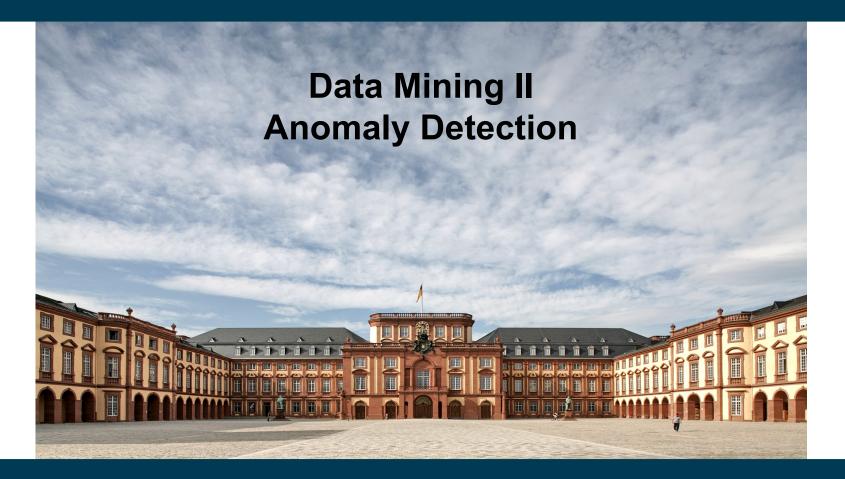
UNIVERSITÄT MANNHEIM



Heiko Paulheim

Anomaly Detection

- Also known as "Outlier Detection"
- Automatically identify data points that are somehow different from the rest
- Working assumption:
 - There are considerably more "normal" observations than "abnormal" observations (outliers/anomalies) in the data
- Challenges
 - How many outliers are there in the data?
 - What do they look like?
 - Method is unsupervised
 - Validation can be quite challenging (just like for clustering)

Recap: Errors in Data

- Sources
 - malfunctioning sensors
 - errors in manual data processing (e.g., twisted digits)
 - storage/transmission errors
 - encoding problems, misinterpreted file formats
 - bugs in processing code

Image: http://www.flickr.com/photos/16854395@N05/3032208925/

Recap: Errors in Data

- Simple remedy
 - remove data points outside a given interval
 - this requires some domain knowledge
- Advanced remedies
 - automatically find suspicious data points

Parameters Context Parameters Context Filter Examples Condition class attribute_value_filter parameter string Invert filter

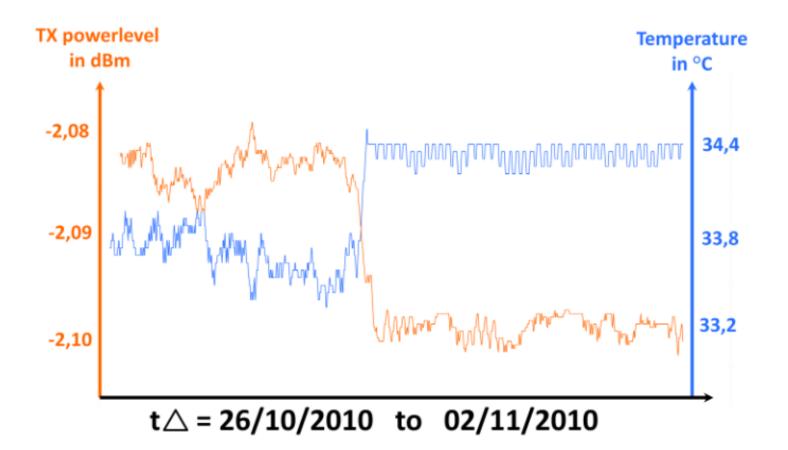
Applications: Data Preprocessing

- Data preprocessing
 - removing erroneous data
 - removing true, but useless deviations
- Example: tracking people down using their GPS data
 - GPS values might be wrong
 - person may be on holidays in Hawaii
 - what would be the result of a kNN classifier?

Applications: Credit Card Fraud Detection

- Data: transactions for one customer
 - €15.10 Amazon
 - €12.30 Deutsche Bahn tickets, Mannheim central station
 - €18.28 Edeka Mannheim
 - \$500.00 Cash withdrawal. Dubai Intl. Airport
 - €48.51 Gas station Heidelberg
 - €21.50 Book store Mannheim
- Goal: identify unusual transactions
 - possible attributes: location, amount, currency, ...

