

Data Mining

Classification - Part 3 -

University of Mannheim – Prof. Bizer: Data Mining

Slide 1

Outline

- 1. What is Classification?
- 2. K-Nearest-Neighbors
- 3. Decision Trees
- 4. Model Evaluation
- 5. Rule Learning
- 6. Naïve Bayes
- 7. Support Vector Machines
- 8. Artificial Neural Networks
- 9. Hyperparameter Selection

6. Naïve Bayes

- Probabilistic classification technique based on Bayes theorem
 - widely used and especially successful at classifying texts
- Goal: Estimate the most probable class label for a given record
- Probabilistic formulation of the classification task:
 - consider each attribute and class label as random variables
 - given a record with attributes $(A_1, A_2, ..., A_n)$, the goal is to find the class C that maximizes the conditional probability

$P(C|A_1, A_2, ..., A_n)$

- Example: Should we play golf?
 - P(Play=yes | Outlook=rainy, Temperature=cool)
 - P(Play=no | Outlook=rainy, Temperature=cool)
- Question: How to estimate these probabilities given training data?

Bayes Theorem

- Thomas Bayes (1701-1761)
 - British mathematician and priest
 - tried to formally prove the existence of God
- Bayes Theorem

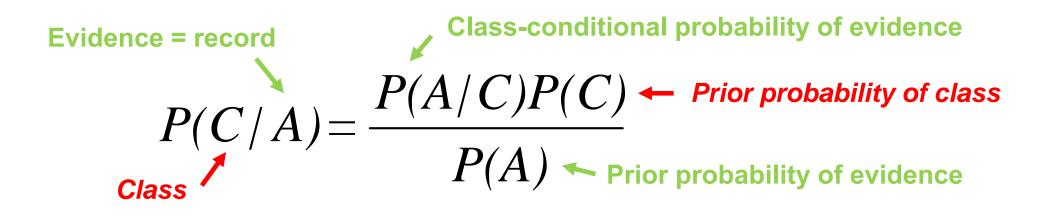
$$P(C/A) = \frac{P(A/C)P(C)}{P(A)}$$

useful in situations where P(C|A) is unknown
 while P(A|C), P(A) and P(C) are known or easy to estimate

- Prior probability of event H:
 - probability of event <u>before</u> evidence is seen
 - we play golf in 70% of all cases \rightarrow P(H) = 0.7
- Posterior probability of event H:
 - probability of event <u>after</u> evidence is seen
 - evidence: It is windy and raining \rightarrow P(H | E) = 0.2
- Probability of event H given evidence E:

$$P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$$

Applying Bayes Theorem to the Classification Task



- 1. Compute the probability P(C | A) for all values of C using Bayes theorem.
 - P(A) is the same for all classes. Thus, we just need to estimate P(C) and P(A|C)
- 2. Choose value of C that maximizes P(C | A).

Example:

 $P(\text{Play=yes/Outlook=rainy,Temp=cool}) = \frac{P(\text{Outlook=rainy,Temp=cool/Play=yes})P(\text{Play=yes})}{P(\text{Outlook=rainy,Temp=cool})}$

 $P(Play=no/Outlook=rainy,Temp=cool) = \frac{P(Outlook=rainy,Temp=cool/Play=no)P(Play=no)}{P(Outlook=rainy,Temp=cool)}$

- The prior probability $P(C_j)$ for each class is estimated by
 - counting the records in the training set that are labeled with class C_i
 - 2. dividing the count by the overall number of records
- Example:
 - $P(Play=no) = \frac{5}{14}$
 - P(Play=yes) = 9/14

Training Data

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Estimating the Class-Conditional Probability P(A | C)

- Naïve Bayes assumes that all attributes are statistically independent
 - knowing the value of one attribute says nothing about the value of another
 - this independence assumption is almost never correct!
 - but ... this scheme works well in practice
- The independence assumption allows the joint probability P(A | C) to be reformulated as the product of the individual probabilities P(A_i | C_i):

 $\mathsf{P}(\mathsf{A}_1, \mathsf{A}_2, \dots, \mathsf{A}_n \mid \mathsf{C}_j) = \prod \mathsf{P}(\mathsf{A}_n \mid \mathsf{C}_j) = \mathsf{P}(\mathsf{A}_1 \mid \mathsf{C}_j) \times \mathsf{P}(\mathsf{A}_2 \mid \mathsf{C}_j) \times \dots \times \mathsf{P}(\mathsf{A}_n \mid \mathsf{C}_j)$

P(Outlook=rainy, Temperature=cool | Play=yes) = P(Outlook=rainy | Play=yes) × P(Temperature=cool | Play=yes)

- Result: The probabilities $P(A_i | C_j)$ for all A_i and C_j can be estimated directly from the training data

Estimating the Probabilities $P(A_i | C_j)$

Outlook		Temperature		Hun	Humidity		Windy			P	Play		
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5		C	utlook	Temp	Humidi	ty	Windy	Play

The probabilities $P(A_i | C_i)$ are estimated by

- counting how often an attribute value appears together with class C_i
- 2. dividing the count by the overall number of records belonging to class C_i

Example:

2 times "Yes" together with "Outlook=sunny" out of altogether 9 "Yes" examples
→ p(Outlook=sunny|Yes) = 2/9

1	1/5	Irue	3/9	3/5			
0	utlook	Temp	Humidi	ty	Windy	Play	
Su	inny	Hot	High		False	No	
Su	inny	Hot	High		True	No	
0\	/ercast	Hot	High		False	Yes	
Ra	ainy	Mild	High		False	Yes	
Ra	ainy	Cool	Normal		False	Yes	
Ra	ainy	Cool	Normal		True	No	
0\	/ercast	Cool	Normal		True	Yes	
Su	inny	Mild	High		False	No	
Su	inny	Cool	Normal		False	Yes	
Ra	ainy	Mild	Normal		False	Yes	
Su	inny	Mild	Normal		True	Yes	
0\	/ercast	Mild	High		True	Yes	
0\	/ercast	Hot	Normal		False	Yes	
Ra	ainy	Mild	High		True	No	

Classifying a New Day

Unseen record

Outl	ook	Temp.	Humidity	Windy	Play
Sun	ny	Cool	High	True	?

