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Data Mining – FSS 2019 
Exercise 3: Classifcation 

3.1. Should we play golf? 
The Golf data set is one of the examples that is delivered together with RapidMiner. The data set 
models different aspects of the weather (outlook, temperature, humidity, forecast) that are relevant 
for deciding whether one should play golf or not. 

1. Learn a decision tree from the Golf data set (Operator: Decision Tree). Use this tree to classify 
the examples in the Golf-Testset, which is also delivered together with RapidMiner 
(Operator: Apply Model). 
Solution: Add a retrieve operator for each data set (training and test). Link the training data 
to the operator decision tree. Link the output of the decision tree to the apply model 
operator. Link the output of the retrieved test data set also to the apply model operator. 
Compare the prediction (Prediction (Play)) with the column Play. 

 

Conclusion: The test set is classified by the learned model with 5 wrong classifications and 9 
correct classifications.  

The created decision tree looks like: 



 

 

2. Evaluate the performance of your model by adding a Performance (Classification) operator to 
your process. Examine the confusion matrix. What is the accuracy of your classifier?  
Solution: Link the performance (classification) operator between the output from 3-1-1 and 
the apply model operator. Accuracy can be found at the Table / Plot View of the 
Performance Vector 

 

Conclusion: The accuracy is about 64.29% 

3. Does a k-nearest-neighbor classifier work better for this task? To find out, replace the 
Decision Tree operator with a K-NN operator and check how the accuracy of your classifier 
changes. Do different values of k improve the performance? 
Solution: Accuracy can be found at the Table / Plot View of the Performance Vector 

Conclusion: Different k values change the accuracy of the classifier. 

k accuracy comment 

1 71.43 % Equally distributed classification errors 

2 35.71 % Classification errors mainly for “yes” - class 

3 64.29 % Classification errors mainly for “no” - class 

4 57.14 % Equally distributed classification errors 

5 64.29 % Almost equally distributed classification errors 

3.2. Learning a classifier for the Iris Data Set 
1. Let’s try the ID3 tree building algorithm first. Build a process that (1) discretizes all attributes 

of the Iris data set by frequency into three bins. (2) Afterwards, the process should use the 
Split Validation operator (split ratio=0.7, stratified sampling) to generate a training and test 
data set. (3) As inner operator of the split validation, the process should use the ID3 operator 
to learn a decision tree and the Performance (Classification) operator to evaluate the 
accuracy of the learned model. 
Solution: Use the Discretize by Frequency Operator. Add the Split Validation Operator. To 
edit the inner operators select the blue button on the lower right corner of the Split 
Validation Operator. Link the “ave” port to a result port. 



 

 

Conclusion: Performance reached is about 97.78% where the classification errors are made 
in the group of versicolor. Note that the performance is calculated on a model learned from 
the splitted training data, but the tree that is shown is based on the full data set (that’s why 
you get varying performance values without a local random seed but always the same tree). 

Note: the performance numbers are obtained using “use local random seed“ option, local 

random seed=1992, compatibility level=9.2.000. Without or with different local seed, and 

with different compatibility level (in case you haven’t installed the recent updates) you might 

get different performance results. 

The created decision tree looks like: 

 

2. Remove the discretization operator and change the ID3 operator into RapidMiner’s standard 
DecisionTree building operator. Run the process again. Does the accuracy change?  Compare 
the complexity of the two models. Which model should be preferred according to Occam’s 
razor? 
Solution: Occam’s Razor: Given two models of similar generalization errors, one should 
prefer the simpler model over the more complex model. 

Conclusion: The accuracy is 95.56% of this process where most of the classification errors are 
made in the group of versicolor. 

The created decision tree looks like: 



 

 

Applying the rule of Occam’s razor it would be better to use the simple decision tree instead 
of ID3. 

3. Try a k-nearest-neighbor classifier on the problem. Does it perform better? 
Solution: Replace the Decision Tree Operator by a k-NN Operator. Accuracy can be found at 
the Table / Plot View of the Performance Vector 

Conclusion: Testing different k values the accuracy improves up to 97.78%. 

3.3 More Classification 
In the lecture, you learned about the Nearest Centroid Classifier. For this classifier, RapidMiner does 

not provide you with an operator. So you have to install the “Mannheim RapidMiner Toolbox” in 

order to use this classifier. 

1. Install the”Mannheim RapidMinerToolbox” from the Marketplace (“Help” -> “Marketplace”) 

Solution: Install the Extension in RapidMiner 

 



 

 

2. Compare kNN and Nearest Centroid Classification using the “Weighting” dataset from the 

RapidMiner Samples Repository. 

Solution: Build a Process that uses the “k-NN” and “Nearest Centroid Classification” 
operators and compare their results 

Conclusion: The performance of the Nearest Centroid Classification is better than that for k-
NN  for this particular dataset. 

 

 


