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Data Mining

Classification
- Part 3 -
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Outline

1. What is Classification?

2. K-Nearest-Neighbors

3. Decision Trees

4. Model Evaluation 

5. Rule Learning

6. Naïve Bayes

7. Support Vector Machines

8. Artificial Neural Networks 

9. Hyperparameter Selection
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6. Naïve Bayes

 Probabilistic classification technique based on Bayes theorem 
– widely used and especially successful at classifying texts

 Goal: Estimate the most probable class label for a given record

 Probabilistic formulation of the classification task:
– consider each attribute and class label as random variables
– given a record with attributes (A1, A2,…,An), 

the goal is to find the class C that maximizes the conditional probability  

P(C| A1, A2,…,An )

– Example: Should we play golf?
– P(Play=yes | Outlook=rainy, Temperature=cool)
– P(Play=no | Outlook=rainy, Temperature=cool)

– Question: How to estimate these probabilities given training data?
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Bayes Theorem

 Thomas Bayes (1701-1761)
– British mathematician and priest
– tried to formally prove the existence of God

 Bayes Theorem

– useful in situations where P(C|A) is unknown
while P(A|C), P(A) and P(C) are known or easy to estimate

P(A)
C)P(C)|P(A=A)|P(C



University of Mannheim – Prof. Bizer: Data Mining  Slide 5

Bayes Theorem: Evidence Formulation

 Prior probability of event H:
• probability of event before evidence is seen
• we play golf in 70% of all cases  P(H) = 0.7

 Posterior probability of event H:
• probability of event after evidence is seen
• evidence: It is windy and raining  P(H | E) = 0.2

 Probability of event H given evidence E:

)(
)()|()|(

EP
HPHEPEHP 
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1. Compute the probability P(C | A) for all values of C using Bayes theorem.
• P(A) is the same for all classes. Thus, we just need to estimate P(C) and P(A|C)     

2. Choose value of C that maximizes P(C | A).

Example: 

)P(
))P(|P(=)|P(

coolTemp rainy,Outlook
yesPlayyesPlay coolTemp rainy,OutlookcoolTemp rainy,OutlookyesPlay






Applying Bayes Theorem to the Classification Task

Evidence = record

Class

Prior probability of class

Class-conditional probability of evidence

Prior probability of evidenceP(A)
C)P(C)|P(A=A)|P(C

)P(
o)o)P(|P(=)|oP(

coolTemp rainy,Outlook
nPlaynPlay coolTemp rainy,OutlookcoolTemp rainy,OutlooknPlay





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Estimating the Prior Probability P(C)

Outlook Temp Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot  High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No

Training Data The prior probability P(Cj) for each 
class is estimated by 
1. counting the records in the training 

set that are labeled with class Cj

2. dividing the count by the overall 
number of records

 Example:
• P(Play=no) = 5/14
• P(Play=yes) = 9/14
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Estimating the Class-Conditional Probability P(A | C) 

 Naïve Bayes assumes that all attributes are statistically independent
• knowing the value of one attribute says nothing about the value of another
• this independence assumption is almost never correct!
• but … this scheme works well in practice

 The independence assumption allows the joint probability P(A | C) to 
be reformulated as the product of the individual probabilities P(Ai| Cj):

P(A1, A2, …, An | Cj) = ∏ P(An| Cj) = P(A1| Cj)P(A2| Cj) … P(An| Cj)

P(Outlook=rainy, Temperature=cool | Play=yes) = P(Outlook=rainy | Play=yes) 
P(Temperature=cool | Play=yes) 

 Result: The probabilities P(Ai| Cj) for all Ai and Cj can be estimated 
directly from the training data
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Estimating the Probabilities P(Ai | Cj) 

Outlook Temperature Humidity Windy Play
Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 Hot 2 2 High 3 4 False 6 2 9 5
Overcast 4 0 Mild 4 2 Normal 6 1 True 3 3
Rainy 3 2 Cool 3 1
Sunny 2/9 3/5 Hot 2/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14
Overcast 4/9 0/5 Mild 4/9 2/5 Normal 6/9 1/5 True 3/9 3/5
Rainy 3/9 2/5 Cool 3/9 1/5

Outlook Temp Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot  High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No

The probabilities P(Ai | Cj) are estimated by 
1. counting how often an attribute value 

appears together with class Cj
2. dividing the count by the overall number 

of records belonging to class Cj

Example:
2 times “Yes” together with “Outlook=sunny” 
out of altogether 9 “Yes” examples 
 p(Outlook=sunny|Yes) = 2/9
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Classifying a New Day

Outlook Temp. Humidity Windy Play
Sunny Cool High True ?

