

Data Mining

Association Analysis

University of Mannheim - Prof. Bizer: Data Mining

Example Applications in which Co-Occurrence Matters

- We are often interested in co-occurrence relationships

Marketing

- 1. identify items that are bought together by sufficiently many customers
- 2. use this information for marketing or supermarket shelf management purposes

Inventory Management

- 1. identify parts that are often needed together for repairs
- 2. use this information to equip your repair vehicles with the right parts

- Usage Mining

- 1. identify words that frequently appear together in search queries
- 2. use this information to offer auto-completion features to the user

Google	Samsung g samsung galaxy samsung galaxy s3 samsung galaxy note samsung galaxy note 2
	Press Enter to search.

Outline

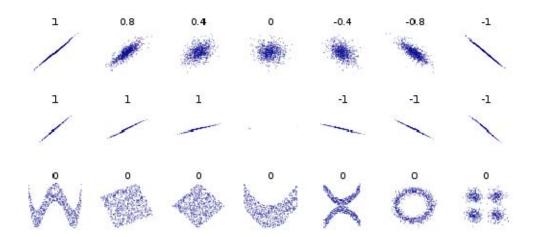
- 1. Correlation Analysis
- 2. Association Analysis
 - 1. Frequent Itemset Generation
 - 2. Rule Generation
 - 3. Handling Continuous and Categorical Attributes
 - 4. Interestingness Measures

1. Correlation Analysis

- Correlation analysis measures the degree of dependency between two variables
 - Continuous variables: Pearson's correlation coefficient (PCC)
 - Binary variables: Phi coefficient

$$PCC(x, y) = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2} \sqrt{\sum (y_i - \overline{y})^2}} \qquad Phi(x, y) = \frac{f_{11}f_{00} - f_{11}}{\sqrt{f_{11}f_{11}f_{11}}}$$

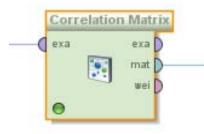
- Value range [-1,1]
 - 1 : positive correlation
 - 0 : variables independent
 - -1 : negative correlation



Correlations between Products in Shopping Baskets

	P1	P2	P3	P4	P5
Basket 1	1	1	0	1	1
Basket 2	1	0	0	1	1
Basket 3	1	0	0	0	1

- 1 : always bought together
- 0 : sometimes bought together
- -1 : never bought together



Correl	Correlation Matrix (Correlation Matrix)									
Table View O Pairwise Table O Plot View Annotations										
Attributes ThinkPad X Asus EeePC HP Laserjet 2 GB DDR3 8 GB DDR3 Lenovo Tab Netbook-Sc HP CE50 T LT Laser M LT Minimaus							LT Minimaus			
ThinkPad X2	1	-1	0.356	-0.816	0.612	0.583	-0.667	0.356	0.167	-0.408
Asus EeePC	-1	1	-0.356	0.816	-0.612	-0.583	0.667	-0.356	-0.167	0.408
HP Laserjet	0.356	-0.356	1	-0.218	-0.327	0.356	-0.535	1	-0.089	-0.655
2 GB DDR3	-0.816	0.816	-0.218	1	-0.500	-0.816	0.816	-0.218	0	0.200
8 GB DDR3 I	0.612	-0.612	-0.327	-0.500	1	0.102	-0.408	-0.327	0.102	0
Lenovo Tabl	0.583	-0.583	0.356	-0.816	0.102	1	-0.667	0.356	-0.250	0
Netbook-Sch	-0.667	0.667	-0.535	0.816	-0.408	-0.667	1	-0.535	0.167	0.408
HP CE50 To	0.356	-0.356	1	-0.218	-0.327	0.356	-0.535	1	-0.089	-0.655
LT Laser Ma	0.167	-0.167	-0.089	0	0.102	-0.250	0.167	-0.089	1	-0.408
LT Minimaus	-0.408	0.408	-0.655	0.200	0	0	0.408	-0.655	-0.408	1

Shortcoming: Measures correlation only between two items but not between multiple items, e.g. {ThinkPad, Cover} \rightarrow {Minimaus}

2. Association Analysis

- Association analysis can find multiple item co-occurrence relationships (descriptive method)
- focuses on occurring items, not absent items
- first algorithms developed in the early 90s at IBM by Agrawal & Srikant
- initially used for shopping basket analysis to find how items purchased by customers are related
- later extended to more complex data structures
 - sequential patterns
 - subgraph patterns
- and other application domains
 - web usage mining, social science, life science

Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction.

Shopping Transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Examples of Association Rules

 ${Diaper} \rightarrow {Beer}$ ${Beer, Bread} \rightarrow {Milk}$ ${Milk, Bread} \rightarrow {Eggs, Coke}$

Implication means co-occurrence, not causality!