Applications: Hardware Failure Detection

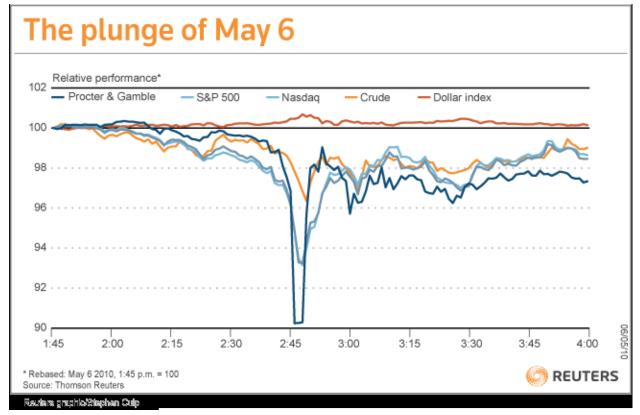


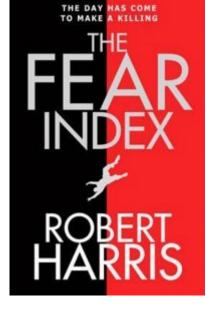
collected data from one 10Gig Ethernet SR interface @ man-da

Thomas Weible: An Optic's Life (2010).

Applications: Stock Monitoring

- Stock market prediction
- Computer trading



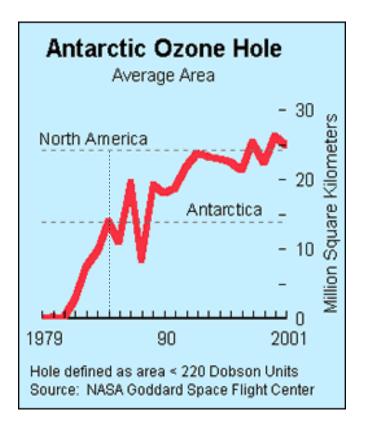


http://blogs.reuters.com/reuters-investigates/2010/10/15/flash-crash-fallout/

Errors vs. Natural Outliers

Ozone Depletion History

- In 1985 three researchers (Farman, Gardinar and Shanklin) were puzzled by data gathered by the British Antarctic Survey showing that ozone levels for Antarctica had dropped 10% below normal levels
- Why did the Nimbus 7 satellite, which had instruments aboard for recording ozone levels, not record similarly low ozone concentrations?
- The ozone concentrations recorded by the satellite were so low they were being treated as outliers by a computer program and discarded!



Sources:

http://exploringdata.cqu.edu.au/ozone.html http://www.epa.gov/ozone/science/hole/size.html

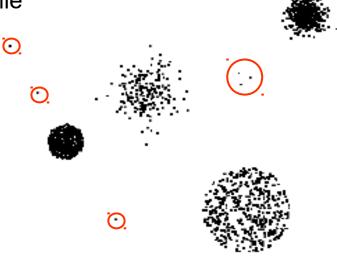
Anomaly Detection in RapidMiner

- RapidMiner has some basic built-in methods
 - under "Data Cleansing"/"Outlier Detection"
- For more sophisticated operators, install the anomaly detection plugin

Anomaly Detection Schemes

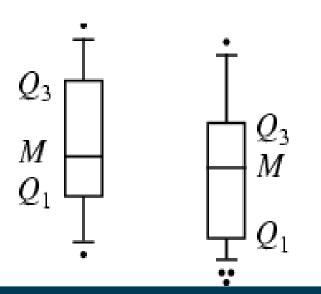
- General Steps
 - Build a profile of the "normal" behavior
 - Profile can be patterns or summary statistics for the overall population
 - Use the "normal" profile to detect anomalies
 - Anomalies are observations whose characteristics differ significantly from the normal profile
- Types of anomaly detection schemes
 - Graphical & Statistical-based
 - Distance-based
 - Model-based

