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What is Regression?
KNN for Regression
Model Evaluation
Regression Trees
Linear Regression
Polynominal Regression
Local Regression

ANNs for Regression
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Time Series Forecasting

10. The Bias/Variance-Tradeoff
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1. What is Regression?
- 000000__]

— Goal: Predict the value of a continuous
variable based on the values of other
variables assuming a linear or nonlinear
model of dependency

 The predicted variable is called dependent
and iS denOted)/} 20 10 10 20 30 40 50 60

 The other variables are called
explanatory variables or independent variables
denoted X =x, x,, ..., x

n

— Approach: Given training examples (X, y,)
learn a model f to predict y from X,

nseen

— Difference to classification: The predicted
attribute is continuous, while classification
IS used to predict nominal class attributes
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Regression Model Learning and Application

Explanatory variables X Dependent variable y

Tid Attibi  Attrib2  Attrib3 Y Learning

Nl el algorithm

2 | ne Medium | 100K 194

3 |nNe Small 70K 45

4 Yes Medium 120K 78 |ndu{:tiDn

s | ne Large asK 24

g8 |Ne Medium | 60K 89 \

7 | ves Large 220K 3.1 Learn

g8 |No Small 85K 244 Model

I Medium | 75K 669 - \ =

10 | No Small S0kK 4 e }

Training Set k Model

Apply

Tid Attrib1  Attrib2  Attrib3  y Model

11 | No Small 55K ? / :

12 | ves Medium | 80K 7

13 | ves Large 1106 |z Deduction

14 | Ne Small 95K ?

15 | no Large 67K 7

Unseen Records
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Application Examples
-0}

— Weather Forecasting
« dependent: wind speed
« explanatory variables: temperature, humidity, air pressure change

— Gasoline Consumption
« dependent: MPG (miles per gallon)
« explanatory variables: weight of car, horse power, type of engine

— House Market

o . . Top 10 Data Science, Machine Learning Methods
dependent: price of a house il oons
 explanatory variables: rooms, distance W WS A WN W an e
to public transport, size of garden ey — — , i
. i I I
Visualization 51%
” 1 ' ' I | |
— Stock Market g ) e e i e
. o — ! | I
« dependent: price of a stock e m— —
. . ——— |
« explanatory variables: company profit, i ——
ext Minin, — 32%
sector outlook, month of year, Time seres  —— o
mood of investors Source: KDnuggets online poll, 732 votes
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Regression Techniques
|||

Linear Regression

Polynomial Regression

Local Regression
K-Nearest-Neighbors Regression
Regression Trees

Artificial Neural Networks

Deep Neural Networks

© N o a0 &~ 0D =

Component Models of Time Series
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2. K-Nearest-Neighbors Regression

Problem
» predict the temperature in a certain place

 where there is no weather station

* how could you do that?
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Recap: K-Nearest-Neighbors Classification

— |dea: Vote of the nearest stations

— Example:
e 3xsunny
« 2x cloudy

* Result: sunny

— Approach is called
* “k nearest neighbors”

« where k is the number of neighbors to consider
* in the example: k=5

* inthe example: “near” denotes geographical proximity
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K-Nearest-Neighbors Regression

— l|dea: use the numeric
average of the nearest stations

— Example:
« 18°C, 20°C, 21°C, 22°C, 21°C

— Compute the average
e again: k=5
e average = (18+20+21+22+21)/5
« prediction: f/ =20.4°C
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Choosing a Good Value for K
- 000000_]

— All considerations from KNN classification also apply to
KNN regression

— If k is too small, the result is sensitive to noise points
— If k is too large, local patterns may be averaged out

— Rule of thumb: Test k values between 1 and 20

- . + _
o5 T T
+
- - +r
ok
+ = = —

L4
"
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K-Nearest-Neighbor Regression in RapidMiner and Python

: : Mame ko Type Missing Statistics Filter (4 ] 4 attributes): b
RapidMiner ’ |
' H” T | Mas AVETEQE
| | 0 -970.881 974 564 5.5653
r:.I tra mod [ | il |
. BEA | | Op=an visuslizstions

W  att1 Real 0 -9 968 Q777 -0_55;1

Y  att2 Real 0 -9.920 9_.973 0.377

0.328

Python

from sklearn.neighbors import KNeighborsRegressor

# Create and fit a KNN regressor
estimator = KNeighborsRegressor(n_neighbors=15)
estimator.fit(training _set X, training dependent_y)