Definition: Support and Frequent Itemset

Itemset

- collection of one or more items
- example: {Milk, Bread, Diaper}
- k-itemset: An itemset that contains k items
- Support count (σ)
 - frequency of occurrence of an itemset
 - e.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$
- Support (s)
 - fraction of transactions that contain an itemset
 - e.g. s({Milk, Bread, Diaper}) = 2/5 = 0.4
- Frequent Itemset
 - an itemset whose support is greater than or equal to a minimal support (*minsup*) threshold specified by the user

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Association Rule

- an implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
- an association rule states that when X occurs, Y occurs with certain probability.
- Example:

{Milk, Diaper} \rightarrow {Beer} Condition Consequent

Rule Evaluation Metrics

- Support (s) fraction of transactions that contain both X and Y
- Confidence (c)

measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

$$s(X \to Y) = \frac{|X \cup Y|}{|T|}$$
 $s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$

$$c(X \to Y) = \frac{\sigma(X \cup Y)}{\sigma(X)}$$
 $c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$

Main Challenges concerning Association Analysis

- 1. Mining associations from large amounts of data can be computationally expensive
 - algorithms need to apply smart pruning strategies
- 2. Algorithms often discover a large number of associations
 - many of them are uninteresting or redundant
 - the user needs to select the subset of the associations that is relevant given her task at hand

The Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - 1. support \geq *minsup* threshold
 - 2. confidence \geq *minconf* threshold
- *minsup* and *minconf* are provided by the user.
- Brute Force Approach:
 - 1. list all possible association rules
 - 2. compute the support and confidence for each rule
 - 3. remove rules that fail the *minsup* and *minconf* thresholds

 \Rightarrow Computationally prohibitive due to large number of candidates!

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example rules:

```
 \{ \text{Milk, Diaper} \} \rightarrow \{ \text{Beer} \} (s=0.4, c=0.67) \\ \{ \text{Milk, Beer} \} \rightarrow \{ \text{Diaper} \} (s=0.4, c=1.0) \\ \{ \text{Diaper, Beer} \} \rightarrow \{ \text{Milk} \} (s=0.4, c=0.67) \\ \{ \text{Beer} \} \rightarrow \{ \text{Milk, Diaper} \} (s=0.4, c=0.67) \\ \{ \text{Diaper} \} \rightarrow \{ \text{Milk, Beer} \} (s=0.4, c=0.5) \\ \{ \text{Milk} \} \rightarrow \{ \text{Diaper, Beer} \} (s=0.4, c=0.5)
```

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence.
- Thus, we may decouple the support and confidence requirements.

Mining Association Rules

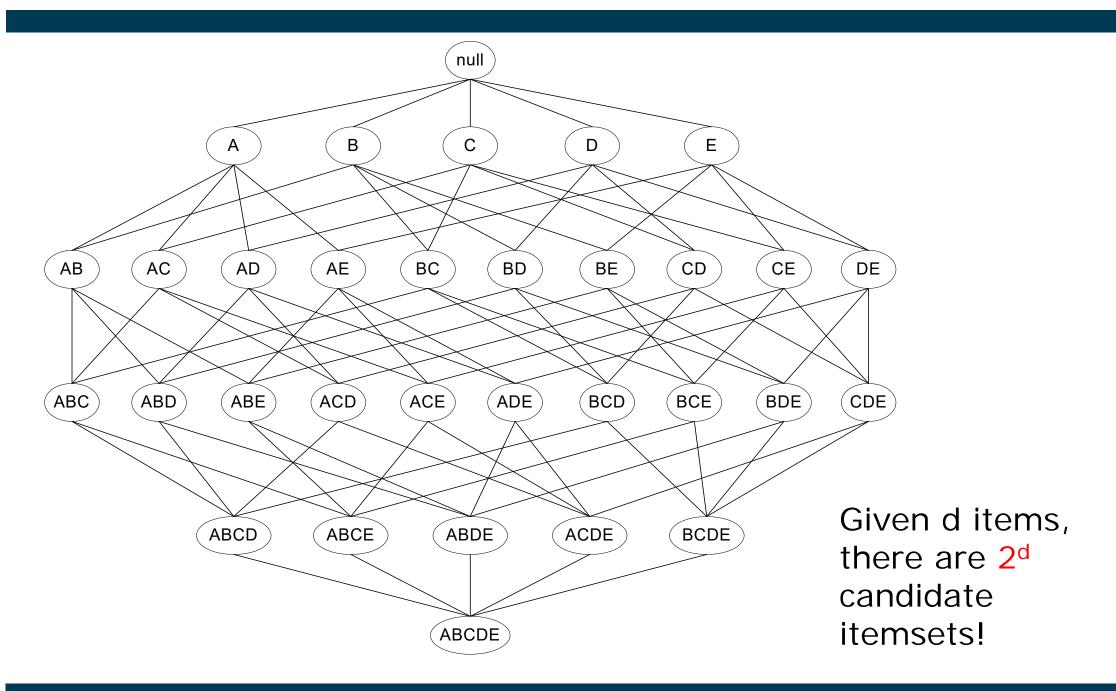
– Two-step approach:

1. Frequent Itemset Generation

- generate all itemsets whose support ≥ minsup
- 2. Rule Generation
 - generate high confidence rules from each frequent itemset,
 where each rule is a binary partitioning of a frequent itemset

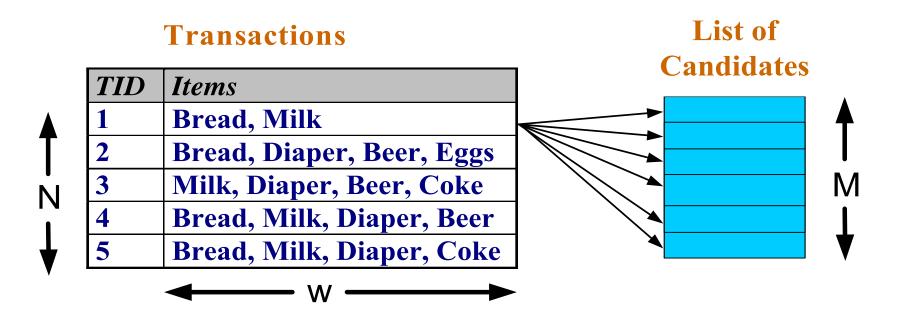
– Frequent itemset generation is still computationally expensive

2.1 Frequent Itemset Generation



Brute Force Approach

- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database
- Match each transaction against every candidate



- Complexity ~ $O(NMw) \rightarrow Expensive since M = 2^d !!!$
- A smarter algorithm is required

Example: Brute Force Approach

- Example:
 - Amazon has 10 million books (i.e., Amazon Germany, as of 2011)
- That is 2^{10.000.000} possible itemsets
- As a number:
 - 9.04981... × 10^{3.010.299}
 - that is: a number with 3 million digits!

- However:
 - most itemsets will not be important at all, e.g., books on Chinese calligraphy, Inuit cooking, and data mining bought together
 - thus, smarter algorithms should be possible
 - intuition for the algorithm: All itemsets containing Inuit cooking are likely infrequent

– Apriori Principle

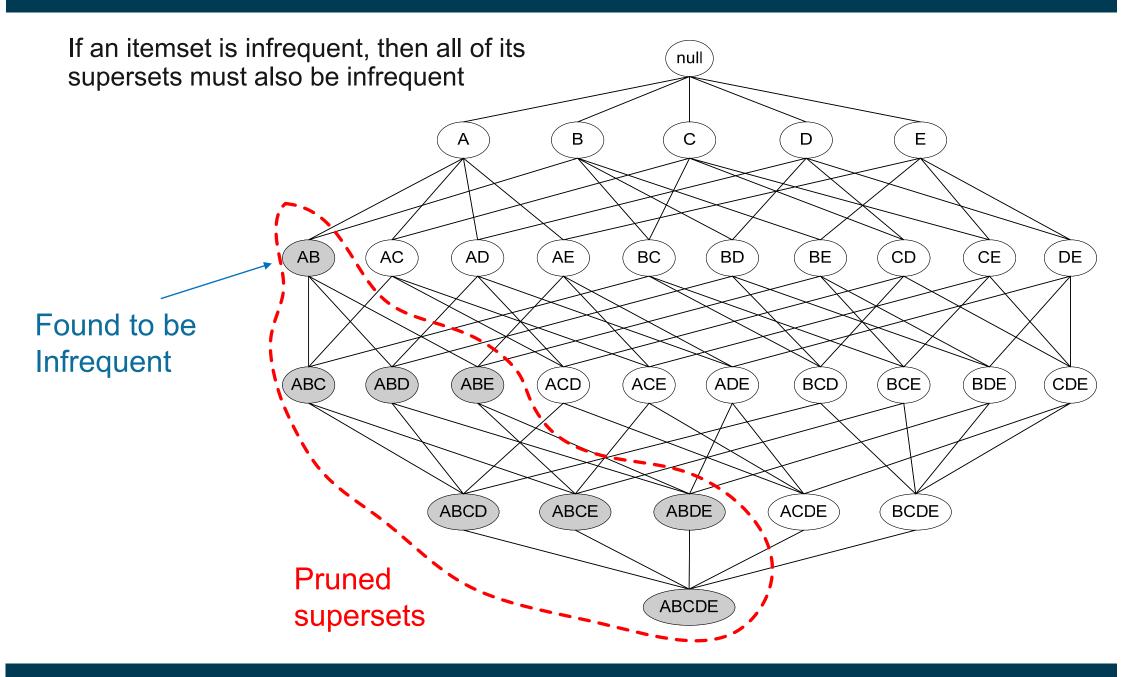
If an itemset is frequent, then all of its subsets must also be frequent.

 Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Longrightarrow s(X) \ge s(Y)$$

- support of an itemset never exceeds the support of its subsets
- this is known as the anti-monotone property of support

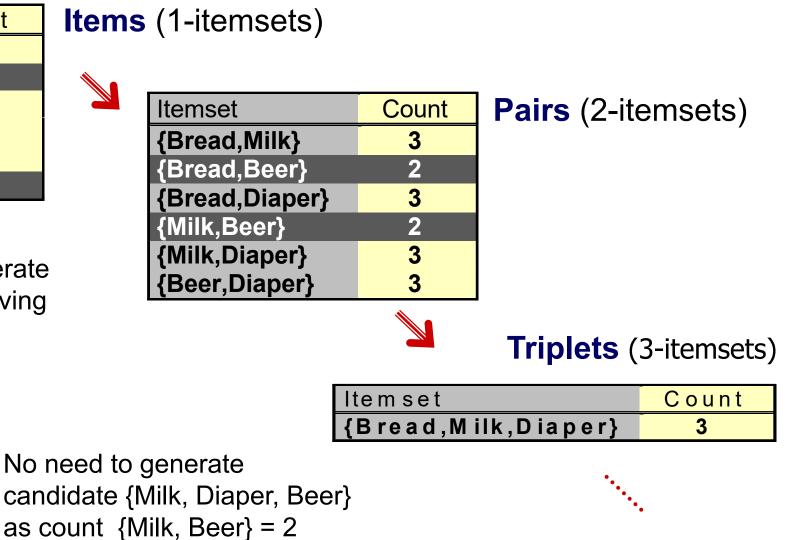
Using the Apriori Principle for Pruning



Example: Using the Apriori Principle for Pruning

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

No need to generate candidates involving Coke or Eggs



- 1. Let k=1
- 2. Generate frequent itemsets of length 1
- 3. Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - 2. Prune candidate itemsets that can not be frequent because they contain subsets of length k that are infrequent (Apriori Principle)
 - 3. Count the support of each candidate by scanning the DB
 - 4. Eliminate candidates that are infrequent, leaving only those that are frequent

itemset:count

minsup=0.5

Dataset T

TID	Items		
T100	1, 3, 4		
T200	2, 3, 5		
T300	1, 2, 3, 5		
T400	2, 5		

1. scan T

- → Cand₁: {1}:2, {2}:3, {3}:3, {4}:1, {5}:3
- → Fequ₁: {1}:2, {2}:3, {3}:3, {5}:3
- → Cand₂: {1,2}, {1,3}, {1,5}, {2,3}, {2,5}, {3,5}

2. scan T

- → Cand₂: {1,2}:1, {1,3}:2, {1,5}:1, {2,3}:2, {2,5}:3, {3,5}:2
- → Fequ₂: {1,3}:2, {2,3}:2, {2,5}:3, {3,5}:2 → Cand₃: {2, 3, 5}
- 3. scan T

→
$$C_3$$
: {2, 3, 5}:2
→ $F_{3:}$ {2, 3, 5}

Frequent Itemset Generation in Rapidminer and Python

RapidMiner	Parameters ×		
100% 🔎 🔎 📮 🥃 酠 🔃	FP-Growth		
	input format	items in dummy code 🔻	1
Read Excel FP-Growth fil out exa	min requirement	support	1
res res	min support	0.2	0
	min items per itemset	1	1
	max items per itemset	0	•

Python

from orangecontrib.associate.fpgrowth import frequent_itemsets

```
# Calculate frequent itemsets
itemsets = dict(frequent_itemsets(dataset.values, 0.20))
```

FP-Growth

Alternative frequent itemset generation algorithm which compresses data into tree structure in memory. Details Tan/Steinbach/Kumar: Chapter 4.6