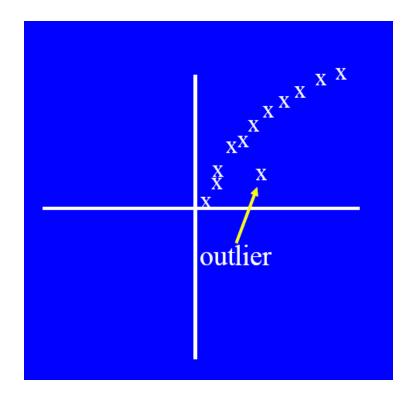
 $\overline{\mathbf{O}}$



Graphical Approaches

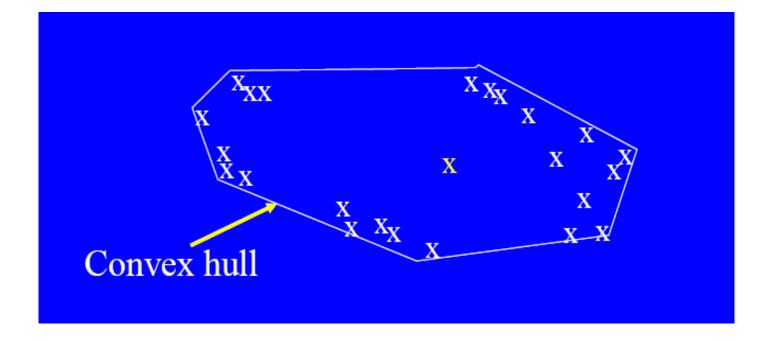
- Boxplot (1-D), Scatter plot (2-D), Spin plot (3-D)
- Limitations
 - Time consuming
 - Subjective





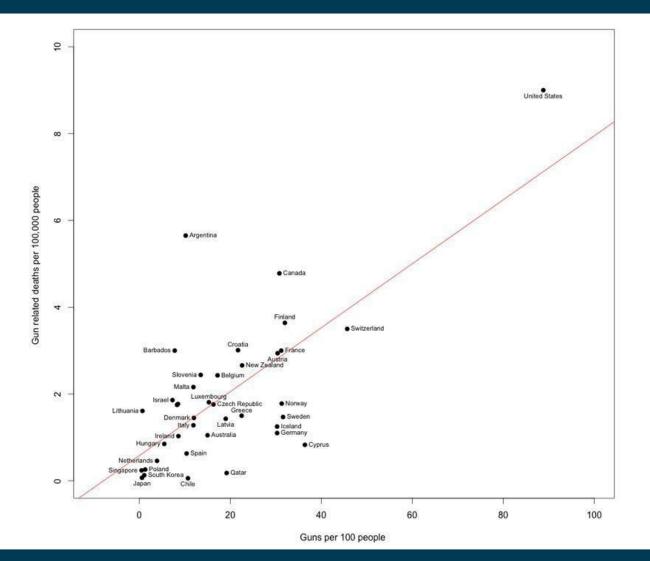
Convex Hull Method

- Extreme points are assumed to be outliers
- Use convex hull method to detect extreme values



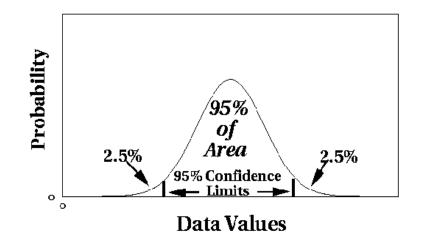
What if the outlier occurs in the middle of the data?

Interpretation: What is an Outlier?



Statistical Approaches

- Assume a parametric model describing the distribution of the data (e.g., normal distribution)
- Apply a statistical test that depends on
 - Data distribution
 - Parameter of distribution (e.g., mean, variance)
 - Number of expected outliers (confidence limit)

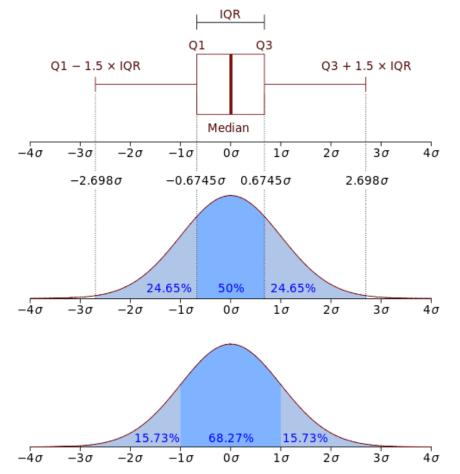


Interquartile Range

- Divides data in quartiles
- Definitions:
 - Q1: $x \ge Q1$ holds for 75% of all x
 - Q3: $x \ge Q3$ holds for 25% of all x
 - IQR = Q3-Q1
- Outlier detection:
 - All values outside [median-1.5*IQR ; median+1.5*IQR]
- Example:
 - 0,1,1,3,3,5,7,42 \rightarrow median=3, Q1=1, Q3=7 \rightarrow IQR = 6
 - Allowed interval: [3-1.5*6 ; 3+1.5*6] = [-6 ; 12]
 - Thus, 42 is an outlier