Class-conditional probability of the evidence

P(yes | E) = P(Outlook = Sunny | yes)

Probability of class "yes" given the evidence

 $\times P(Temperatur \ e = Cool \mid yes)$ $\times P(Humidity = High | yes)$ $\times P(Windy = True \mid yes)$ $\times \frac{P(yes)}{P(E)} \longleftarrow Prior probability of class "yes"}$ Prior probability of evidence $=\frac{\frac{2}{9}\times\frac{3}{9}\times\frac{3}{9}\times\frac{3}{9}\times\frac{3}{9}\times\frac{9}{14}}{-14}$ P(E)

Classifying a New Day: Weigh the Evidence!

Out	Outlook			Temperature		Hun	Humidity		Windy			Play	
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

- A new day:

Prior probability Evidence

Choose Maximum

OutlookTemp.HumidityWindyPlaySunnyCoolHighTrue?

Likelihood of the two classes

For "yes" = $2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053$

For "no" = $3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206$

Conversion into a probability by normalization:

P("yes") = 0.0053 / (0.0053 + 0.0206) = 0.205

P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795

Handling Numerical Attributes

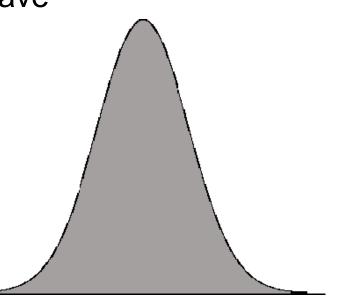
– Option 1:

Discretize numerical attributes before learning classifier.

- Temp= 37°C → "Hot"
- Temp= 21°C → "Mild"
- Option 2:

Make assumption that numerical attributes have a normal distribution given the class.

- use training data to estimate parameters of the distribution
 (e.g. mean and standard deviation)
 - (e.g., mean and standard deviation)
- once the probability distribution is known, it can be used to estimate the conditional probability P(A_i|C_i)



Handling Numerical Attributes

The probability density function for the normal distribution is

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- It is defined by two parameters:
 - Sample mean μ

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Standard deviation
$$\sigma$$
 $\sigma = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i - \mu)^2}$

- Both parameters can be estimated from the training data

Out	look		Tempe	rature	Humidity		Windy			Play	
	Yes	No	Yes	No	Yes	No		Yes	No	Yes	No
Sunny	2	3	64, 68,	65, 71,	65, 70,	70, 85,	False	6	2	9	5
Overcast	4	0	69, 70,	72, 80,	70, 75,	90, 91,	True	3	3		
Rainy	3	2	72,	85,	80,	95,					
Sunny	2/9	3/5	μ = 73	μ =75	μ = 79	μ =86	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	<i>σ</i> =6.2	<i>σ</i> =7.9	<i>σ</i> =10.2	<i>σ</i> =9.7	True	3/9	3/5		
Rainy	3/9	2/5									

Example calculation:

$$f(temp = 66 \mid yes) = \frac{1}{\sqrt{2\pi} 6.2} e^{-\frac{(66-73)^2}{2*6.2^2}} = 0.0340$$

Classifying a New Day

Unseen record

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	?

Likelihood of "yes" = $2/9 \times 0.0340 \times 0.0221 \times 3/9 \times 9/14 = 0.000036$ Likelihood of "no" = $3/5 \times 0.0291 \times 0.0380 \times 3/5 \times 5/14 = 0.000136$ P("yes") = 0.000036 / (0.000036 + 0.000136) = 20.9%P("no") = 0.000136 / (0.000036 + 0.000136) = 79.1%

But note: Some numeric attributes are not normally distributed and you may thus need to choose a different probability density function or use discretization

Handling Missing Values

- Missing values may occur in training and in unseen classification records
- Training: Record is not included into frequency count for attribute value-class combination
- Classification: Attribute will be omitted from calculation
 - Example:

Unseen record

Outlook	Temp.	Humidity	Windy	Play
?	Cool	High	True	?
			1	

Likelihood of "yes" = $3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0238$

Likelihood of "no" = $1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0343$

P("yes") = 0.0238 / (0.0238 + 0.0343) = 41%

P("no") = 0.0343 / (0.0238 + 0.0343) = 59%

The Zero-Frequency Problem

- What if an attribute value doesn't occur with every class value? (e.g. no "Outlook = overcast" for class "no")
 - class-conditional probability will be zero!
- Problem: Posterior probability will also be zero!
 No matter how likely the other values are!
- Remedy: Add 1 to the count for every attribute value-class combination (*Laplace Estimator*)
- Result: Probabilities will never be zero! also: stabilizes probability estimates

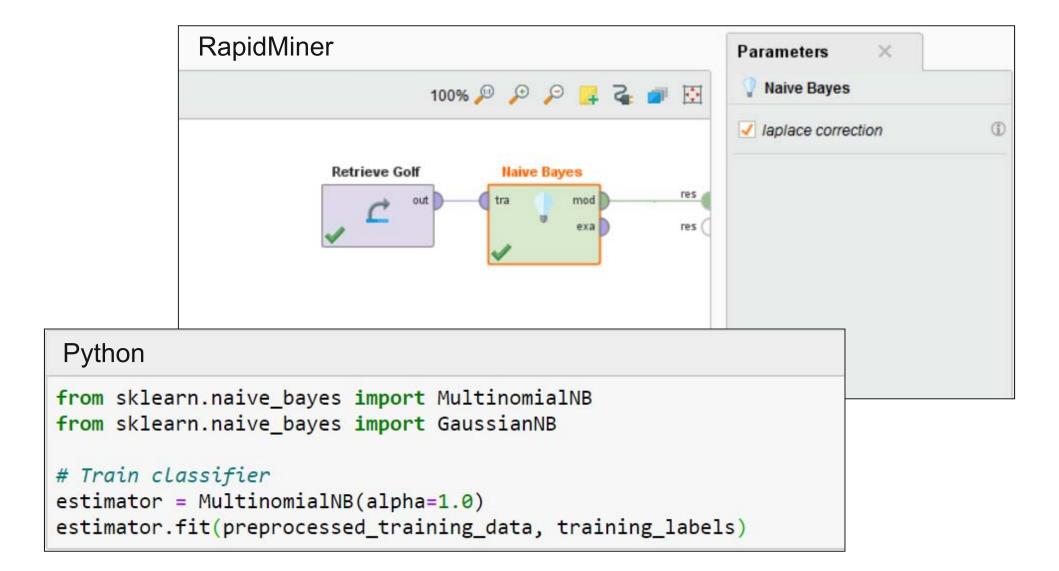
Original :
$$P(A_i | C) = \frac{N_{ic}}{N_c}$$