# Make predictions for unseen examples
y_hat = estimator.predict(test _set X)
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Numeric Predictions are Added to the Dataset
]

Prediction

\ /

‘§ ExampleSet (Cross Validation)
— ExampleSet (200 examples, 2 special aftrib\ftes, 5 regular atiributes) Filter (200 / 200 examples). | all v
Dt Row No. label prediction(label) al a2 a3 a4 as
ata
1 138.755 129.424 4595 4388 4.926 2.682 8618 &
2 56.200 52.996 2667 4173 2.484 2.867 1.586
| T
I Z 3 39.974 40.865 2654 2904 3.093 3.880 7.181
S iLE 4 428.422 399,541 5.330 8.735 6.563 4917 4.344
5 80.938 66.471 4423 1715 9285 2903 2749
= 6 E | ExampleSet (Cross Validation)
Name - Type /A Missin Statistics Filter (7 I 7 attributes): v
Charts 7 e P g ilter ( u r
8 Data _ — Min & AR
7 label Real 0 0.143 926.739 180.418
v :
—y Pradiction ! PMax Average
Advanced 10 3> "/ prediction(label) Real 0 -32 614 898 428 177.064
Charts
11 ; :
af Real 0 0.081 9940 5000
Prediction Charts v a2 Real 0 0.009 9.986 4812
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3. Model Evaluation

Central Question:

Learning
algorithm

Attril

Largs 125K

Medium 100K

Small TOK .

SRR Induction
- \
Medium BOK

et 220K Learn
Small

Medium

mall S0

How good is a model at
predicting the dependent
variable for unseen records?

Model

85K e l

75K 24 2 s \ o]

K 41 'a }
Model

Deduction

(generalization performance)

Unseen Records
|

3.1 Methods for Model Evaluation

« How to obtain reliable estimates?

3.2 Metrics for Model Evaluation
« How to measure the performance of a regression model?
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3.1 Methods for Model Evaluation
]

— The same considerations apply as for classification
« Cross Validation: 10-fold (90% for training, 10% for testing in each iteration)

« Holdout Validation: 80% random share for training, 20% for testing

— Estimating performance metrics in RapidMiner
« Cross Validation Operator + Regression Performance Operator

Process Parameters
@) Root » Cross Validation » 100% 0 2 O 4 % @ i % CrossValidation
leave one out

Linear Reglession Apply Model ReglessionPerfom\...

§ J i L i 1 . number of folds 10

'\J tra mod [) Ll L {] mod lab | n lab % per ) oas

. exa |) thr ies {] uni o mod I- d per exa r\ mer

} i 1 [ sampling type automatic v 10
thr per

wei r

.: Show advanced parameters
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Nested Cross-Validation for Hyperparameter Selection
- 000000000000
— Uses inner cross validation to select best hyperparameter values

— Uses outer cross validation to estimate generalization error of
models learned using best hyperparameter values

Python

from sklearn.model selection import GridSearchcCV
from sklearn.model selection import cross_val score
from sklearn.neighbors import KNeighborsRegressor

# Create KNN regressor
estimator_knn = KNeighborsRegressor()

# Specify the hyperparameter values for the search
grid = {"n_neighbors": range(1,20)}

# Create the grid search estimator for model selection
estimator_gs = GridSearchCV(estimator_knn, grid, cv=5, scoring='neg_mean_squared_error’)

# Run nested cross-validation for model evaluation
mse_cv = cross_val_score(estimator_gs, X, y, cv=5, scoring='neg_mean_squared_error")
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3.2 Metrics for Model Evaluation
]

— Mean Absolute Error (MAE) computes the average deviation
between predicted value p; and the actual value r,

MAE = 23\p,-n]
n -

— Mean Squared Error (MSE) places more emphasis on larger
deviations

MSE = ~3(p-n)
n -

— Root Mean Squared Error (RMSE) has similar scale as MAE and
places more emphasis on larger deviations

RMSE = \/IZ’,(%—I@-)2
n.
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Metrics for Regression Model Evaluation

— Pearson's Correlation Coefficient (PCC)
« scores well if

* high actual values get high predictions
* low actual values get low predictions
0< p <+1 p=+1 p=0
> ( pred —pred )x(act —aci)
PC C: | all examples |
| > (pred—pred )zx\;‘ > (act—aci)

all examples all examples

— R Squared: Coefficient of Determination Z?—l(yAE — 37)2

« measures the part of the total variation in the R2 — - _
dependent variable y that is predictable § : : (yz o y)2
. . =1
(explainable) from the explanatory variables X