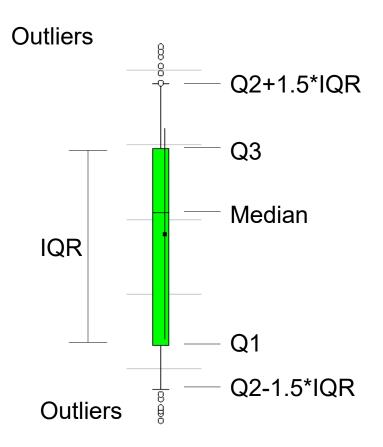
Interquartile Range

Assumes a normal distribution



Interquartile Range

Visualization in box plot using RapidMiner



Median Absolute Deviation (MAD)

• MAD is the median deviation from the median of a sample, i.e.

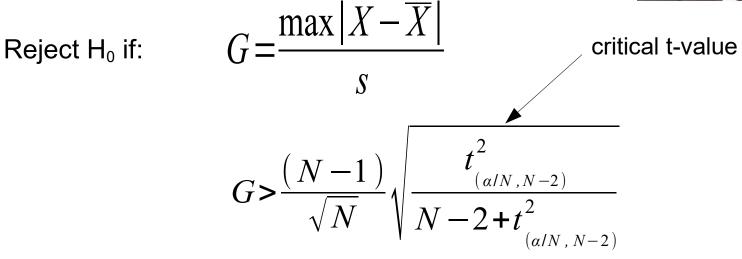
 $MAD := median_i(X_i - median_j(X_j))$

- MAD can be used for outlier detection
 - all values that are k*MAD away from the median are considered to be outliers
 - e.g., k=3
- Example:
 - 0,1,1,3,5,7,42 \rightarrow median = 3
 - deviations: $3,2,2,0,2,4,39 \rightarrow MAD = 2$
 - allowed interval: [3-3*2; 3+3*2] = [-3;9]
 - therefore, 42 is an outlier

Carl Friedrich Gauss, 1777-1855

- Invented by Frank E. Grubbs (1913-2000)
- Detect outliers in univariate data
- Assume data comes from normal distribution
 - H₀: There is no outlier in data
 - H_A: There is at least one outlier
- Grubbs' test statistic:

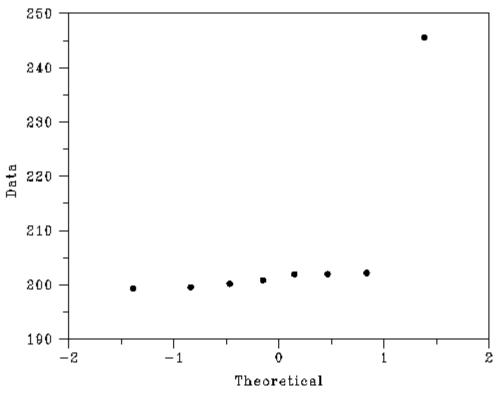
۲



d.f.	α						
u.i.	0.100	0.050	0.025	0.010	0.005	0.001	0.0005
1	3.0777	6.3138	12.7062	31.8205	63.6567	318.3088	636.6193
2	1.8856	2.9200	4.3027	6.9646	9.9248	22.3271	31.5991
3	1.6377	2.3534	3.1824	4.5407	5.8409	10.2145	12.9240
4	1.5332	2.1318	2.7764	3.7469	4.6041	7.1732	8.6103
5	1.4759	2.0150	2.5706	3.3649	4.0321	5.8934	6.8688
6	1.4398	1.9432	2.4469	3.1427	3.7074	5.2076	5.9588
7	1.4149	1.8946	2.3646	2.9980	3.4995	4.7853	5.4079
8	1.3968	1.8595	2.3060	2.8965	3.3554	4.5008	5.0413
9	1.3830	1.8331	2.2622	2.8214	3.2498	4.2968	4.7809
10	1.3722	1.8125	2.2281	2.7638	3.1693	4.1437	4.5869
11	1.3634	1.7959	2.2010	2.7181	3.1058	4.0247	4.4370
12	1.3562	1.7823	2.1788	2.6810	3.0545	3.9296	4.3178
13	1.3502	1.7709	2.1604	2.6503	3.0123	3.8520	4.2208

