dataset Selection: Key Considerations

- Cons

- Overly Simple: Avoid datasets with too few features (< 5) or a too-basic topic, as this limits feature engineering.
- Excessively Large: Datasets with over 1 million records (e.g., huge product datasets) can be too compute-intensive.
- Over-Saturated: Datasets with clear guidelines and abundant available code (e.g., well-established challenges).
- **Poor Data Usability:** Be wary of datasets where important columns are empty more than 5% of the time, or where the ground truth is ambiguous.
- Additional Tip: Check prior usage—if you're the first to work on a dataset, verify
 that the dataset is practically usable and that data quality issues won't
 undermine your project.

Team Formation



- You are allowed to form teams of five to six students as you like!
 - You enter your team into the Group Formation Google spreadsheet (see last slide) until Sunday, October 5th 23:59
 - If you are less than five you can still enter your team (but you will be assigned new team members)
 - If you are still looking for a team, enter yourself to the respective section of the spreadsheet also until Sunday, October 5th 23:59
 - Ilias message board can also be used to find teams (see corresponding channel)
 - We will form teams out of the remaining students who did not find a team by themselves on Monday, October 6th

Team Formation

- Once your team is formed:
 - Meet with your team to organize your work
 - Decide project topic
 - Organize writing of project outline
 - You can start writing the project outline
- For further communication, we will create groups in Ilias
 - Check that you enabled notifications for the message board and your group

Project Outlines

- Maximum 4 pages (sharp!) including title page
 - Using DWS master thesis layout (PDF!)
 - Include a project name, your team number and name on the first page!
- Due Tuesday, October, 14th, 23:59
- Submission via Ilias
- On Friday, October, 17th you will receive feedback about your project
 - Including if you need to show up for the first feedback session on October, 20th (lecture time slot)

Project Outlines

- Answer the following questions:
 - 1. What is the problem you are solving?
 - 2. What data will you use?
 - Where will you get it?
 - How will you gather it?
 - 3. How will you solve the problem?
 - What preprocessing steps will be required?
 - Which algorithms do you plan to use? Be as specific as you can!
 - 4. How will you measure success? (Evaluation method)
 - 5. What do you expect your results to look like? (Model/Clusters/Patterns)

Coaching Sessions

- We will give you tips and answer questions concerning your project
- At the time of the lecture (Mondays)
- Every team has to attend at least one coaching session!

Course Organization - Calendar

This semester, we will use the calendar feature in Ilias to schedule project feedback sessions.

Project Feedback Sessions:

 You register via the calender in Ilias for your coaching session

- A few days before your session, we will inform you via the main forum about your exact time slot within the 90 min window.
- Only one person per group should book a slot on behalf of the group.
- When booking, you must include your group number and a few questions or topics you want to discuss. Blank requests will be ignored!
- The registration opens one week before it (Monday, 16:00)

Some Project Management Hints

- Organize your project in multiple iterations
 - Every artefact will be improved over time!
- Get a simple process running early on to have a baseline
- Parallelize tasks while keeping centrally track of results
 - e.g. one central document with results plus reference to exact version of the notebooks/datasets that produced these results
 - sub-groups should explore specific ideas for a specified amount of time

Some Project Management Hints

- Define concrete milestones: When should what be finished?
 - e.g. 05.11.25 Data exploration results collected in single document
 - e.g. 10.11.25 Subgroup on sentiment lexica adds results to central document

Infrastructure

- use shared folder for result document, versions of data,
 processes, slideset (e.g. MS Teams, Google Drive, github)
- use LLMs for inspiration about additional methods as well as coding

Tasks within the Iterations of the Project

- 1. Data Exploration and Visualization
- 2. Data Preprocessing: value normalization, deal with outliers, deal with missing values, feature generation, balance training data if necessary
- 3. Establish/update baseline (majority class, predict mean value)
- 4. Try different learning methods using different feature creation methods and feature combinations
- 5. Perform error analysis in order to understand what is going on!
- 6. Later iteration:
 - run automatic hyperparameter optimization and attribute selection
 - employ more sophisticated evaluation setup: x-val + holdout vs. nested x-val

Project Report

- Max. 12 pages including title/toc page and reference page
 - max. 10 pages content, no appendix
 - Each extra page and each day of late submission downgrades your mark by 0.3!
- Reports and additional material need to be uploaded in Ilias within the respective Ilias groups
 - Deadline: Sunday, November 30th, 23:59

Project Report

- Outline for project report:
 - Application area and goals (0.5 pages)
 - Profile (structure and size) of your data set (minimum 1 page)
 - Preprocessing
 - Data Mining
 - Describe different approaches and parameter settings/optimizations that you tried
 - Evaluation
 - Including description of evaluation setup (split, x-val, nested-x-val?)
 - Including an analysis of the errors still made by the best method, a discussion of the results, and a comparison to state-of-the-art results (together: minimum 2 pages)
 - Results