« R2?=1: Perfect model as total variation of y can be completely explained from X
« RZ2js called ‘squared correlation’ in RapidMiner
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4. Regression Trees

— The basic idea of how to learn and apply decision trees can also be
used for regression

— Differences:
1. splits are selected by maximizing the MSE reduction (not GINI or entropy)
2. prediction is average value of the trainings examples in a specific leaf

Decision Tree Regression Tree

petal length (cm) <= 2.45
gini = 0.6667
samples =150

x1 <=0.1973
mse = 0.0978
samples = 200
value = 0.3539

value = [50, 50, 50]
class = setosa

\:alse True False
— petal width (cm) <= 1.75 x1 <=0.0917 x1 <=0.7718
, gini = 0.5 mse = 0.0377 mse = 0.074
samples = 100 samples = 44 samples = 156
. [%rggofgj value = 0.6894 | | value = 0.2592

; l

mse = 0.0131 mse = 0.0151
samples = 24 samples = 110
value = 0.5522 value = 0.1106

mse = 0.0359
samples = 46
value = 0.6146

gir’ii = 0.1'68;
samples = 54
value = [0, 49, 5]

class = versicolor
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Regression Trees Fitting the Training Data

x1 <=0.1973
mse = 0.0978
samples = 200
value = 0.3539

Pre-pruning parameters deterime how

closely the tree fits the training data [xu_oo?m] o =omie }
;sa‘m‘pleé =44 s;nn?lf)i:s{)f?gﬁ
value = 0.6894 value = 0.2592

* e.g. max_depth parameter

\
mse = 0.0131 mse = 0.0151 mse = 0.0359
samples = 24 samples = 110 samples = 46
value = 0.5522 value =0.1106 value = 0.6146

10—, oV
i ' ~ 1 .'
0.8l 1 " Y Depth&=1 je02 |
b ] o o o
". ] a.
o Ik Depth=0 !
0.6} . —"5-'—'
o | * oo
r :.\. L” .
Yoal +* 4 S -
. i 0:‘.. . ’ ’- : .
| Depth=1] ,» .° s
0.2 pf {.l. : bl i 3 LN
1 e %o - .
0.0 L i : ., ..0. ..:. .. .. 1
1 . % * P, 'S 1
[ ‘ o™, [
-0.2 I * . g
0.0 0.2 0.4 0.6 0.8 1.0
L1
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Overfitted Regression Tree

Decision Tree Regression

1.5 4 o —— max_depth=2
o f max_depth=5
o data
1.0 4 ow o _ ca
© . ¢
— i ° -
& °_
0.5 1 &L ‘o
b)
o
4 _po [
L 0.0
- o]
-0.5 A 2 _’:1
o
@
L__.@__‘_..._..
-1.0 4 o 0% =<
G
-1.5 -
o
0 1 2 3 - 5
data

The learning algorithm uses available depth to cover strongest outliers
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5. Linear Regression
- 000000__]

Assumption of Linear Regression: The target variable y is
(approximately) linearly dependent on explanatory variables X

 for visualization: we use one variable x (simple linear regression)

* in reality: vector X = x,4...x,, (multiple linear regression)

y A

A —
Y(X)= Wy + Wi X4 + WoX, + ..+ WX
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Fitting a Regression Function

Least-Squares Approach: Find the weight vector W = (wg, wy, .., w,)
that minimizes the sum of squared error (SSE) for all training examples

SSE = Y (y,~ 92X, W)’
i=1

A 7 }_,'
y
l —
-
. L b

T ,T T l/ } Errors: Differences
-4 between estimated value
_ = f and value in training data,

-~ also called residuals.
>
X

Slide 22
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Ridge Regularization
|||

— Variation of least squares approach which tries to avoid overfitting
by keeping the weights W small

— Ridge regression cost function to minimize

CW)=MSEW)+ azn: W’

« a=0:Normal least squares regression

 a =100 : Strongly regularized flat curve

— Example of overfitting due to biased
training data

10 i °
Brazil  Mexico Chile CzechRepublic e J
= V / ----------------- -
S . e el _
O i . Pt - _
"g 6F e 0 e e o ] "
T et e 0.0 ‘
a4 i i 0.0 0.5 1.0 1.5 2.0 2.5 3.0
)] Norway  Switzerland Luxembourg
Y
o 2 .
0 L L | ; .
0 20000 40000 60000 80000 100000