- The test finds out if there is at least one outlier
- Practical algorithm:
 - Perform Grubbs' Test
 - If there is an outlier, remove the most extreme value
 - i.e., the farthest away from the mean
 - repeat until no more outliers are detected

- Example: given eight mass spectrometer measurements
 - 199.31, 199.53, 200.19, 200.82, 201.92, 201.95, 202.18, 245.57



Normal Probability Plot of Mass Spectrometer Measurements

Example following: http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h1.htm

- Example: given eight mass spectrometer measurements
 - 199.31, 199.53, 200.19, 200.82, 201.92, 201.95, 202.18, 245.57
- Calculating G:

$$G = \frac{\max|X - \overline{X}|}{s} = \frac{39.14}{15.85} = 2.47$$

• Calculating the critical G:

$$G > \frac{(N-1)}{\sqrt{N}} \sqrt{\frac{t_{(\alpha/N, N-2)}^{2}}{N-2+t_{(\alpha/N, N-2)}^{2}}} = \frac{7}{\sqrt{8}} \sqrt{\frac{3.71^{2}}{6+3.71^{2}}} = 2.07$$

Example following: http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h1.htm

- Example: seven remaining mass spectrometer measurements
 - 199.31, 199.53, 200.19, 200.82, 201.92, 201.95, 202.18, 245.57
- Calculating G:

$$G = \frac{\max|X - \overline{X}|}{s} = \frac{1.53}{1.2} = 1.28$$

• Calculating the critical G:

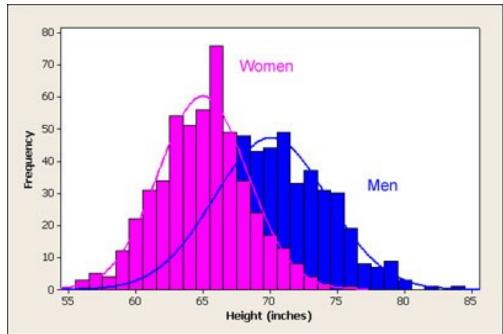
$$G > \frac{(N-1)}{\sqrt{N}} \sqrt{\frac{t_{(\alpha/N, N-2)}^{2}}{N-2+t_{(\alpha/N, N-2)}^{2}}} = \frac{6}{\sqrt{7}} \sqrt{\frac{3.49^{2}}{5+3.49^{2}}} = 1.91$$

Example following: http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h1.htm

Limitations of Statistical Approaches

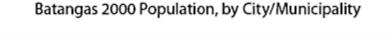
- Most of the tests are for a single attribute (called: *univariate*)
- For high dimensional data, it may be difficult to estimate the true distribution
- In many cases, the data distribution may not be known
 - e.g., Grubbs' Test: expects Gaussian distribution

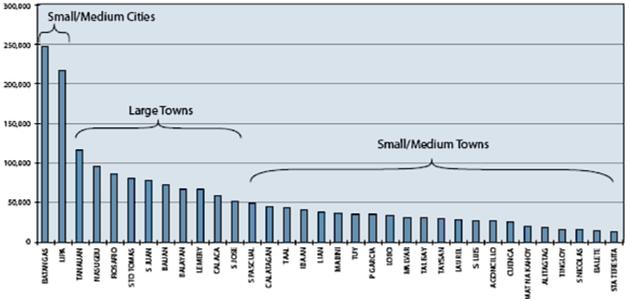
- Normal (gaussian) distribution
 - e.g., people's height



http://www.usablestats.com/images/men_women_height_histogram.jpg

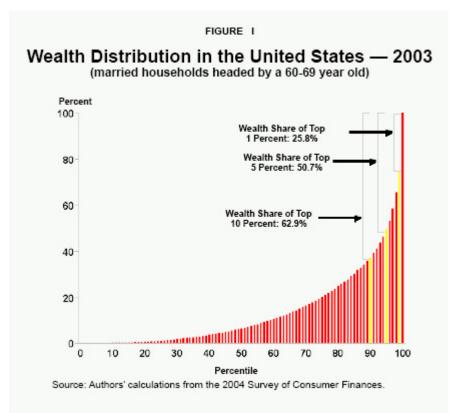
- Power law distribution
 - e.g., city population





