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Regression

• Classification

– covered in Data Mining I

– predict a label from a finite collection

– e.g., true/false, low/medium/high, ...

• Regression

– predict a numerical value

– from a possibly infinite set of possible values

• Examples

– temperature

– sales figures

– stock market prices

– ...
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Contents

• A closer look at the problem
– e.g., interpolation vs. extrapolation

– measuring regression performance

• Revisiting classifiers we already know
– which can also be used for regression

• Adoption of classifiers for regression
– model trees

– support vector machines

– artificial neural networks

• Other methods of regression
– linear regression and variants

– isotonic regression

– local regression
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The Regression Problem

• Classification

– algorithm “knows” all possible labels, e.g. yes/no, low/medium/high

– all labels appear in the training data

– the prediction is always one of those labels

• Regression

– algorithm “knows” some possible values, e.g., 18°C and 21°C

– prediction may also be a value not in the training data, e.g., 20°C
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Interpolation vs. Extrapolation

• Training data: 

– weather observations for current day

– e.g., temperature, wind speed, humidity, …

– target: temperature on the next day

– training values between -15°C and 32°C

• Interpolating regression

– only predicts values from the interval [-15°C,32°C]

• Extrapolating regression

– may also predict values outside of this interval
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Interpolation vs. Extrapolation

• Interpolating regression is regarded as “safe”

– i.e., only reasonable/realistic values are predicted

http://xkcd.com/605/
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Interpolation vs. Extrapolation

• Sometimes, however, only extrapolation is interesting

– how far will the sea level have risen by 2050?

– will there be a nuclear meltdown in my power plant?

http://i1.ytimg.com/vi/FVfiujbGLfM/hqdefault.jpg
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Baseline Prediction

• For classification: predict most frequent label

• For regression: predict average value

– or median

– or mode

– in any case: only interpolating regression

• often a strong baseline

http://xkcd.com/937/
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k Nearest Neighbors Revisited

• Problem

– find out what the weather is in a certain 
place

– where there is no weather station

– how could you do that?

x
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k Nearest Neighbors Revisited

• Idea: use the average of the
nearest stations

• Example:

– 3x sunny

– 2x cloudy

– result: sunny

• Approach is called

– “k nearest neighbors”

– where k is the number of neighbors to consider

– in the example: k=5

– in the example: “near” denotes geographical proximity

x
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k Nearest Neighbors for Regression

• Idea: use the numeric 
average of the nearest stations

• Example:

– 18°C, 20°C, 21°C, 22°C, 21°C

• Compute the average

– again: k=5

– (18+20+21+22+21)/5

– prediction: 20.4°C

• Only interpolating regression!

x20°C

21°C
22°C22°C

18°C

21°C
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k Nearest Neighbor Regression in RapidMiner
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Performance Measures

• Recap: measuring performance for classification: 

• If we use the numbers 0 and 1 for class labels, we can reformulate 
this as

Why?

– the nominator is the sum of all correctly classified examples

• i.e., the difference of the prediction and the actual label is 0

– the denominator is the total number of examples

Accuracy = TP+TN
TP+TN +FP+FN

Accuracy =1−
∑

all examples
∣predicted−actual∣

N
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Mean Absolute Error

• We have

• For an arbitrary numerical target, we can define

• Mean Absolute Error

– intuition: how much does the prediction differ from the actual value 
on average?

Accuracy =1−
∑

all examples
∣predicted−actual∣

N

MAE =
∑

all examples
∣predicted−actual∣

N
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(Root) Mean Squared Error

• Mean Squared Error:

• Root Mean Squared Error:

• More severe errors are weighted higher by MSE and RMSE

MSE =
∑

all examples

∣predicted−actual∣2

N

RMSE =√ ∑
all examples

∣predicted−actual∣2

N
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Correlation

• Pearson's correlation coefficient

• Scores well if

– high actual values get high predictions

– low actual values get low predictions

• Caution: PCC is scale-invariant!

– actual income: $1, $2, $3

– predicted income: $1,000, $2,000, $3,000

→ PCC = 1

PCC=
∑

all examples

( pred− pred )×(act−act)

√ ∑
all examples

( pred− pred )2×√ ∑
all examples

(act−act )2
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Linear Regression

• Assumption: target variable y is (approximately) 
linearly dependent on attributes

– for visualization: one attribute x

– in reality: x1...xn

y

x
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Linear Regression

• Target: find a linear function f: f(x)=w0 + w1x1 + w2x2 + … + wnxn

– so that the error is minimized

– i.e., for all examples (x1,...xn,y), f(x) should be a correct prediction for y

– given a performance measure

y

x
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Linear Regression

• Typical performance measure used: Mean Squared Error

• Task: find w0....wn so that 

is minimized

• note: we omit the denominator N

y

x

∑
all examples

(w 0+w 1⋅x1+w2⋅x2+ ...+w n⋅xn− y)
2
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Linear Regression: Multi Dimensional Example
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Linear Regression vs. k-NN Regression

• Recap: Linear regression extrapolates, k-NN interpolates

x

we want a 
prediction for 
that x

prediction of
linear 
regression

prediction of
3-NN

three nearest
neighborsy

x
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Linear Regression Examples
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Linear Regression and Overfitting

• Given two regression models

– One using five variables to explain a phenomenon

– Another one using 100 variables

• Which one do you prefer?