GDP per capita
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Feature Selection

— Question: Do all explanatory variables X help to explain y or is only a
subset of the variables useful?
— Problem 1: Highly correlated variables (e.g. height in cm and inch)
* weights are meaningless and one variable should be removed for the better
interpretability of the weights
— Problem 2: Insignificant variables (e.g. the weather for stock prices)
« uncorrelated variables get w=0 or relatively small weights assigned

* Question for variables having small weights: Is the variable still useful or did it
get the weight by chance due to biased training data?

* Answer: Statistical test with null-hypothesis “w=0 as variable is insignificant”

« t-stat: number of standard deviations that w is away from 0
* high t-stat = Variable is significant as it is unlikely that weight is assigned by
chance
« p-value: Probability of wrongly rejecting the hull-hypothesis
» p-value close to zero =» variable is significant

« See: James, Witten, et al.: An Introduction to Statistical Learning. Chapter 3.1.2

Slide 24
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Linear Regression in RapidMiner

Process Parameters
& Root » 00,0 O P [ @ @ [ | v UnearRegression Choose feature
feature selection | T-Test v selection method
Retrieve Linear Regression ]
T b {jm-r" o alpha 0.05 3
L’ c " . Correlated
3 | eliminate coli feat i
‘ "EiF - eliminate colinear features features
PE— min tolerance 0.05 i
| use bias G Rldge (>0) Or
least squares (0)
floge =% " regression
:: Hide advanced parameters
Attribute Coefficient Std. Error Std. Coeff.. Tolerance t-Stat p-Value Code
al 85.440 5.692 0.463 1.000 15.009 0 i J Feature
a2 127.001 5701 0.689 0.998 22976 0 i quality code
a3 68.118 5.730 0.369 1.000 11.888 0 \\.
\| p-Value
a4 10.302 5.728 0.056 1.000 1.799 0.074 ¥
ad -12.452 5723 -0.068 0999 -2.176 0.031 =
(Intercept) 180.418 5.671 ? ? 31.814 0 i

University of Mannheim — Prof. Bizer: Data Mining
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Linear Regression in Python
|||

— Two different classes for linear and ridge regression
— Feature selection implemented as separate preprocessing step

Python

from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge

from sklearn.feature_selection import SelectFuwe
from sklearn.feature_selection import f_regression

selected features = SelectFwe(f_regression, alpha=8.85).fit_transform(X, y)
estimator = LinearRegression()
estimator.fit(selected features, y)
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Interpolation vs. Extrapolation

— Training data:
« weather observations for current day
* e.g., temperature, wind speed, humidity, ...
« target: temperature on the next day

 training values between -15°C and 32°C

— Interpolating regression
« only predicts values from the interval [-15°C,32°C]

— Extrapolating regression
« may also predict values outside of this interval

°F °C
120 = R = *°
100 = =40
= = 30
80 = =
= = 20
60 = =
= | BX
40 = =
= =0
20 = =
= —_-10
0= = -20
20 — P4 = .30
40 = — .40

University of Mannheim — Prof. Bizer: Data Mining
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Interpolation vs. Extrapolation

— Interpolating regression is regarded as “safe”
 i.e., only reasonable/realistic values are predicted

My HOBBY: EXTRAFOLATING

AS YoU CAN SEE, BY LATE
NEXT MONTH YOU'LL HAVE

OVER FOUR DOZEN HUSBANDS,

) BETTER GET A
BULK RATE ON

LA4—
YEST- Topay
ERDAY

WEDDING CAKE.

http://xkcd.com/605/

University of Mannheim — Prof. Bizer: Data Mining
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Interpolation vs. Extrapolation
- 000__000000__]

— Sometimes, however, only extrapolation is interesting
« how far will the sea level have risen by 20507

* how much will the temperature rise in my nuclear power plant?

http://il.ytimg.com/vi/FVfiujbGLfM/hqgdefault.jpg
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Linear Regression vs. K-NN Regression

— Linear regression extrapolates

— K-NN and regression trees interpolate

Prediction of
thrge nearest ~° == linear regression
y 4 neighbors - =

_ - - Prediction of
° 3-NN

we want a prediction for that x
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Linear Regression Examples
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... But What About Non-linear Problems?
]