Probability of
class “yes” given
the evidence

)|()|( yesSunnyOutlookPEyesP 
)|( yesCooleTemperaturP 

)|( yesHighHumidityP 

)|( yesTrueWindyP 

)(
)(

EP
yesP


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9

9
3

9
3

9
3

9
2

EP




Prior probability of class “yes”

Class-conditional 
probability of the
evidence

Prior probability of evidence

Unseen record
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Classifying a New Day: Weigh the Evidence!

Outlook Temp. Humidity Windy Play
Sunny Cool High True ?

 A new day:

Likelihood of the two classes
For “yes” = 2/9  3/9  3/9  3/9  9/14 = 0.0053
For “no” = 3/5  1/5  4/5  3/5  5/14 = 0.0206

Conversion into a probability by normalization:
P(“yes”) = 0.0053 / (0.0053 + 0.0206) = 0.205
P(“no”) = 0.0206 / (0.0053 + 0.0206) = 0.795

Outlook Temperature Humidity Windy Play
Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 Hot 2 2 High 3 4 False 6 2 9 5
Overcast 4 0 Mild 4 2 Normal 6 1 True 3 3
Rainy 3 2 Cool 3 1
Sunny 2/9 3/5 Hot 2/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14
Overcast 4/9 0/5 Mild 4/9 2/5 Normal 6/9 1/5 True 3/9 3/5
Rainy 3/9 2/5 Cool 3/9 1/5

Choose Maximum

Prior probability
Evidence



University of Mannheim – Prof. Bizer: Data Mining  Slide 12

Handling Numerical Attributes

 Option 1: 
Discretize numerical attributes before learning classifier.

• Temp= 37°C  “Hot”
• Temp= 21°C  “Mild”

 Option 2: 
Make assumption that numerical attributes have 
a normal distribution given the class.

• use training data to estimate parameters 
of the distribution 
(e.g., mean and standard deviation)

• once the probability distribution is known, 
it can be used to estimate the conditional 
probability P(Ai|Cj)
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Handling Numerical Attributes

 The probability density function for the normal distribution is

 It is defined by two parameters:

• Sample mean 

• Standard deviation 

 Both parameters can be estimated  from the training data
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Statistics for the Weather Data

Example calculation:

0340.0
2.62

1)|66( 2

2

2.62
)7366(

 



eyestempf



Outlook Temperature Humidity Windy Play
Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 64, 68,
69, 70,
72,  …

65, 71, 
72, 80,
85,  …

65, 70,
70, 75,
80,  …

70, 85,
90, 91,
95,  …

False 6 2 9 5
Overcast 4 0 True 3 3
Rainy 3 2

Sunny 2/9 3/5  =73  =75  =79  =86 False 6/9 2/5 9/14 5/14
Overcast 4/9 0/5  =6.2  =7.9  =10.2  =9.7 True 3/9 3/5
Rainy 3/9 2/5
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Classifying a New Day

But note: Some numeric attributes are not normally 
distributed and you may thus need to choose a different 
probability density function or use discretization

Outlook Temp. Humidity Windy Play

Sunny 66 90 true ?

Likelihood of “yes” = 2/9  0.0340  0.0221  3/9  9/14 = 0.000036
Likelihood of “no”  = 3/5  0.0291  0.0380  3/5  5/14 = 0.000136
P(“yes”) = 0.000036 / (0.000036 + 0. 000136) = 20.9%
P(“no”)  = 0.000136 / (0.000036 + 0. 000136) = 79.1%

Unseen record
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Handling Missing Values

 Missing values may occur in training and in unseen classification 
records

 Training: Record is not included into frequency count for attribute 
value-class combination

 Classification: Attribute will be omitted from calculation
• Example:

Outlook Temp. Humidity Windy Play
? Cool High True ?