Frequent Itemsets in Rapidminer

Result History	🛒 Freque	ntitemSets (FP-Growth)	×			
	No. of Sets: 83	Size	Support 4	Item 1	Item 2	Item 3
Data	Total Max. Size: 4	1	0.600	Asus EeePC		
	Min. Size: 1	1	0.500	LT Minimaus		
	Max. Size: 4	1	0.500	2 GB DDR3 RAM		
Annotations	Contains Item:	2	0.500	Asus EeePC	2 GB DDR3 RAM	
		1	0.400	ThinkPad X220		
	Update View	1	0.400	Netbook-Schutzhülle		
		1	0.400	Lenovo Tablet Sleeve		
		1	0.400	LT Laser Maus		
		2	0.400	Asus EeePC	LT Minimaus	
		2	0.400	Asus EeePC	Netbook-Schutzhülle	
		2	0.400	2 GB DDR3 RAM	Netbook-Schutzhülle	
		3	0.400	Asus EeePC	2 GB DDR3 RAM	Netbook-Schutzhülle
		1	0.300	HP Laserjet P2055		
		1	0.300	HP CE50 Toner		
		2	0.300	LT Minimaus	2 GB DDR3 RAM	
		2	0.300	LT Minimaus	Netbook-Schutzhülle	
		2	0.300	ThinkPad X220	Lenovo Tablet Sleeve	
		2	0.300	HP Laserjet P2055	HP CE50 Toner	
		3	0.300	Asus EeePC	LT Minimaus	2 GB DDR3 RAM

Example Application of Frequent Itemsets

- Take top-k frequent itemsets of size 2 containing item A 1.
- 2. Rank second item according to
 - profit made by selling item
 - whether you want to reduce ۲ number of items B in stock
 - knowledge about customer preferences ۲
- Offer special price for combination with top-ranked second item 3.

Wird oft zusammen gekauft

Preis für beide: EUR 138.00

Verfügbarkeit und Versanddetails anzeigen

Dieser Artikel: Introduction to Data Mining von Pang-Ning Tan Taschenbuch EUR 85,05

Data Mining: Concepts and Techniques (Morgan Kaufmann Series in Data Management Systems)

- Given a frequent itemset L, find all non-empty subsets $f \subset L$ such that $f \rightarrow L - f$ satisfies the minimum confidence requirement.

Example Frequent Itemset: {Milk, Diaper, Beer}	TID	Items
	1	Bread, Milk
	2	Bread, Diaper, Beer, Eggs
Example Rule:	3	Milk, Diaper, Beer, Coke
$\{Milk, Diaper\} \Rightarrow Beer$	4	Bread, Milk, Diaper, Beer
	5	Bread, Milk, Diaper, Coke
$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$		

Ur

Challenge: Large Number of Candidate Rules

- If {A,B,C,D} is a frequent itemset, then the candidate rules are:

$ABC \rightarrow D$,	$ABD \rightarrow C$,	$ACD \rightarrow B$,	$BCD \to A,$
$A \rightarrow BCD$,	$B \rightarrow ACD$,	$C \rightarrow ABD$,	$D \rightarrow ABC$
$AB \rightarrow CD$,	$AC \rightarrow BD$,	$AD \rightarrow BC$,	$BC \to AD,$
$BD \to AC,$	$CD \rightarrow AB$		

- If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring L → Ø and Ø → L)

Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an anti-monotone property c(ABC →D) can be larger or smaller than c(AB →D)
 - But confidence of rules generated from the same itemset
 has an anti-monotone property
 - e.g., L = {A,B,C,D}:

 $c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$

• Confidence is anti-monotone with respect to the number of items on the right hand side of the rule

Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

i.e., "moving elements from left to right" cannot increase confidence

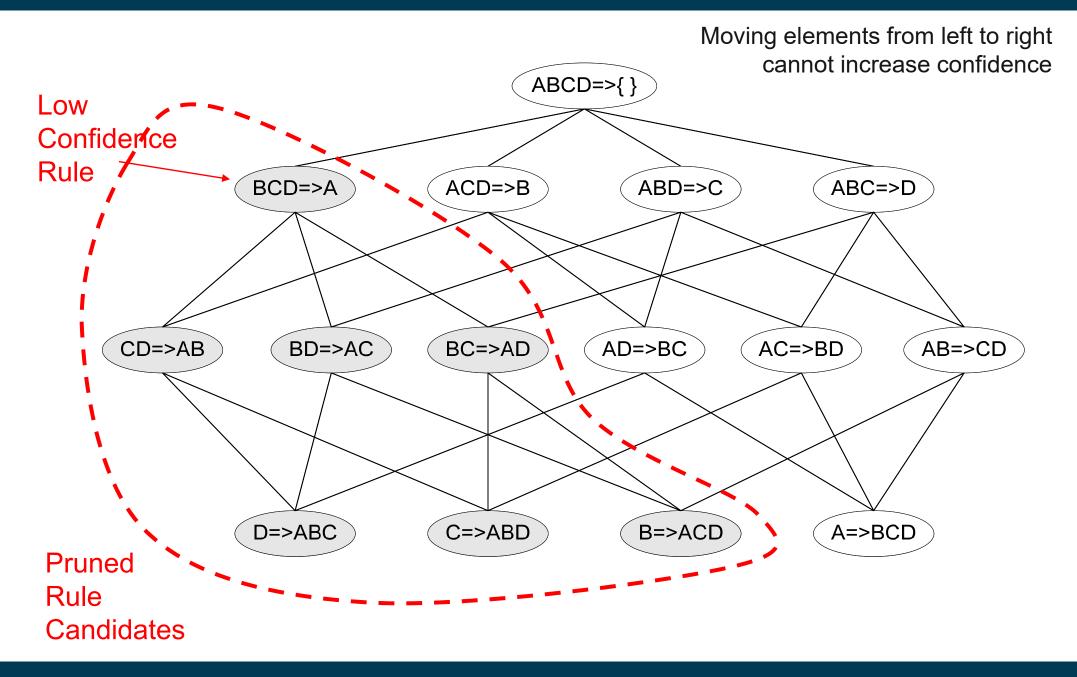
Reason:

$$c(AB \rightarrow C) := \frac{s(ABC)}{s(AB)}$$
 $c(A \rightarrow BC) := \frac{s(ABC)}{s(A)}$

- Due to anti-monotone property of support, we know $s(AB) \le s(A)$
- Hence

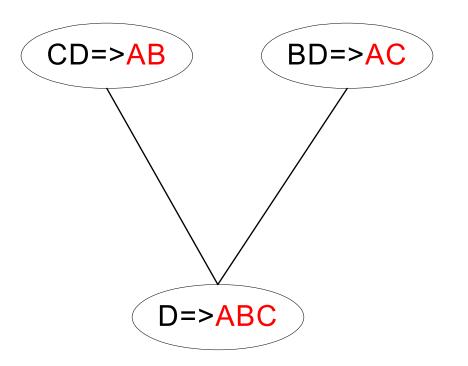
$$c(AB \rightarrow C) \geq C(A \rightarrow BC)$$

Candidate Rule Pruning



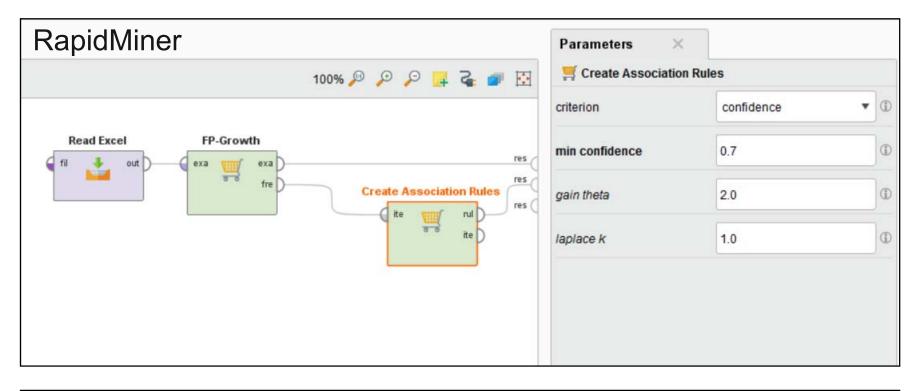
Candidate Rule Generation within Apriori Algorithm

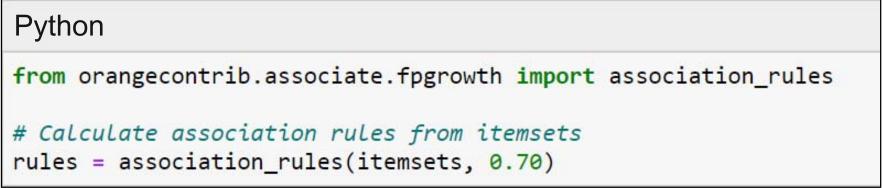
- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent (right hand side of rule)
- 1. join(CD \rightarrow AB, BD \rightarrow AC) would produce the candidate rule D \rightarrow ABC
- 2. Prune rule $D \rightarrow ABC$ if one of its parent rules does not have high confidence (e.g. $AD \rightarrow BC$)



- All the required information for confidence computation has already been recorded in itemset generation.
- Thus, there is no need to scan the transaction data T any more