— One possibility is to apply transformations
to the explanatory variables X withinthe 1+ | oo
regression function o/ \ o

* e.g. log, exp, square root, square, etc. N o o

—1F

. example: ; ¥ = Wy + 01 X2+ Wy X2
« polynomial transformation ;
example: 9= @y + o X+ 0y X2 + w53
— This allows use of linear regression techniques to fit
much more complicated non-linear datasets
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6. Polynomial Regression
|||

M
A .
y(z, W) = wo + wix + wex® + ... + wpyrx™ = E w;x?
7=0

— widely used extension of linear regression
— can also be fitted using the least squares method
— has tendency to over-fit training data for large degrees M

— Workarounds: 10 g . . . . . i
— 300 ;/
1. decrease M & D oIl b
. 8 H "/".'
2. increase amount of =t 1 k,

training data
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Polynomial Regression in RapidMiner and Python

RapidMiner Parameters
S P P - a & . PolynomialRegression {Polynomial Regression) How often may
- A each explanatory
A maxiterations 20000 variable appear in
Pulivmiviiliiearraion the function.
. replication factor 2
f] tra maod r
e — < Maximal degree to
v = be used in the
function
min coefficient -500.0 -
max coefficient 500.0 \i Boun_daries for
weights W
W

Python

from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression

poly features = PolynomialFeatures(degree=2, include_bias=False).fit_transform(X, y)
estimator = LinearRegression()
estimator.fit(poly features, y)
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Polynomial Regression Overfitting Training Data
|||

o .
w7 Linear
Degree 2
- Degree 5
o _
v-
5
8 o
g @ 7
(=
w0
2
=
o _]
o™
O —

T T T T
50 100 150 200

Horsepower
Overfitting often happens in sparse regions

 left and right side of green line
« workaround: Local Regression
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7. Local Regression
- 000000__]

— Assumption: non-linear problems are approximately
linear in local areas

— ldea: use linear regression locally for
the data point at hand (lazy learning)

— A combination of
* k nearest neighbors

* linear regression

— Given a data point | |
1. retrieve the k nearest neighbors 0 z !

2. learn a regression model using those neighbors

3. use the learned model to predict y value
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Local Regression in Rapidminer

Parameters A
@ia o modf
, Local Polynomial Regression .}j_. EH::,
degree 2 i ; )
Maximal degree to
ridge factor 1.0E-9 be used. Set to 1

for local linear

_ regression
use robust estimation

/ use weights

numerical measure EuclideanDistance v Distance function
for determining

i i j v -
neighborhood type Fixed Number nelghborhOOd
k 5

§i Neighborhood size

smoothing kernel Triweight v

o Hide advanced parameters
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Discussion of Local Regression
- 000000__]

— Advantage: fits non-linear models well
« good local approximation

« often better than pure k-NN

— Disadvantage
* slow at runtime

« for each test example:

» find k nearest neighbors
« compute a local model
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8. Artificial Neural Networks (ANNs) for Regression
- 000000__]

Recap: How did we use ANNSs for classification?

Input

\:::“s (
X, [ X, | X5 | Y | "o9es i Black box
1]0]0]0O X ) ~ Output
110 | 1|1 17~ 0.3 "~ node
1] 1] 0] 1 :
101 [ 1] 1
o|lo|1]o0 Xo- - Y
o|l1]|0]o0
ol 1] 1] 1 X _
o|o]o]|o 3

Y = 1(0.3X,+0.3X,+0.3X,-0.4>0)

1 1f z1s true

where [(z) = {O otherwise
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Artificial Neural Networks for Regression
- 000000__]

— The function /(z) was used to separate the two classes:

Y =1(0.3X, +0.3X,+0.3X,-0.4>0)

1 1f z1s true
where [(z) = 0 otherwise

— However, we may simply use the inner formula to predict a
numerical value (between 0 and 1):

A
Y =0.3X,+0.3X,+0.3X,-0.4
— What has changed:

« we do not use a cutoff for 0/1 predictions, but leave the numbers as they are
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Artificial Neural Networks for Regression

— Given that our formula is of the form iz W 5
ack box
A X-.-‘ Output
Y =0.3X,+0.3X,+0.3X, - 0.4 RN node
_ X, L - Y
— we can learn only linear models ’
* i.e., the target variable is a linear combination the Xs
input variables
— More complex regression problems can be approximated
* Dby using multiple hidden layers
* this allows for arbitrary functions . raden e
_ Deep ANN's take this idea further by N
 employing millions of neurons Q= /8 o
« arranging them into specific network topologies 8 / 5
— If you use ANNs be cautions about overfitting! O/ O
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9. Time Series Forecasting
- 000000__]