Laplace : $P(A_i | C) = \frac{N_{ic} + 1}{N_c + |V_i|}$ $|V_i|$ number of values

$$P[Out. = overc. | no] = \frac{0}{5} = 0$$

$$P[no \mid E] = 0$$

Naïve Bayes in RapidMiner and Python



Naïve Bayes in RapidMiner: Probability Distribution Table

ult History	y Simplebi	stribution (Naive Bayes)	<				
scription	Attribute	Parameter	no		yes		
scription	Outlook	value=rain	0.39	2	0.331		
6	Outlook	value=overcast	0.01	4	0.438		
E Simple	Outlook	value=sunny	0.58	1	0.223		
Charts	Outlook	value=unknown	0.01	4	0.008		
	Temperature	mean	74.6	00	73		
stribution	Temperature	standard deviation	7.89	3	6.164		
Table	Humidity	mean	Result History	💡 SimpleD	Distribution (Na	aive Bayes) 🛛 🗙	1
	Humidity	standard deviation		Attribute:		— no — yes	
	Wind	value=true	Description	Humidity	•	0.0425	
notations	Wind	value=false		Rotate Labels		0.0400 - 0.0375 -	
	Wind	value=unknown				0.0350 - 0.0325 -	
			Simple Charts			0.0300	
						0.0230 - 20.0225 - 0.0200 -	
			Distribution Table			0.0175 - 0.0150 - 0.0125 -	
						0.0100 - 0.0075 - 0.0050 -	
			Annotations			0.0025	

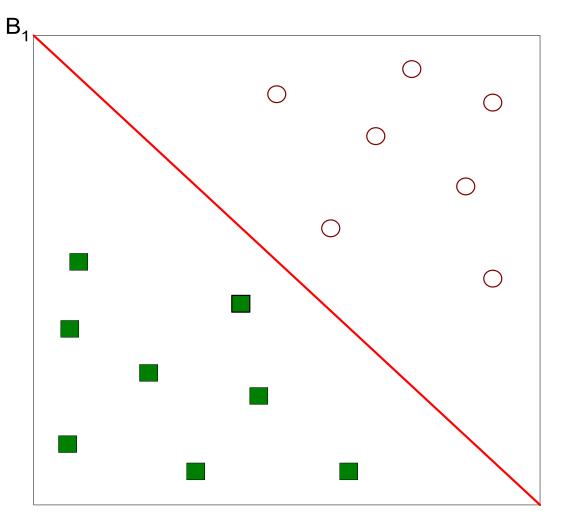
Characteristics of Naïve Bayes

- Naïve Bayes works surprisingly well for many classification tasks
 - even if independence assumption is clearly violated
 - Why? Because classification doesn't require accurate probability estimates as long as maximum probability is assigned to correct class
- Robust to isolated noise points as they will be averaged out
- Robust to irrelevant attributes as $P(A_i | C)$ distributed uniformly for A_i
- Adding too many redundant attributes can cause problems
 - Solution: Select attribute subset as Naïve Bayes often works better with just a fraction of all attributes
- Technical advantages
 - Learning Naïve Bayes classifiers is computationally cheap as probabilities can be estimated doing one pass over the training data
 - Storing the probabilities does not require a lot on memory

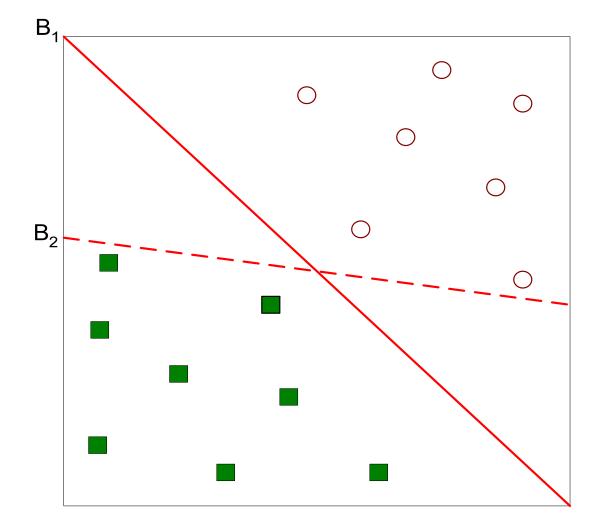
- Support vector machines (SVMs) are algorithms for learning linear classifiers for
 - two class problems (a positive and a negative class)
 - from examples described by continuous attributes
- SVMs achieve very good results especially for high dimensional data
- SVMs were invented by V. Vapnik and his co-workers in 1970s in Russia and became known to the West in 1992

Support Vector Machines

 SVMs find a linear hyperplane (decision boundary) that will separate the data



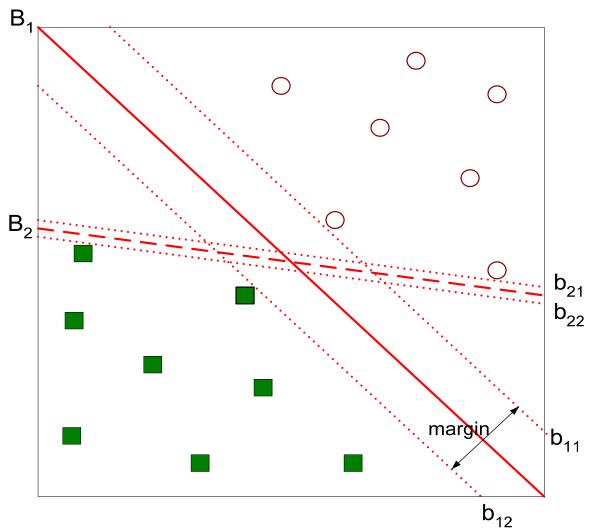
Support Vector Machines



- Which one is better? B1 or B2?
- How do you define "better"?

