
 
  

Data and Web Science Group 

Prof. Dr. Christian Bizer 

B6 – B1.15 

68159 Mannheim 

 
 

Data Mining – FSS 2020 
Exercise 4: Classification 
General notice: For X-Validation use a local seed with value “1992” to get the same results! 

4.1. Rule Learning 
Download the glass.arff data set, which is a default data mining data set, distributed e.g. by Weka, 

from the course website. The dataset was created during a study which was motivated by 

criminological investigations. At the scene of the crime, the glass left can be used as evidence, if the 

purpose of the glass can be classified correctly. You can read more about the different attributes 

within the .arff-File. 

1. Import the file and store it into your repository, using the Read ARFF and Store operator. 
 

Solution: Use the Read ARFF and the Store operator. Select the location to store and run the 

process. After the process finished you will have the data in your RapidMiner Repository. 

2. Now use the Rule Induction classifier to learn classification rules based on the glass dataset. 
Use in a first step the default setup (pureness = 0.9) and have a look at the rules. 

 
Solution: Retrieve the stored dataset from your repository. Set the Type attribute as label 

using the Set Role operator.  

Conclusion: 199 out of 213 examples will be covered correctly with the presented 19 rules. 6 

of the rules are really simple (just one attribute limitation). 

3. Change the pureness attribute to 1 and 0.5. How is the change reflected in the set of rules 
created?  

 
Solution: Rerun the process from 3 once with 1 and once with 0.5 as pureness. 

Conclusion: 

 Pureness 1: 179/206 correct examples with 12 rules 
 Pureness 0.5: 154/212 correct examples with 9 simple rules 
 Pureness 0.85: 198/213 correct examples with 19 rules 

 

4. Replace the Rule Induction Operator by the Tree to Rules (nested Operator) and use a 
Decision Tree inside. Compare the results from direct and indirect Rule-Based-Classification 
Algorithms, based on number of rules created and complexity of the rules. 

 



 
Solution: Replace the Rule Induction Operator by a Tree To Rules Operator. Include within 

the Tree to Rules operator a Decision Tree Operator. The Tree to Rules Operator does not 

offer parameters. All tunes has to be done within the Decision Tree Operator itself. 

Conclusion: Running the process with default setup leads to 168 out of 214 correct examples 

with 16 complex rules (in comparison to Rule Induction).  

5. Use the X-Validation (Classification) with a 10-fold setup and compare the accuracy of both 
rule learning approaches and a k-NN classification algorithm. What does work best on the 
data set? 

 
Solution: Set-up a process similar to the one from Exercise 3 using X-Validation. You can also 

set up 3 X-Validators in parallel using the Multiply Operator. 

 

Conclusion: Using the setup from 3 and 4 and K-NN with k = 1 results in K-NN with 71.02% 

accuracy (more than both rule based learners). 

 Tree to rules: 64.52% 
 Rule induction: 70.22% 

4.2. Who should get a bank credit? 
The German credit data set from the UCI data set library (http://archive.ics.uci.edu/ ml/index.html) 

describes the customers of a bank in respect whether they should get a bank credit or not. The data 

set is provided as credit-g.arff file in ILIAS. You need to use the RapidMiner ARFF reader operator to 

import the data set. Please also have a look at the data set documentation that is included in the file. 

1. Apply the Compare ROCs Operator to the dataset and include k-NN, Decision Tree and Rules 
Based classification. Which classification approach looks most promising to you?  

 

Solution: Include the Compare ROCs operator and add the three classifiers within the 

operator. Based on the theory, the curves which go straight up in the beginning represent 

the best performance. The more it moves to a straight diagonal the worse it gets. 

Conclusion: Based on the outcome the Decision Tree performance most promising. Also the 

Rule Induction and K-NN with k = 1 should be considered. 

2. Include the most promising classification approaches and use a 10-fold X-Validation 
approach. Which level of accuracy do you reach? 

 



 
Solution: Remove the Compare ROCs operator and place a x-validation operator in the 

process. Apply the learned model and measure the performance (have a look at the 

classification workflow slide set in case you have troubles with this).  

 Decision Tree: 69.40% Accuracy – 201 bad customers predicted good 

 Rule Induction: 71.50% Accuracy – 173 bad customers predicted good 

 k-NN (k=1): 61.60% Accuracy – 198 bad customers predicted good 

 k-NN (k=3): 62.30% Accuracy – 230 bad customers predicted good 

 k-NN (k=5): 65.60% Accuracy – 234 bad customers predicted good 

3. What does the precision and recall values for the positive class “Bad Customer” tell you? Try 
to improve the situation by increasing the number of “bad customers” in the training set. For 
doing this, you first filter all bad customers from the data set and then append these 
customers to the original set. How does precision and recall change if you apply this 
procedure twice? Use the Filter Examples and Append Operators. 

 

Solution: There is an unbalance in the results. The bad class is predicted less often right, than 

the good class. To solve this add the Filter Examples with the attribute_value_filter set to 

“class=bad” (or custom_filters) and then use the Append Operator to increase the number of 

good examples in the training set. Make sure you only do this within the training set. 

Conclusion: Applying this procedure once with Rule Induction we end up with an accuracy of 

69.80% and 111 bad customers classified as good. When adding the bad class two more 

times we end up with 68.50% accuracy but only 89 bad customers classified as good.  

4. To model a use case specific evaluation, as observed in the previous example, replace the 
Performance (Classification) operator by the Performance (Costs) operator. Set up your cost 
matrix by assuming that you will lose 1 Unit if you refuse a credit to a good customer, but 
that you lose 100 Units if you give a bad customer a credit. Rerun the experiments from 1 
and evaluate the results. 
 
Solution: Replace the Performance Classification operator with the Performance (Costs) 

operator and setup the matrix with ((0,100)(1,0)) than rerun the process and inspect the 

outcome. 

Conclusion: The usage of this performance measuring operator helps to directly see the cost 

of a misclassification which in this case is really important, as not giving a credit to somebody 

who can pay back is a small failure in comparison to giving a credit to somebody who will 

never pay something back. In the first case we lose the interests, in the second case we lose 

all the money. 

5. As the creation of training data is mostly a manual task as humans tend to be fallible training 
data might include noise. Simulate this behavior by using the Add Noise operator and change 
the parameter “label noise” from 0% to 10% to 20%. Is your preferred classification approach 
still feasible for this situation? How does the performance of the other classifiers evolve? 
Solution: Place the Add Noise operator and change the parameter from 0.0 to 0.1 and 0.2 

and observe the results. 

 

 



 
Conclusion: 

Model Accuracy - Noise 0% Accuracy - Noise 10% Accuracy - Noise 20% 

KNN n=1 61.80% 60.00% 58.70% 

Rule 
Induction 

68.30% 65.80% 59.40% 
 

Decision 
Tree 

69.80% 31.20% 30.60% 

 