Likelihood of “yes” = 3/9  3/9  3/9  9/14 = 0.0238
Likelihood of “no” = 1/5  4/5  3/5  5/14 = 0.0343
P(“yes”) = 0.0238 / (0.0238 + 0.0343) = 41%
P(“no”) = 0.0343 / (0.0238 + 0.0343) = 59%

Unseen record
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The Zero-Frequency Problem

 What if an attribute value doesn’t occur with every class value?
(e.g. no “Outlook = overcast” for class “no”)
• class-conditional probability will be zero!

 Problem: Posterior probability will also be zero!
No matter how likely the other values are!

 Remedy: Add 1 to the count for every attribute 
value-class combination (Laplace Estimator)

 Result: Probabilities will never be zero!
also: stabilizes probability estimates
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Naïve Bayes in RapidMiner and Python

RapidMiner

Python
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Naïve Bayes in RapidMiner: Probability Distribution Table
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Characteristics of Naïve Bayes 

 Naïve Bayes works surprisingly well for many classification tasks
• even if independence assumption is clearly violated
• Why? Because classification doesn’t require accurate probability estimates 

as long as maximum probability is assigned to correct class

 Robust to isolated noise points as they will be averaged out
 Robust to irrelevant attributes as P(Ai | C) distributed uniformly for Ai

 Adding too many redundant attributes can cause problems
• Solution: Select attribute subset as Naïve Bayes often works

better with just a fraction of all attributes

 Technical advantages
• Learning Naïve Bayes classifiers is computationally cheap as probabilities 

can be estimated doing one pass over the training data
• Storing the probabilities does not require a lot on memory
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7. Support Vector Machines

 Support vector machines (SVMs) are algorithms 
for learning linear classifiers for
• two class problems (a positive and a negative class)
• from examples described by continuous attributes

 SVMs achieve very good results especially for high 
dimensional data 

 SVMs were invented by V. Vapnik and his co-workers 
in 1970s in Russia and became known 
to the West in 1992 
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Support Vector Machines

 SVMs find a linear hyperplane (decision boundary) that 
will separate the data
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Support Vector Machines

 Which one is better? B1 or B2?
 How do you define “better”?
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Which Hyperplane is better?

 In order to avoid overfitting and to generalize for unseen data, 
SVMs find the hyperplane that maximizes the margin to the closest 
points (support vectors)

 Visual solution:
• B1 is better 

than B2

 Mathematical
solution:
• constrained optimization 

that can be solved
using quadratic
programming

• See Tan/Steinbach/
Kumar, Chapter 6.9



University of Mannheim – Prof. Bizer: Data Mining  Slide 25

Dealing with Not Linearly Separable Data

 What if the problem is not linearly separable due to noise points?

 Solution: Introduce slack variables in margin computation which 
result in a penalty for each data point that violates decision boundary
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 Problem: What if decision boundary is not linear?
 Solution: Transform data into higher dimensional space 

where there is a linear separation
• details: see Tan/Steinbach/Kumar, Chapter 6.9
• different types of kernel functions are used for this transformation

Dealing with Non-Linear Decision Boundaries
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Characteristics of Support Vector Machines

 SVMs were often the most successful classification technique for 
high dimensional data before DNNs appeared

 Application areas of SVMs include 
• Text classification
• Computer vision, e.g face identification 
• Handwritten digit recognition
• SPAM detection
• Bioinformatics

 Hyperparameter selection often has a high impact on the 
performance of SVNs
• see next slide
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SVMs in RapidMiner and Python

Tuning a SVM
1. Transform all attributes to numeric 

scale 
2. Normalize all value ranges to [0,1] 
3. Use the RBF kernel function
4. Use nested cross-validation to find 

the best values for the parameters 
1. C = weight of slack variables

(Range: 0.03 to 30000) 
2. gamma = kernel parameter

(Range: 0.00003 to 8)

More details on tuning: Hsu, et al: A Practical Guide to Support Vector Classification. 