Creating Association Rules in Rapidminer and Python





Exploring Association Rules in Rapidminer

show rules matching	No.	Premises	Conclusion	Support	Confiden \downarrow
any of these conclusions:	5885	9 age = young	class = <=50K	0.072	1
ative-country = US	^ 5886	0 native-country = US, age = young	class = <=50K	0.067	1
ge = working-age ce = White	5886	1 race = White, age = young	class = <=50K	0.063	1
ass = <=50K orkclass = Private	5886	2 workclass = Private, age = young	class = <=50K	0.057	1
urs-per-week = full-time x = Male	5886	3 hours-per-week = full-time, age = young	class = <=50K	0.044	1
ucation = School x = Female	5886	4 sex = Male, age = young	class = <=50K	0.039	1
ucation = Other-Grad	5886	5 education = School, age = young	class = <=50K	0.050	1
ss = >50K ırs-per-week = workaholic	5886	6 sex = Female, age = young	class = <=50K	0.032	1
ucation = College cupation = Craft-repair	5886	7 native-country = US, race = White, age = young	class = <=50K	0.060	1
cupation = Prof-specialty cupation = Exec-managerial	5886	8 native-country = US, workclass = Private, age = y	oung class = <=50K	0.053	1
cupation = Sales	5886	9 native-country = US, hours-per-week = full-time,	age class = <=50K	0.041	1
cupation = Other-service	5887	0 native-country = US, sex = Male, age = young	class = <=50K	0.037	1
e = Black urs-per-week = part-time	5887	1 native-country = US, education = School, age = y	oung class = <=50K	0.047	1
native-country = Non-US workclass = Self-emp-not-inc age = vound Min. Criterion:	5887	2 native-country = US, sex = Female, age = young	class = <=50K	0.030	1
	5887	3 race = White, workclass = Private, age = young	class = <=50K	0.051	1
onfidence	• 5887	4 race = White, hours-per-week = full-time, age = y	oung class = <=50K	0.039	1
. Criterion Value:	5887	5 race = White, sex = Male, age = young	class = <=50K	0.035	1

University of Mannheim - Prof. Bizer: Data Mining

Filter by

conclusion

Filter by

confidence

2.3 Handling Continuous and Categorical Attributes

 How to apply association analysis to attributes that are not asymmetric binary variables?

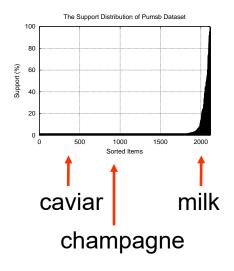
Session Id	Country	Session Length (sec)	Number of Web Pages viewed	Gender	Browser Type	Buy
1	USA	982	8	Male	Chrome	No
2	China	811	10	Female	Chrome	No
3	USA	2125	45	Female	Firefox	Yes
4	Germany	596	4	Male	IE	Yes
5	Australia	123	9	Male	Firefox	No

– Example Rule:

{Number of Pages \in [5,10) \land (Browser=Firefox)} \rightarrow {Buy = No}

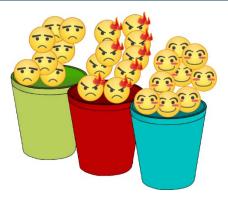
Handling Categorical Attributes

- Transform categorical attribute into asymmetric binary variables
- Introduce a new "item" for each distinct attribute-value pair
 - e.g. replace "Browser Type" attribute with
 - attribute: "Browser Type = Chrome"
 - attribute: "Browser Type = Firefox"
 -
- Issues
 - 1. What if attribute has many possible values?
 - many of the attribute values may have very low support
 - potential solution: aggregate low-support attribute values
 - 2. What if distribution of attribute values is highly skewed?
 - example: 95% of the visitors have Buy = No
 - most of the items will be associated with (Buy=No) item
 - potential solution: drop the highly frequent item



Handling Continuous Attributes

- Transform continuous attribute into binary variables using discretization
 - equal-width binning
 - equal-frequency binning



Issue: Size of the discretization intervals affects support & confidence

{Refund = No, (Income = \$51,251)} \rightarrow {Cheat = No}

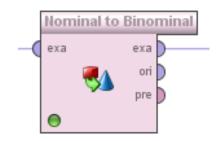
{Refund = No, $(60K \le Income \le 80K)$ } \rightarrow {Cheat = No}

{Refund = No, $(0K \le Income \le 1B)$ } \rightarrow {Cheat = No}

- If intervals are too small
 - itemsets may not have enough support
- If intervals too large
 - rules may not have enough confidence
 - e.g. combination of different age groups compared to a specific age group

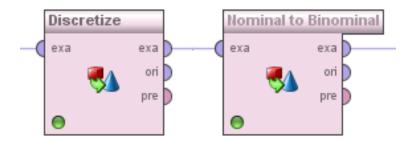
Attribute Transformation in RapidMiner and Python

Categorical attribute values to binary attributes



from sklearn.preprocessing import OneHotEncoder
Apply one-hot encoding
encoder = OneHotEncoder(sparse=False)
onehot_data = encoder.fit_transform(dataset)

Continuous attribute values to binary attributes



from sklearn.preprocessing import KBinsDiscretizer
Discretize and one-hot encode dataset
discretizer = KBinsDiscretizer(n_bins=5, encode='onehot', strategy='quantile')
discretized_onehot_data = discretizer.fit_transform(dataset)