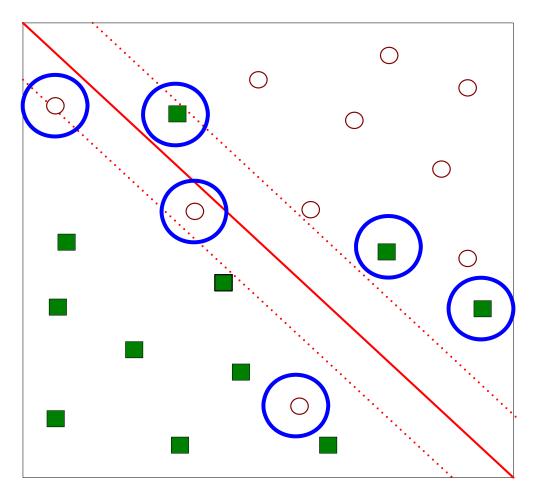
Which Hyperplane is better?

- In order to avoid overfitting and to generalize for unseen data, SVMs find the hyperplane that maximizes the margin to the closest points (support vectors)
- Visual solution:
 - B1 is better than B2
- Mathematical solution:
 - constrained optimization that can be solved using quadratic programming
 - See Tan/Steinbach/ Kumar, Chapter 6.9



Dealing with Not Linearly Separable Data

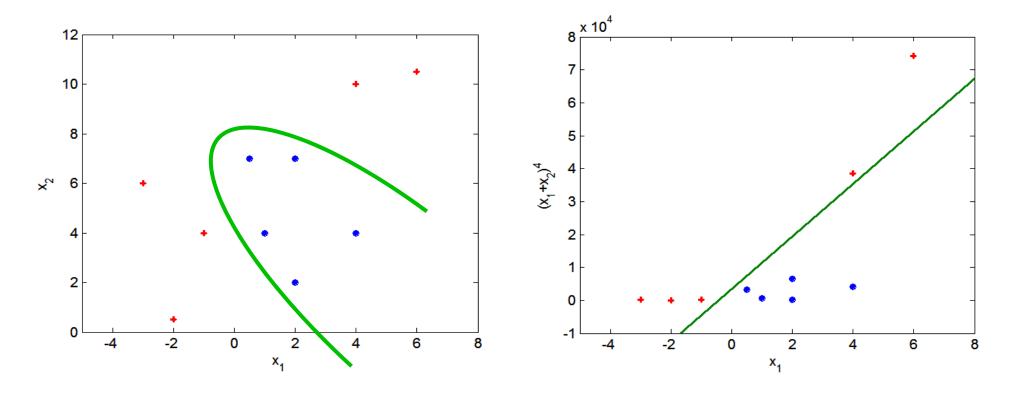
What if the problem is not linearly separable due to noise points?



 Solution: Introduce slack variables in margin computation which result in a penalty for each data point that violates decision boundary

Dealing with Non-Linear Decision Boundaries

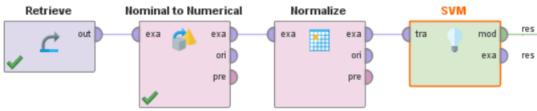
- Problem: What if decision boundary is not linear?
- Solution: Transform data into higher dimensional space where there is a linear separation
 - details: see Tan/Steinbach/Kumar, Chapter 6.9
 - different types of kernel functions are used for this transformation



Characteristics of Support Vector Machines

- SVMs were often the most successful classification technique for high dimensional data before DNNs appeared
- Application areas of SVMs include
 - Text classification
 - Computer vision, e.g face identification
 - Handwritten digit recognition
 - SPAM detection
 - Bioinformatics
- Hyperparameter selection often has a high impact on the performance of SVNs
 - see next slide

SVMs in RapidMiner and Python



Tuning a SVM

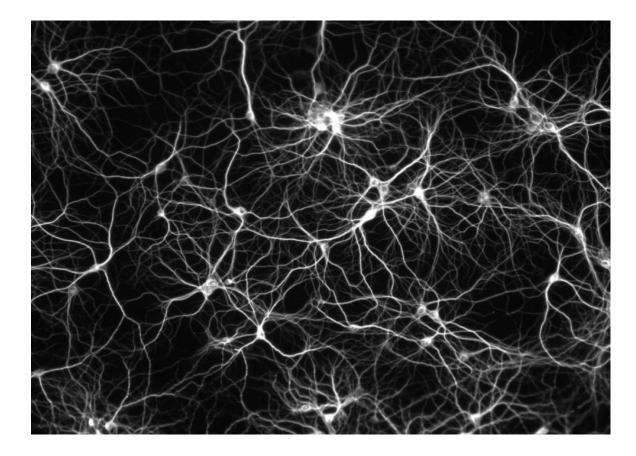
- 1. Transform all attributes to numeric scale
- 2. Normalize all value ranges to [0,1]
- 3. Use the RBF kernel function
- 4. Use nested cross-validation to find the best values for the parameters
 - 1. C = weight of slack variables (Range: 0.03 to 30000)
 - 2. gamma = kernel parameter (Range: 0.00003 to 8)

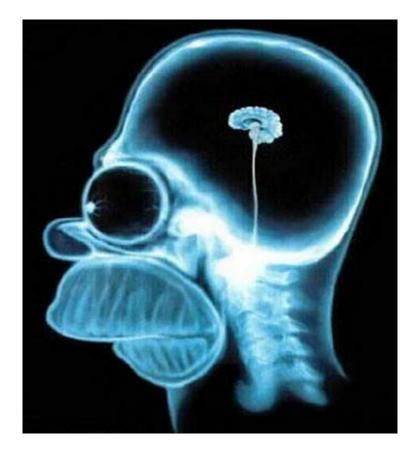
SVM (Support Vector N	Machine (LibSVM))	
svm type	C-SVC	•
kernel type	rbf	•
gamma	0.0	Œ
с	0.0	Œ
cache size	80	Œ
epsilon	0.001	Œ
		Python
<mark>from</mark> sklearn.svm <mark>impor</mark>	t svc	

More details on tuning: Hsu, et al: A Practical Guide to Support Vector Classification.