Project Report

- Requirements
 - You have to use the latex template of the DWS Thesis
 - Please cite sources properly and use your references page
 - Also submit your Python code and (a subset) of your data
 - Include your names and your team number on the first page!
- Usage of AI Tools needs to be declared

Declaration of Used AI Tools

Tool	Purpose	Where?	Useful?
ChatGPT	Rephrasing	Throughout	+
DeepL	Translation	Throughout	+
ResearchGPT	Summarization of related work	Sec. 2.2	-
Dall-E	Image generation	Figs. 2, 3	++
GPT-4	Code generation	functions.py	+
ChatGPT	Related work hallucination	Most of bibliography	++

- Business Understanding
 - What is the actual problem (in the domain)?
 - What is the target variable?
 - Classification/Regression/Cluster Analysis?
- Data Understanding
 - What is the distribution of labels / target variable?
 - Are all attributes and their types listed and important attributes explained?
 - What is the quality of the data? Wrong values? Outdated?
 - What does correlation analysis reveal about attribute importance?

Preprocessing

- Are missing values replaced (in case needed)?
- Checked for outliers (and handled them)?
- Validity tests of attributes (Height above sea level < 9000)?
- Check for inconsistencies (age=42, birthday=03/07/1997)
- Check for duplicates
- Performed data normalization (e.g. US vs United States)
- Additional features generated?
- Has binning been tried out?
- Feature subset selection necessary?

External Knowledge:

– Are additional datasets used?

ML approaches

- How many different ML approaches were tried out?
- Do you have at least one symbolic and one non symbolic approach?
- Do you have at least one baseline (majority class / mean value / domain specific ...)?

Evaluation

- Is there a train test split or 10-fold cross validation implemented
- Is the evaluation stratified?
- Cost matrix or not?
- Are the hyper parameters tuned (in which range / which attributes) ?
- Are the tests systematic?
- Analyse a symbolic model (how does the decision tree / rules /... looks like)
- What features do have a high impact on the result?

- Result
 - Is the result <u>critically</u> evaluated
 - Is the result analyzed against the baseline
 - What does the result mean given the problem (could you use it)

Project Presentation

- Present the project results to the other students
 - 10 minutes presentation + 5 minutes discussion
 - During exercise slot
 - Everyone
- Presentations need to be uploaded in Ilias within the respective Ilias groups
 - Deadline: Wednesday, December 3rd, 23:59
- Three 90-minute sessions will be available.
- For **presentations**, **attendance** is **mandatory per session** for all group members, so the exact timing within the session does not matter.
- Keep an eye on the general forum—we will announce the exact time when slots become available at least one week in advance.

Get Additional Advice from a Stanford Professor

- How to evaluate your model?
 - https://www.youtube.com/watch?v=TxTblROT9lY

Christopher Potts

- How to structure your project report?
 - https://www.youtube.com/watch?v=DZNwO-p5PGY
- How to present the results of your project?
 - https://www.youtube.com/watch?v=GGx7klcahzY

Final Exam

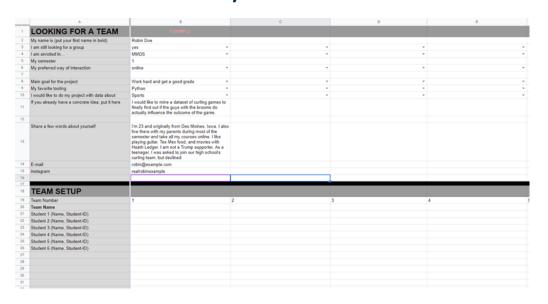
Date: Monday, 15th December 2025, time tba.

Duration: 60 minutes

Location: tba

- Structure: 6 open questions that
 - Check whether you have understood the lecture content
 - We try to cover all major chapters of the lecture
 - Require you to describe the ideas behind algorithms and methods
 - Often: How do methods react to special patterns in the data?
 - Might require you to do some simple calculations for which
 - You need to know the most relevant formulas
 - You do not need a calculator
 - There will be at most 1 question containing Python content
 - Should be solvable without a lot of Python knowledge
 - You do not need to know specialized Python functions by heart

Deadlines - Overview



- Team formation until Sunday, October 5th 23:59
 - Either enter your whole team or
 - Enter your name if you are looking for a team (team assignment on Monday, October 6th)
- Project outline until Tuesday, October 14th, 23:59
- Coaching Sessions
 - Every team has to attend at least one coaching session
- Project report until Sunday, November 30th, 23:59
- Project presentation in PDF until
 Wednesday, December 3rd, 23:59

Team Assignment

- Find your team now!
- Enter your group in "Team Setup" in Google Sheet
 - In case you do not have a team, fill in your details in "Looking for a team"
 - => then you will be assigned to a team after the registration period
- Do so until Sunday October 5th 23:59

Link in Ilias

Questions?