RapidMiner

Python
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8. Artificial Neural Networks (ANN)

• Inspiration
– one of the most powerful super computers in the world
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Artificial Neural Networks (ANN)

X1 X2 X3 Y
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 0
0 1 0 0
0 1 1 1
0 0 0 0

Example: 
Output Y is 1 if at least two of the three inputs are equal to 1

Training Data
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Artificial Neural Networks (ANN)

X1 X2 X3 Y
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 0
0 1 0 0
0 1 1 1
0 0 0 0









otherwise0
 trueis  if1

)( where
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Training Data
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Artificial Neural Networks (ANN)

 Model is an assembly of 
inter-connected nodes (called 
neurons) and weighted links

 Output node sums up each of 
its input values according to 
the weights of its links

 Classification decision:
Compare output node against 
some threshold t )tXwI(=Y

i
ii 0

Perceptron Model

)( tXwsignY
i

ii  
or
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Multi-Layer Artificial Neural Networks 

Training ANN means 
learning the weights of the 
neurons
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Algorithm for Training ANNs

1. Initialize the weights (w0, w1, …, wk), e.g., all with 1 or random

2. Adjust the weights in such a way that the output of ANN is as 
consistent as possible with class labels of the training examples

• Objective function:

• Find the weights wi’s that minimize the error E
• using for example the 

back propagation algorithm 
(see Tan/Steinbach, Chapter 6.7)

• Adjustment factor: learning rate

 2),( 
i

iii XwfYE
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Deep Neural Networks (DNN)

 Hype topic as DNN are very successful in
• computer vision
• speech recognition 
• natural language

processing

 Require
• lots of training data
• lots of GPUs to 

• adjust 
weights

• test different
network
architectures

Source: NVIDIA  
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Artificial Neural Networks in RapidMiner and Python

– both platforms provide their own neural network implementations 
– as well as interfaces to state-of-the-art deep learning libraries

RapidMiner

Python
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Characteristics of Artificial Neural Networks 

 ANNs can be used for classification as well as numerical regression 
tasks (more on this next week)

 Multi-layer neural networks are universal approximators
• meaning that the can approximate any target function

 Very important but difficult to choose the right network topology
• Expressive hypothesis space often leads to overfitting
• Possible approaches to deal with overfitting:

• Use more training data (a lot more might be necessary)
• Step-by-step simplify the topology (regularization) 

1. Start with several hidden layers and larger number of nodes
2. Estimate generalization error using validation dataset
3. Step by step remove nodes as long as generalization error improves

 Model building is very time consuming, model application is fast

 Can handle redundant attributes, difficult to handle missing values 
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9. Hyperparameter Selection

– A hyperparameter is a parameter which influences the learning 
process and whose value is set before the learning begins
• pruning thresholds for trees and rules
• gamma and C for SVMs
• learning rate, hidden layers for ANNs

– By contrast, parameters are learned from the training data
– weights in an ANN, probabilities in Naïve Bayes, splits in a tree

– Many methods work poorly with the default hyperparameters 

– How to determine good hyperparameters?
• manually play around with different hyperparameter settings
• have your machine automatically test many different settings

(hyperparameter optimization)
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Hyperparameter Optimization

 Goal: Find the combination of hyperparameter values that results 
in learning the model with the lowest generalization error 

 How to determine the parameter value combinations to be tested?
• Grid Search: Test all combinations in user-defined ranges
• Random Search: Test combinations of random parameter values
• Evolutionary Search: Keep specific parameter values that worked well

 Often hundreds of combinations are tested
• reason for cloud computing

 Model Selection: From all learned models M, select the model 
mbest that is expected to generalize best to unseen records
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Model Selection Using a Validation Set 

 Keep data used for model selection
strictly separate from data used for 
model evaluation, otherwise:
• selected model mbest will overfit to patterns in test set
• estimate of generalization error will be too optimistic

 Method to find the best model: 
1. Split training set Dtrain into validation set 

Dval and training set Dtr

2. Learn models M on Dtr using different 
hyperparameter value combinations P

3. Select best parameter values pbest by testing 
each model mi on the validation set Dval

4. Learn final model mbest on complete Dtrain
using the parameter values pbest

5. Evaluate mbest on test set in order to get an 
unbiased estimate of its generalization performance

mbest

Validation Set

Training Set Dtrain

M

Test Set

Estimate of 
generalization
performance

Validation Set Training Set Dtr

Model
Selection

Model
Evaluation

Test Set

Test Set
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Model Selection using Cross-Validation 