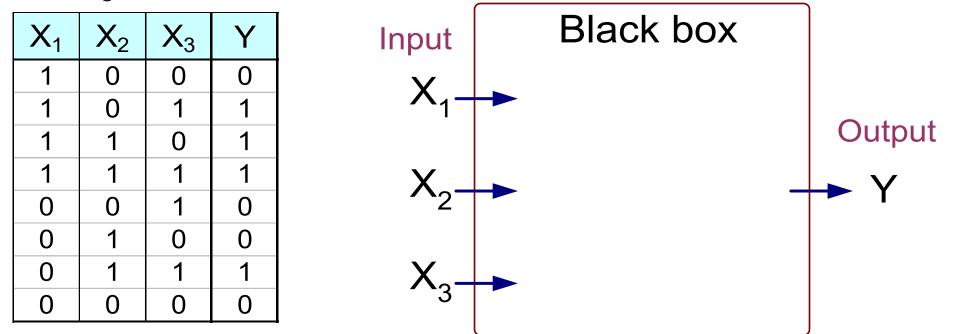
8. Artificial Neural Networks (ANN)

- Inspiration
 - one of the most powerful super computers in the world



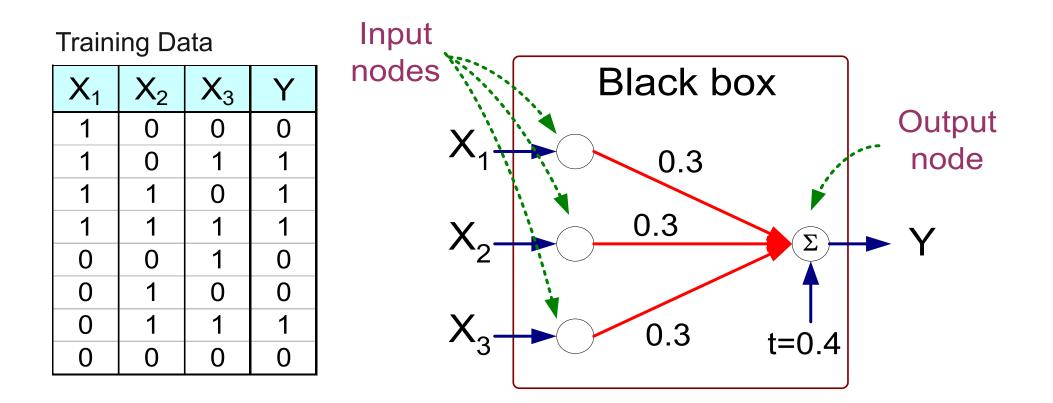


Training Data



Example: Output Y is 1 if at least two of the three inputs are equal to 1

Artificial Neural Networks (ANN)

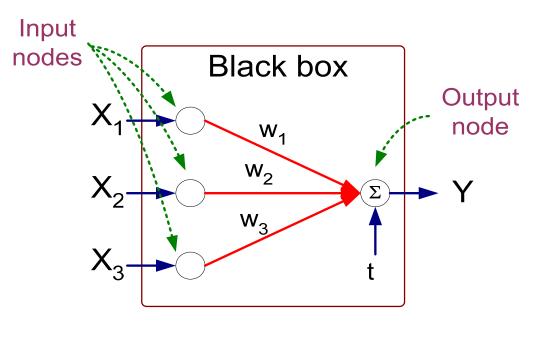


$$Y = I(0.3X_{1} + 0.3X_{2} + 0.3X_{3} - 0.4 > 0)$$

where $I(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$

Artificial Neural Networks (ANN)

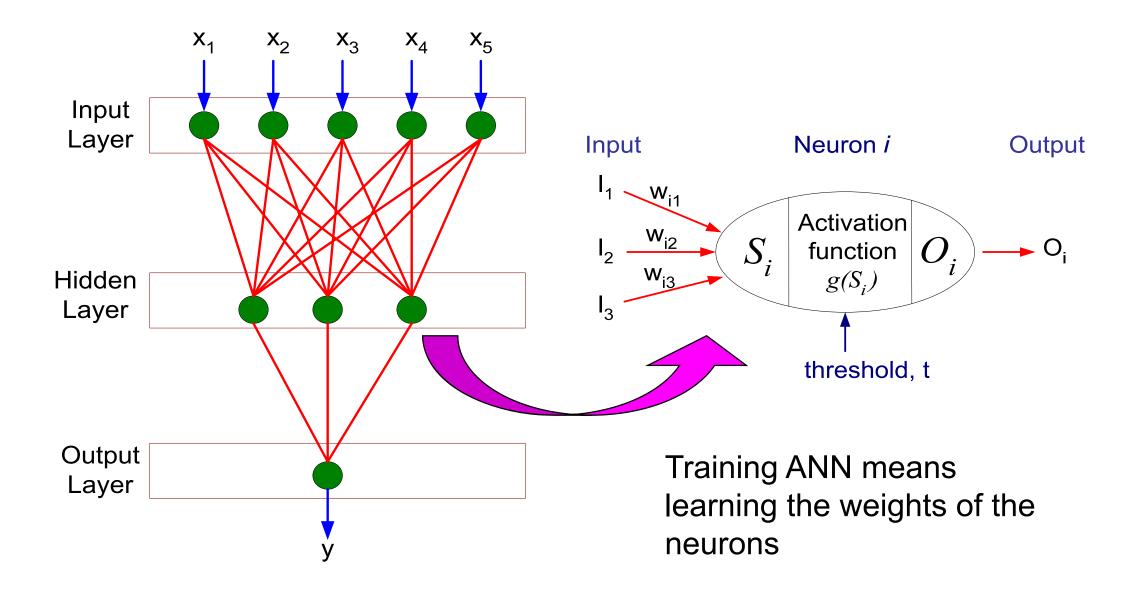
- Model is an assembly of inter-connected nodes (called neurons) and weighted links
- Output node sums up each of its input values according to the weights of its links
- Classification decision:
 Compare output node against some threshold t