— A time series is a series of data points indexed in time order
« examples: Stock market prices, ocean tides, birth rates, temperature

— Forecasting: Given a time series, predict data points that continue
the series into the future

« explicitly deals with time, which is not explicitly considered by other
regression techniques

« aims to predict future values of the same variable

— Approaches: | | | | |
1. Data-driven: Smoothing . : l‘vf
O el s
2. Model-Driven: F‘*‘J

. . LTS i
1. component models of time series ;om0

el

2. other regression techniques

2005 2010
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Smoothing
- 000000__]

Simple Moving Average (SMA)

n—1
— average of the last n values, as more recent (n) £ — l b
values might matter more Mg () n ;m( i)
Exponential Moving Average (EMA)
— exponentially decrease weight of mé”lﬁm t)=a-z@t)+(1—0a)- m(E"ﬁA (t—1)
older values

13.000
1 d._“ 12.500
|

1| 12.000
NEaa) 11500
11,000

10.500

2016

2017

2018

10.000

9.500

9.000

8.500

8.000

DAX: red = SMA(38 days), yellow = SMA(200 days)
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Component Models of Time Series
- 000000_]

Assume time series to consist of four components:

1. Long-term trend (T,) "R Rnmphics: Devie 2 (T E=y e =

. Decomposition of additive time series
2. Cyclical effect (C,) |
3. Seasonal effect (S,) o MMW
4. Random variation (R)) ] W
Series=T,+C, + S, + R, 5 &

LIRSy
Time
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Windowing
|||

— ldea: Transformation of forecasting problem into “classical” learning
problem

 either classification or regression

* Dby only taking the last k time periods into account

— Example: Weather forecasting
« using the weather from the three previous days

 Possible model:

¢ sunny, sunny, sunny — sunny
* sunny, cloudy, rainy — rainy
e sunny, cloudy, cloudy — rainy

— Assumption:
« only the last k time periods matter for the forecast

» the older past is irrelevant
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Windowing in RapidMiner and Python

E Result Overview I'}J ExampleSet (Aindowing)
(@ Data View () Meta Data View (! PlotView ( ) Advanced Charis { ' Annotations
Serl E 5 Exten 5 I ﬂ n ExampleSet (250 examples, 2 special attributes, 6 regular atiributes)
Raow Mo. Drate Weather-2 Weather-1  Weather-0 Temperature-2 Temperature-1 Temperature-0 label
1 04.01.2013 |sunny cloudy cloudy 23 24 28 cloudy
2 07.01.2013 | cloudy cloudy cloudy 24 28 Az rainy
3 058.01.2013 | cloudy cloudy rainy 28 32 19 sunny
Heaa L WA Py 4 09.01.2013  cloudy rainy sunny 32 19 24 rainy
- e - - = 3 5 10.01.2013 rainy sunmny rainy 19 24 25 cloudy
G fil , ; au :' ﬂ exa £xa D G 11.01.2013  sunny rainy cloudy 24 25 17 sunny
by 'ﬂ{ ari D ¥ 14.01.2013 |rainy cloudy sunny 25 17 14 sunny
E 8 15.01.2013 | cloudy sunny sunny 17 14 12 rainy
B F 1% g 16.01.2013 |sunny sunmy rainy 14 12 26 sunny
10 17.01.2013 | sunny rainy sunny 12 26 23 cloudy
ik 18.01.2013 | rainy sunny cloudy 26 23 24 cloudy
12 21.01.2013  sunny cloudy cloudy 23 24 28 cloudy
=~ Result Overview 'y RuleMadel (Rule Induction) t <l i any
28 32 19 sunny
L8 Ted View | Annotations 39 10 24 rainy
14 24 25 cloudy
24 25 17 sunny
RuleModel
if Temperature-0 = 21 and Temperature-2 > 20.500 then sunny (0 / 0 / &2) Python. WlndOWIng |S
if Temperature-1 > 21 and Temperature-1 = 27 then cloudy (81 / 0 / 0} ] .
if Weather-2 = cloudy then rainy (0 / 62 / 0) Implemented us'”g
= 0 o .
elde. swny (020218 pandas.DataFrame.shift()
correct: 223 out of 223 training examples. pandaSDataFramerOIIIng()
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10. The Bias/Variance-Tradeoff
]