 But wait, we want to 
1. make sure that all examples are used for validation once (remember: red tree)
2. use as much labeled data as possible for training (remember: learning curve)

 Both goals are met by using cross-validation for model selection

 5 folds, 100 parameter value sets  501 models learned

Training Set Dtrain Test Set

Train D1 Train D2 Train D3 Train D4 Validation

Train D1 Train D2 Train D3 Validation Train D5

Train D1 Train D2 Validation Train D4 Train D5

Train D1 Validation Train D3 Train D4 Train D5

Validation Train D2 Train D3 Train D4 Train D5

Training Set Dtrain

Model Selection
│M│ = │folds│ * │P│

Learn mbest using pbest

Test SetModel Evaluation: Estimate generalization error of mbest
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Model Evaluation using Nested Cross-Validation

 Nest two cross-validation loops into each other in order to:
1. find the best hyperparameter setting (model selection) 
2. get a reliable estimate of the generalization error (model evaluation)

 Outer Cross-Validation 
• estimates generalization error of mbest

• training set is passed on to inner 
cross-validation in each iteration 

 Inner Cross-Validation 
• searches for best parameter combination 
• splits outer training set into 

inner training and validation set
• learns model mbest using all outer 

training data

 5 foldsOuter*((5 foldsInner* 100 para.sets )+1)  2505 models learned

Test Setouter

Training

TrainingouterTrainingouter

Training

Validation TrainingTraining

Validation Training Training

Validation

Test Setouter TrainingouterTrainingouter

Test Setouter TrainingouterTrainingouter

……

Learn mbest

TrainingTraining

Validation TrainingTraining

Validation Training Training

Validation

Learn mbest
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Nested Cross-Validation in RapidMiner

Outer Cross-
Validation

Inner Cross-
Validation

Optimize 
Parameters

https://rapidminer.com/resource/correct-model-validation/
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Hyperparameter Optimization in RapidMiner

List of 
operators

Parameters of selected 
operator

Parameters to 
optimize

Definition of parameter 
values for testing

Final number of 
combinations!

Steps linear/
logarithmic
(log good for SVMs)
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Nested Cross-Validation in Python

scikit-learn Documentation: Tuning the hyper-parameters of an estimator
https://scikit-learn.org/stable/modules/grid_search.html

scikit-learn Documentation: Nested versus non-nested cross-validation
https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html
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Feature Selection

 Some classification methods automatically 
select the relevant feature subset as part 
of the learning process
• e.g. Decision Trees, Random Forests, ANNs, SVMs

 The performance of other methods depends
on the subset of the features provided
• e.g. KNN, Naïve Bayes

 Automated feature selection approaches 
• Forward selection: Find best single feature, add further features, test again
• Backward selection: start using all features, remove features, test again

 Use nested cross-validation to estimate the generalization error

Selected Not used
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Feature Selection in RapidMiner using Nested X-Validation

Outer Cross 
Validation

Inner Cross 
Validation

Feature
Selection
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Summary: Hyperparameter and Feature Selection

 Hyperparameter selection
• Default: Always run hyperparameter optimization
• Otherwise you cannot say that a method does not work for a task

 Feature selection
• Default: Check if classification method requires feature selection
• If yes, run automated feature selection

 Model selection
• Default: Use nested cross-validation 
• If computation takes too long: use better hardware, reduce number of folds, 

reduce parameter search space, sample data to reduce size
• If exact replicability of results is required: Use single train, validation, test split

 If your dataset is imbalanced
• don’t forget to balance your training set, not your test set!
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Literature for this Slideset

Pang-Ning Tan, Michael Steinbach, Anuj Karpatne,
Vipin Kumar: Introduction to Data Mining. 
2nd Edition. Pearson.

Chapter 6.4: Naïve Bayes

Chapter 6.9: Support Vector Machines

Chapter 6.7 and 6.8: Artificial Neural Networks

Chapter 3.5: Model Selection 

Chapter 3.7: Presence of Hyper-Parameters