Perceptron Model

$$Y = I(\sum_{i} w_{i}X_{i} - t > 0) \text{ or}$$
$$Y = sign(\sum_{i} w_{i}X_{i} - t)$$

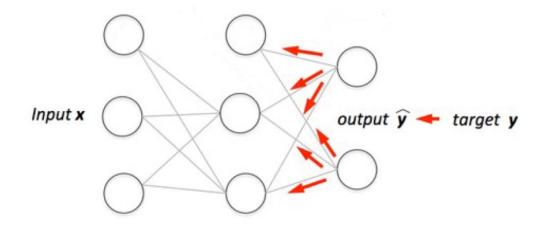
Multi-Layer Artificial Neural Networks



- 1. Initialize the weights $(w_0, w_1, ..., w_k)$, e.g., all with 1 or random
- 2. Adjust the weights in such a way that the output of ANN is as consistent as possible with class labels of the training examples

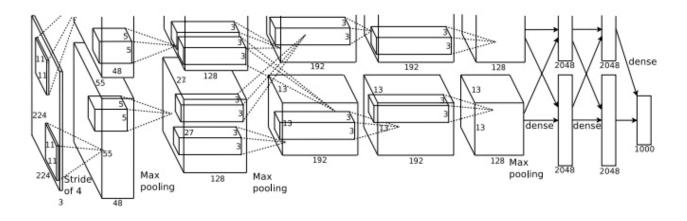
Objective function:
$$E = \sum_{i} \left[Y_i - f(w_i, X_i) \right]^2$$

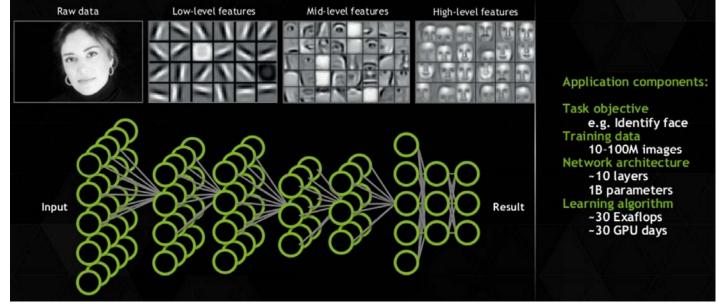
- Find the weights w_i's that minimize the error E
- using for example the back propagation algorithm (see Tan/Steinbach, Chapter 6.7)
- Adjustment factor: learning rate



Deep Neural Networks (DNN)

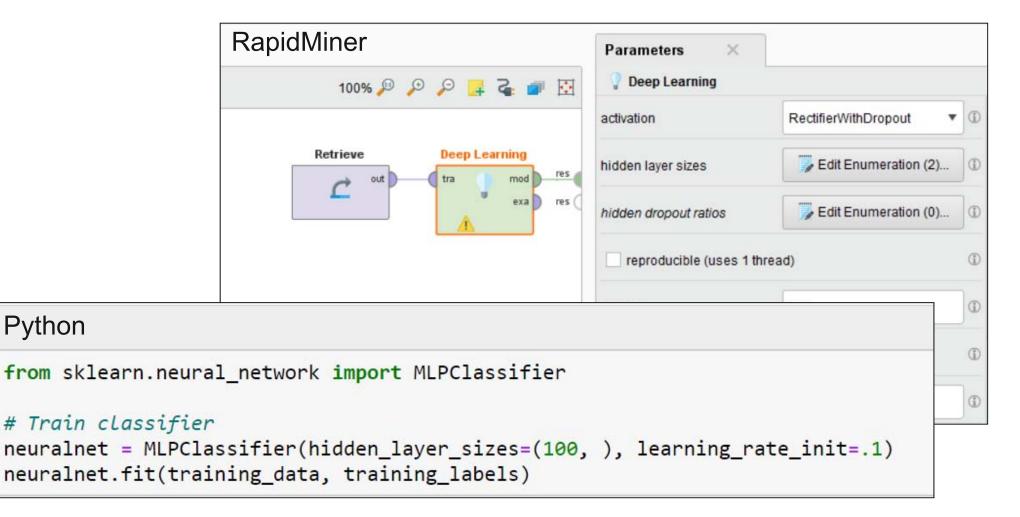
- Hype topic as DNN are very successful in
 - computer vision
 - speech recognition
 - natural language processing
- Require
 - lots of training data
 - lots of GPUs to
 - adjust weights
 - test different network architectures





Artificial Neural Networks in RapidMiner and Python

- both platforms provide their own neural network implementations
- as well as interfaces to state-of-the-art deep learning libraries



Characteristics of Artificial Neural Networks

- ANNs can be used for classification as well as numerical regression tasks (more on this next week)
- Multi-layer neural networks are universal approximators
 - meaning that the can approximate any target function
 - Very important but difficult to choose the right network topology
 - Expressive hypothesis space often leads to overfitting
 - Possible approaches to deal with overfitting:
 - Use more training data (a lot more might be necessary)
 - Step-by-step simplify the topology (regularization)
 - 1. Start with several hidden layers and larger number of nodes
 - 2. Estimate generalization error using validation dataset
 - 3. Step by step remove nodes as long as generalization error improves
- Model building is very time consuming, model application is fast
- Can handle redundant attributes, difficult to handle missing values