2.4 Interestingness Measures

- Association rule algorithms tend to produce too many rules
 - many of them are uninteresting or redundant
 - redundant if {A,B,C} → {D} and {A,B} → {D} have same support & confidence
- Interestingness of patterns depends on application
 - one man's rubbish may be another's treasure
- Interestingness measures can be used to prune or rank the derived rules.
- In the original formulation of association rules, support & confidence were the only interestingness measures used.
- Later, various other measures have been proposed
 - See Tan/Steinbach/Kumar, Chapter 6.7
 - We will have a look at one: Lift

Drawback of Confidence

Contingency table

	Coffee	Coffee	
Теа	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea \rightarrow Coffee

- confidence(Tea \rightarrow Coffee) = 0.75
- but support(Coffee) = 0.9
- although confidence is high, rule is misleading as the fraction of coffee drinkers is higher than the confidence of the rule
- we want confidence($X \rightarrow Y$) > support(Y)
- otherwise rule is misleading as X reduces probability of Y

Lift

- The lift of an association rule $X \rightarrow Y$ is defined as:

$$Lift = \frac{c(X \to Y)}{s(Y)}$$

- Confidence normalized by support of consequent
- Interpretation
 - if lift > 1, then X and Y are positively correlated
 - if lift = 1, then X and Y are independent
 - if lift < 1, then X and Y are negatively correlated

Contingency table

	Coffee	Coffee	
Теа	15	5	20
Теа	75	5	80
	90	10	100

 $Lift = \frac{c(X \to Y)}{s(Y)}$

Association Rule: Tea \rightarrow Coffee

- confidence(Tea \rightarrow Coffee) = 0.75
- but support(Coffee) = 0.9

 $Lift(Tea \rightarrow Coffee) = 0.75/0.9 = 0.8333$

lift < 1, therefore is negatively correlated

Exploring Association Rules in RapidMiner

🖳 🛒 Result Ove	rview 🗙 🛯 🕅 AssociationRules (Crea	ite Ass	ociation Rules) 🚿 🧻 🗐 ExampleSet (Nomir	nal to Binominal) 🚿				
	Show rules matching	No.	Premises	Conclusion	Support V	Confiden	. Lift	
	all of these conclusions:	47	occupation = Machine-op-inspct	class = <=50K	0.085	0.922	1.150	,
Data		42	occupation = Adm-clerical	class = <=50K	0.080	0.854	1.064	
	class = <=50K	34	occupation = Prof-specialty	class = <=50K	0.069	0.521	0.650	
	education = HS-grad	38	occupation = Sales	class = <=50K	0.068	0.798	0.995	Lift
	class = >50K	52	education = 5th-6th	class = <=50K	0.066	0.946	1.179	clos
Graph	education = Bachelors	17	class = >50K	occupation = Prof-specialty	0.064	0.321	2.417	to ²
	education = Some-college occupation = Other-service	30	occupation = Prof-specialty	class = >50K	0.064	0.479	2.417	
	occupation = Prof-specialty	13	class = >50K	education = Bachelors	0.058	0.295	1.758	
Description	occupation = Exec-managerial	25	education = Bachelors	class = >50K	0.058	0.348	1.758	
	occupation = Adm-clerical	35	occupation = Exec-managerial	class = <=50K	0.053	0.554	0.691	
	education = Masters	3	education = HS-grad	occupation = Other-service	0.051	0.211	1.428	
Annotation		24	occupation = Other-service	education = HS-grad	0.051	0.346	1.428	
Annotation	Amotation	49	occupation = Handlers-cleaners	class = <=50K	0.049	0.936	1.167	

🛛 🛒 Result Overv	riew 🗙 🦳 📬 AssociationRules (Crea	ate Asso	ociation Rules) 🔀 🔪 📑 Example	eSet (Nominal to Binom	inal) 🔀		
	Show rules matching	No.	Premises	Conclusion	Support	Confidence	Lift
	all of these conclusions:	25	education = Bachelors	class = >50K	0.058	0.348	1.758
Data	all of these conclusions:	29	occupation = Exec-managerial	class = >50K	0.043	0.446	2.249
Data	class = <=50K	30	occupation = Prof-specialty	class = >50K	0.064	0.479	2.417
	education = HS-grad	31	education = Masters	class = >50K	0.030	0.484	2.441
	class = >50K						
Graph	education = Bachelors						
	education = Some-college						
	occupation = Other-service						
Description	occupation = Prof-specialty						
Description	occupation = Exec-managerial						
2	occupation = Adm-clerical education = Masters						
	education - masters						
Annotation							

Solid lift

University of Mannheim - Prof. Bizer: Data Mining

Conclusion

- The algorithm does the counting for you and finds patterns in the data
- You need to do the interpretation based on your knowledge about the application domain.
 - Which patterns are meaningful?
 - Which patterns are surprising?

Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar: Introduction to Data Mining. 2nd Edition. Pearson.

Chapter 4: Association Analysis: Basic Concepts and Algorithms

Chapter 7: Association Analysis: Advanced Concepts