— We want to learn regression as well as classification models that
generalize well to unseen data

— The generalization error of any model can be understood as a sum
of three errors:

1. Bias: Part of the generalization error due to wrong model complexity
« simple model (e.g. linear regression) used for complex real world phenomena
* model thus underfits the training and test data

2. Variance: Part of the generalization error due to a model’'s excessive
sensitivity to small variations in the training data

* models with high degree of freedom/flexibility (like polynomial regression models
or deep trees) are likely to overfit the training data

3. Irreducible Error: Error due to noisiness of the data itself

» to reduce this part of the error the training data needs to be cleansed
(by removing outliers, fixing broken sensors)
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The Bias/Variance-Tradeoff

— Left: Three models with different flexibility trying to fit a function
. Linear regression. Green, blue: Polynomials of different degrees

— Right: Training error ( ) and test error (red) in relation to model flexibility

Ty
. | /
& - Underfitting as
o model is too
o simple (bias
- - = ple ( ) Overfitting as
5 model is too
© B f — flexible
. 3 \I (variance)
o -
- » o
- S - Irreducible
g error due to
< — 0 noise
o Ideal o
flexibility
N A o
S
| | | | | | | | [ |
0 20 40 60 80 100 2 5 10 20
X Flexibility
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Learning Method and Hyperparameter Selection
- 000000__]

We try to find the ideal flexibility (bias/variance-tradeoff) by

1. Testing different learning methods
e Linear regression, polynomial regression, ...

- Decision Trees, ANNs, Naive Bayes, ... o {r
2. Testing different hyperparameters S - ldeal "
» degree of polynomial, ridge § - \
: ftree, mi esbranch & |
max depth o. ree, min examples branc %ﬂr \_ s o
« number of hidden layers of ANN ‘g e
But we have three more options: = -
i I
1. increase the amount of training data

2. increase the interestingness of the | | | |

data by including more corner cases

3. cleanse the training data Frosiy
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Learning Curves

— Visualize the training error and test error for different training set sizes

Low Flexibility Model (e.g. Linear regression) High Flexibility Model (e.g. Polynomial regression)

3-0 I T T 1 I 1 I 3'0 I 1
+— Training set +— Training set
251 — Validation set [ 2.5¢ — Validation set |1
2.0}
)
L 15}
m r—
1.0 o : . . 1.0}
Underfitting: High training : Y St
and test errors due to bias - -
- remain if more data is added '
0'0 1 1 ] I 1 ! 1 00 111111111 1 I l l ]
0 10 20 30 40 50 60 70 80 0 10 20 30 \ 50 60 70 80
Training set size Trainin ze
— For overfitting models, the gap between training and test Overfitting: Additional

data narrows gap
between training and

— Thus, having more training data also allows us to use 2 Sy
models having a higher flexibility, e.g. Deep Learning

error can often be narrowed by adding more training data
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Summary
- 000000_]

— Regression
» predict numerical values instead of classes

— Model evaluation
« metrics: (root) mean squared error, R squared, ...

* methods: (nested) cross-validation

— Methods

« Kk nearest neighbors, regression trees, artificial neural networks
 linear regression, polynomial regression, local regression

« time series prediction

— For good performance on unseen data
« choose learning method having the right flexibility (bias/variance-tradeoff)

« use large quantities of interesting training data
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Literature

— Solving practical regression tasks using:
« RapidMiner: Kotu: Predictive Analytics - Chapter 5, 10

« Python: Geron: Hands-on Machine Learning - Chapter 4

— Sophisticated coverage of regression including
theoretical background

« James, Witten, et al.: An Introduction to Statistical Learning

Springer Texts in Statistics
Gareth James
Daniela Witten
Trevor Hastie
Robert Tibshirani

Chapters 3,7, 8

with Applications in R

@ Springer

Predictive Analytics
and Data Mining

Concepts and Practice with RapidMiner

Vijay Kotu and Bala Deshpande

g B
OREILLY -i?;,%%
Hands-on

Machine Learning
with Scikit-Learn,
Keras & TensorFlow

Concepts, Tools, and Techniques
to Build Intelligent Systems

Aurélien Géron

University of Mannheim — Prof. Bizer: Data Mining

Slide 52