9. Hyperparameter Selection

- A hyperparameter is a parameter which influences the learning process and whose value is set before the learning begins
 - pruning thresholds for trees and rules
 - gamma and C for SVMs
 - learning rate, hidden layers for ANNs
- By contrast, parameters are learned from the training data
 - weights in an ANN, probabilities in Naïve Bayes, splits in a tree
- Many methods work poorly with the default hyperparameters ③
- How to determine good hyperparameters?
 - manually play around with different hyperparameter settings
 - have your machine automatically test many different settings (hyperparameter optimization)

Hyperparameter Optimization

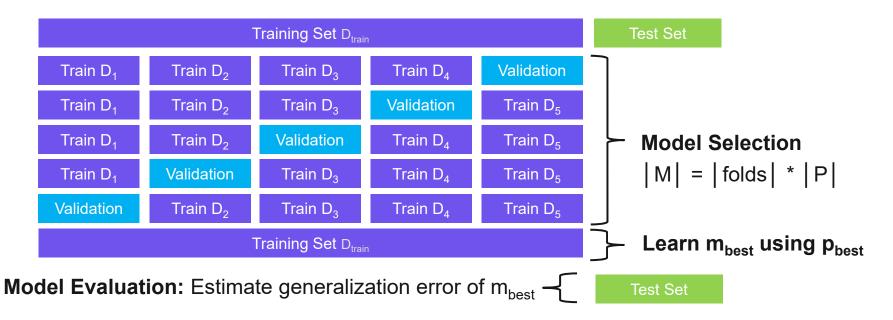
- Goal: Find the combination of hyperparameter values that results in learning the model with the lowest generalization error
- How to determine the parameter value combinations to be tested?
 - Grid Search: Test all combinations in user-defined ranges
 - Random Search: Test combinations of random parameter values
 - Evolutionary Search: Keep specific parameter values that worked well
- Often hundreds of combinations are tested
 - reason for cloud computing
- Model Selection: From all learned models M, select the model m_{best} that is expected to generalize best to unseen records

Model Selection Using a Validation Set



Model Selection using Cross-Validation

- But wait, we want to
 - 1. make sure that all examples are used for validation once (remember: red tree)
 - 2. use as much labeled data as possible for training (remember: learning curve)
- Both goals are met by using cross-validation for model selection



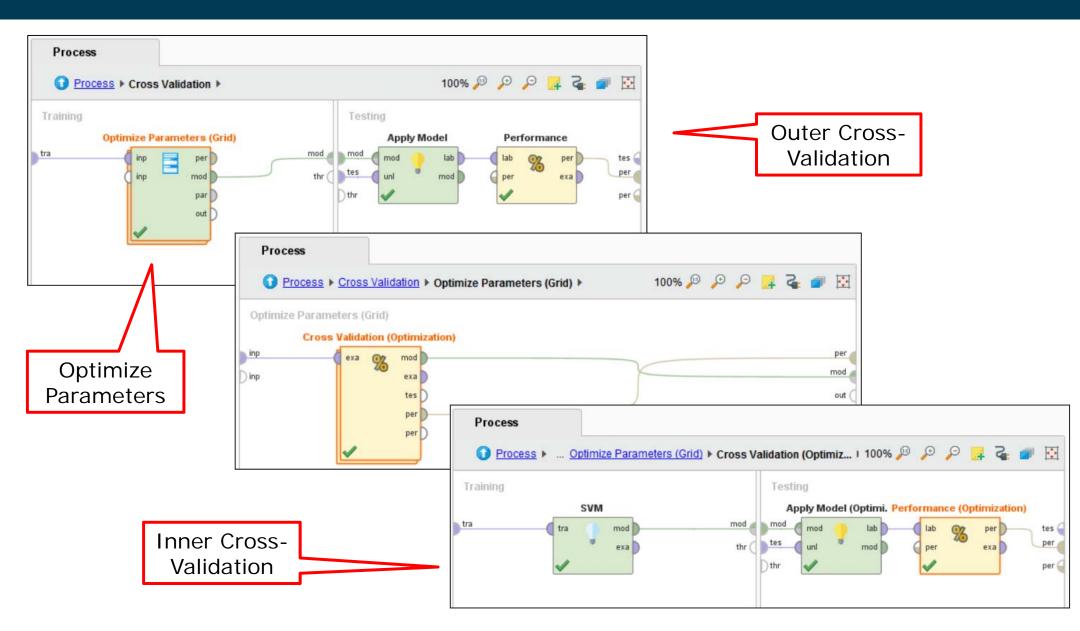
- 5 folds, 100 parameter value sets → 501 models learned

Model Evaluation using Nested Cross-Validation

- Nest two cross-validation loops into each other in order to:
 - 1. find the best hyperparameter setting (model selection)
 - 2. get a reliable estimate of the generalization error (model evaluation)
- Outer Cross-Validation
 - estimates generalization error of m_{best}
 - training set is passed on to inner cross-validation in each iteration
- Inner Cross-Validation
 - searches for best parameter combination
 - splits outer training set into inner training and validation set
 - learns model m_{best} using all outer training data

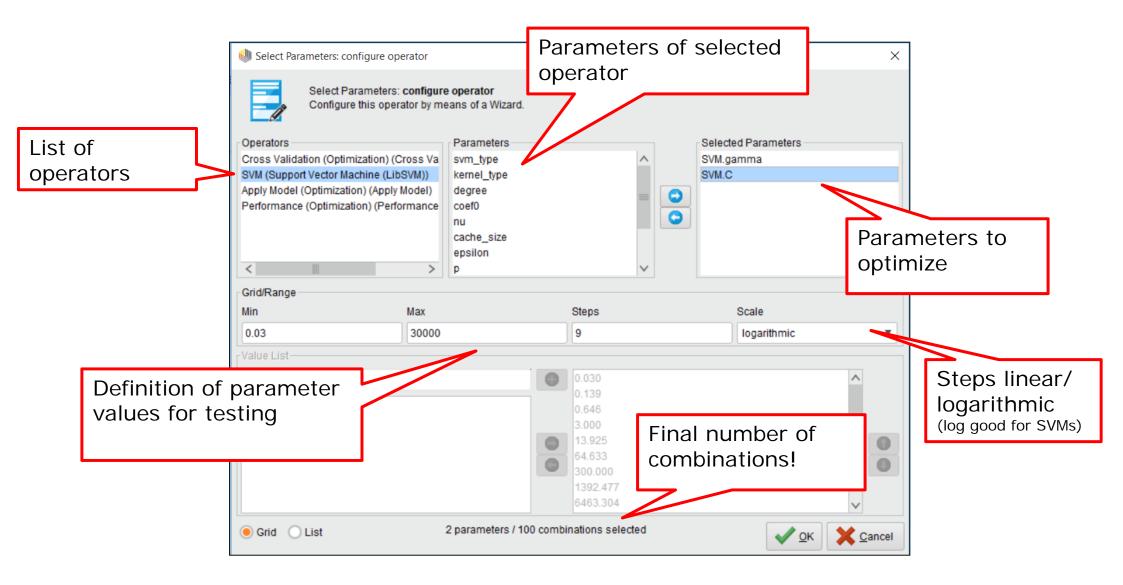
- 5 folds_{Outer}*((5 folds_{Inner}* 100 para.sets)+1) → 2505 models learned