• Recap: Occam’s Razor

– out of two theories explaining the same phenomenon,
prefer the smaller one
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Ridge Regression

• Linear regression only minimizes the errors on the training data

– i.e., 

• With many variables, we can have a large set of very small w i

– this might be a sign of overfitting!

• Ridge Regression:

– introduces regularization

– create a simpler model by favoring larger factors, minimize

∑
all examples

(w0 +w 1⋅x1+w2⋅x2+...+w n⋅xn−y)
2

∑
all examples

(w0 +w 1⋅x1+w2⋅x2+...+w n⋅xn−y)
2+λ ∑

all variables

w i
2
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Lasso Regression

• Ridge Regression optimizes

• Lasso Regression optimizes

• Observation

– Predictive performance is pretty similar

– Ridge Regression yields small, but non-zero coefficients

– Lasso Regression yields zero coefficients

∑
all examples

(w0 +w 1⋅x1+w2⋅x2+...+w n⋅xn−y)
2+λ ∑

all variables

w i
2

∑
all examples

(w0 +w 1⋅x1+w2⋅x2+...+wn⋅xn−y)
2+λ ∑

all variables

|w i|
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…but what about Non-linear Problems?
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Isotonic Regression

• Special case:

– Target function is monotonous

• i.e., f(x1)≤f(x2) for x1<x2

– For that class of problem, efficient algorithms exist

• Simplest: Pool Adjacent Violators Algorithm (PAVA)
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Isotonic Regression

• Identify adjacent violators, i.e., f(xi)>(xi+1)

• Replace them with new values f'(xi)=f'(xi+1)
so that sum of squared errors is minimized

– ...and pool them, i.e., they are going to be handled as one point

• Repeat until no more adjacent violators are left
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Isotonic Regression
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• Replace them with new values f'(xi)=f'(xi+1)
so that sum of squared errors is minimized

– ...and pool them, i.e., they are going to be handled as one point

• Repeat until no more adjacent violators are left



Heiko Paulheim 32 

Isotonic Regression

• After all points are reordered so that f'(xi)=f'(xi+1) holds for every i

– Connect the points with a piecewise linear function
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Isotonic Regression

• Comparison to the original points

– Plateaus exist where the points are not monotonous

– Overall, the mean squared error is minimized 

• Operator in RapidMiner: from the Weka Extension
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…but what about non-linear, non-monotonous Problems?
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• The attributes X for linear regression can be:

– Original attributes X

– Transformation of original attributes, 
e.g. log, exp, square root, square, etc.

– Polynomial transformation
•  example:  y = 0 + 1x + 2x2 + 3x3

– Basis expansions

– Interactions between variables
•  example: x3 = x1  x2

• This allows use of linear regression techniques to fit much 
more complicated non-linear datasets.

Possible Option: new Attributes
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Example with Polynomially Transformed Attributes
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Support Vector Machines Revisited

• Find hyperplane maximizes the margin => B1 is better than B2
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Linear Regression and SVM

• Linear Regression

– find a linear function that minimizes the distance to data points
w.r.t. the attribute to predict

• Support Vector Machine

– find a linear function that maximizes the distance to data points 
(from different classes)

• Both problems are similar

– hence, many SVMs also support regression
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Support Vector Regression

• Maximum margin hyperplane only applies to 
classification

• However, idea of support vectors and kernel 
functions can be used for regression

• Basic method same as in linear regression: want to 
minimize error

– Difference A: ignore errors smaller than Ɛ and 
use absolute error instead of squared error

– Difference B: simultaneously aim to maximize 
flatness of function

• User-specified parameter Ɛ defines “tube”
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Examples

e = 2

e = 1
e = 0.5
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Local Regression

• Assumption: non-linear problems are approximately linear 
in local areas

– idea: use linear regression locally

– only for the data point at hand (lazy learning)
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Local Regression

• A combination of

– k nearest neighbors

– local regression

• Given a data point

– retrieve the k nearest neighbors

– compute a regression model using those neighbors

– locally weighted regression: 
uses distance as weight for error computation
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Local Regression

• Advantage: fits non-linear models well

– good local approximation

– often more exact than pure k-NN

• Disadvantage

– runtime

– for each test example:

• find k nearest neighbors

• compute a local model
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Combining Decision Trees and Regression

• Idea: split data first so that it becomes “more linear”

• example: fuel consumption by car weight

fuel

weight
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Combining Decision Trees and Regression

• Idea: split data first so that it becomes “more linear”

• example: fuel consumption by car weight

fuel

weight

benzine

diesel
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fuel type

Combining Decision Trees and Regression

• Observation:

– by cleverly splitting the data, we get more accurate linear models

• Regression trees:

– decision tree for splitting data

– constants as leaves

• Model trees:

– more advanced

– linear functions as leaves

y=0.005x+1 y=0.01x+2

=diesel =benzine



Heiko Paulheim 47 

Regression Trees

• Differences to classification decision trees:
– Splitting criterion: minimize intra-subset variation

– Termination criterion: standard deviation becomes small

– Pruning criterion: based on numeric error measure

– Prediction: Leaf predicts average class values of instances

• Easy to interpret

• Resulting model: piecewise constant function
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Model Trees

• Build a regression tree

– For each leaf  learn linear regression function

• Need linear regression function at each node

• Prediction: go down tree, then apply function

• Resulting model: piecewise linear function
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Local Regression and Regression/Model Trees

• Assumption: non-linear problems are approximately linear 
in local areas

– idea: use linear regression locally

– only for the data point at hand (lazy learning)

piecewise constant
(regression tree)

piecewise linear
(model tree)
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Building the Tree

• Splitting: standard deviation reduction

• Termination:
– Standard deviation < 5% of its value on full training set
– Too few instances remain (e.g. < 4)

• Pruning:
– Proceed bottom up: 

• Compute LR model at internal node

• Compare LR model error to error of subtree

• Prune if the subtree's error is not significantly smaller

– Heavy pruning: single model may replace whole subtree

SDR=sd T−∑i∣
Ti

T∣×sdT iSDR=sd(T )−∑i∣
T i

T ∣×sd(T i)
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Model Tree Learning Illustrated

• Standard deviation of complete value set: 3.08

• Standard deviation of two subsets after split x>9: 1.22

– Standard deviation reduction: 1.86

– This is the best split
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Model Tree Learning Illustrated

• Assume that we have split further (min. 4 instances per leaf)

– Standard deviation reduction for the new splits is still 0.57

• Resulting model tree:

• The error of the inner nodes is the same as
for the root nodes → prune

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

8

9

10

x<9

x<4.5 x<13.5

y=0.5x y=0.5x y=0.5x+1 y=0.5x+1

y=0.5x y=0.5x+1
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Model Tree Learning Illustrated

• Assume that we have split further (min. 4 instances per leaf)

– Standard deviation reduction for the new splits is still 0.57

• Resulting model tree:

• The error of the root node is larger than
that of the leaf nodes → keep leaf nodes

0 2 4 6 8 10 12 14 16 18
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x<9

y=0.5x y=0.5x+1

y=0.59x – 0.29 
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Model Tree Learning Illustrated

x<9

y=0.5x y=0.5x+1
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Rules from Model Trees

• Recap: PART algorithm generates classification rules by building 
partial decision trees

• M5Rules uses the same method to build rule sets for regression

– Use model trees instead of decision trees

– Use variance instead of entropy to choose node to expand when 
building partial tree

• Rules will have linear models on right-hand side
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Comparison
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Comparison – Linear and Isotonic Regression
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Comparison – SVM with Linear and RBF Kernel



Heiko Paulheim 59 

Comparison – M5’ Regression and Model Tree
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k-NN and Local Polynomial Regression (k=7)
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Artificial Neural Networks Revisited

Output Y is 1 if at least two of the three inputs are equal to 1.
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Artificial Neural Networks Revisited

Y=I (0.3X1+0.3X2+0 .3X3−0 .4>0)

where I ( z )={1 if z  is true
0 otherwise



Heiko Paulheim 63 

Artificial Neural Networks Revisited

• This final function was used to separate two classes:

• However, we may simply use it to predict a numerical value 
(between 0 and 1) by changing it to:

Y=I (0.3X1+0.3X2+0 .3X3−0 .4>0)

where I ( z )={1 if z  is true
0 otherwise

Y=0 .3X1+0 .3X2+0 .3X3−0. 4
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Artificial Neural Networks for Regression

• What has changed:

– we do not use a cutoff for 0/1 predictions

– but leave the numbers as they are

• Training examples:

– attribute vectors – not with a class label, but numerical target

• Error measure:

– Not classification error, but mean squared error



Heiko Paulheim 65 

Artificial Neural Networks for Regression

Y=0 .3X1+0 .3X2+0 .3X3−0. 4
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Artificial Neural Networks for Regression

• Given that our target formula is of the form

• we can learn only linear problems

– i.e., the target variable is a linear combination the input variables

• More complex regression problems can be approximated

– by combining several perceptrons

• in neural networks: hidden layers

– this allows for arbitrary functions

• Hear more about ANNs in a few weeks!

Y=0 .3X1+0 .3X2+0 .3X3−0. 4
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Summary

• Regression

– predict numerical values instead of classes

• Performance measuring

– absolute or relative error, correlation, …

• Methods

– k nearest neighbors

– linear regression

– isotonic regression

– SVMs

– model trees

– artificial neural networks
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Questions?
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