Nested Cross-Validation in RapidMiner



https://rapidminer.com/resource/correct-model-validation/

Hyperparameter Optimization in RapidMiner



Nested Cross-Validation in Python

```
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score
from sklearn.svm import SVC
# Specify hyperparameter combinations for search
parameter_grid = {"C": [1, 10, 100, 1000], "gamma": [.001, .01, .1, 1]}
# Create SVM
estimator_svm = SVC(kernel='rbf')
# Create the grid search for model selection
estimator_gs = GridSearchCV(estimator_svm, parameter_grid, scoring='accuracy', cv=5)
# Run nested cross-validation for model evaluation
accuracy_cv = cross_val_score(estimator_gs, dataset, labels, cv=5, scoring='accuracy')
```

scikit-learn Documentation: Tuning the hyper-parameters of an estimator

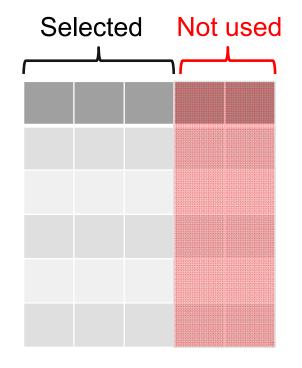
https://scikit-learn.org/stable/modules/grid_search.html

scikit-learn Documentation: Nested versus non-nested cross-validation

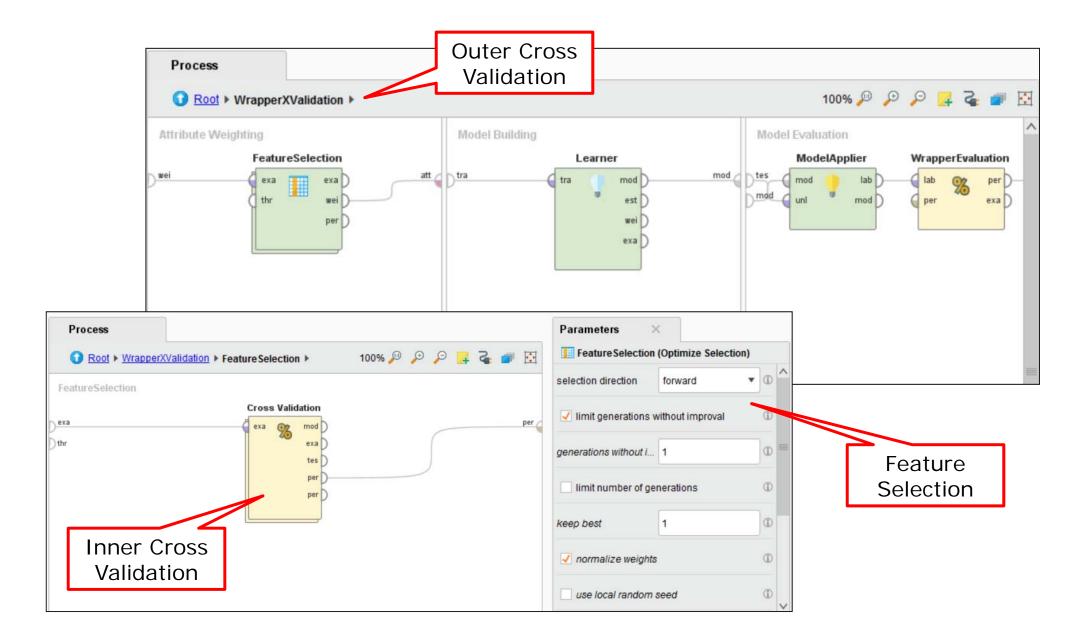
https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html

Feature Selection

- Some classification methods automatically select the relevant feature subset as part of the learning process
 - e.g. Decision Trees, Random Forests, ANNs, SVMs
- The performance of other methods depends on the subset of the features provided
 - e.g. KNN, Naïve Bayes
- Automated feature selection approaches
 - Forward selection: Find best single feature, add further features, test again
 - Backward selection: start using all features, remove features, test again
- Use nested cross-validation to estimate the generalization error



Feature Selection in RapidMiner using Nested X-Validation



Summary: Hyperparameter and Feature Selection

- Hyperparameter selection
 - Default: Always run hyperparameter optimization
 - Otherwise you cannot say that a method does not work for a task
- Feature selection
 - Default: Check if classification method requires feature selection
 - If yes, run automated feature selection
- Model selection
 - Default: Use nested cross-validation
 - If computation takes too long: use better hardware, reduce number of folds, reduce parameter search space, sample data to reduce size
 - If exact replicability of results is required: Use single train, validation, test split
- If your dataset is imbalanced
 - don't forget to balance your training set, not your test set!

Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar: Introduction to Data Mining. 2nd Edition. Pearson.

Chapter 6.4: Naïve Bayes

Chapter 6.9: Support Vector Machines

Chapter 6.7 and 6.8: Artificial Neural Networks

Chapter 3.5: Model Selection

Chapter 3.7: Presence of Hyper-Parameters