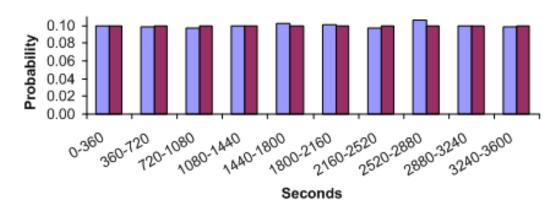
http://www.jmc2007compendium.com/V2-ATAPE-P-12.php

- Pareto distribution
 - e.g., wealth



http://www.ncpa.org/pub/st289?pg=3

- Uniform distribution
 - e.g., distribution of web server requests across an hour



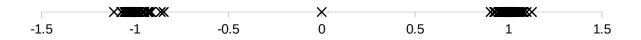
Arrival Time of HTTP Requests Within Hour

Observed Estimated

http://www.brighton-webs.co.uk/distributions/uniformc.aspx

Outliers vs. Extreme Values

- So far, we have looked at extreme values only
 - But outliers can occur as non-extremes
 - In that case, methods like Grubbs' test or IQR fail

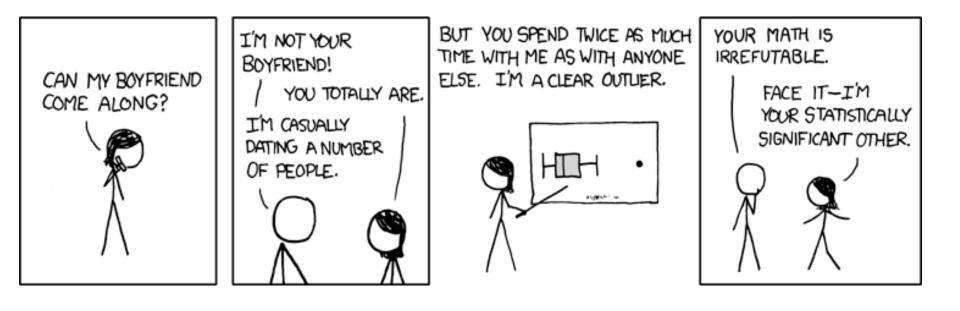


Outliers vs. Extreme Values

- IQR on the example below:
 - Q2 (Median) is 0
 - Q1 is -1, Q3 is 1
 - \rightarrow everything outside [-1.5,+1.5] is an outlier
 - \rightarrow there are no outliers in this example



Time for a Short Break



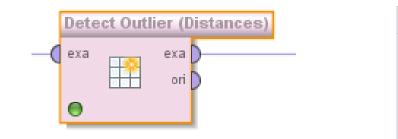
http://xkcd.com/539/

Distance-based Approaches

- Data is represented as a vector of features
- Various approaches
 - Nearest-neighbor based
 - Density based
 - Clustering based
 - Model based

Nearest-Neighbor Based Approach

- Approach:
 - Compute the distance between every pair of data points
 - There are various ways to define outliers:
 - Data points for which there are fewer than p neighboring points within a distance D
 - The top n data points whose distance to the kth nearest neighbor is greatest
 RapidMiner
 - The top n data points whose average distance to the k nearest neighbors is greatest



Detect Outlier (Distances)						
umber of neighbors	10					
umber of outliers	10					
listance function	euclidian distance 💌					

Density-based: LOF approach

- For each point, compute the density of its local neighborhood
 - if that density is higher than the average density, the point is in a cluster
 - if that density is lower than the average density, the point is an outlier
- Compute local outlier factor (LOF) of a point A
 - ratio of average density to density of point A
- Outliers are points with large LOF value
 - typical: larger than 1

LOF: Illustration

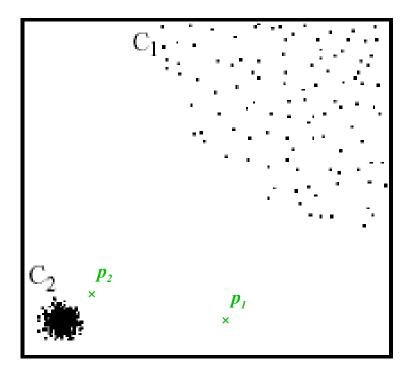
- Using 3 nearest neighbors
 - average density is the inverse of the average radius of all 3-neighborhoods
 - density of A is the inverse of the radius of A's 3-neighborhood

• here: $\frac{average \, density}{density(A)} > 1$

http://commons.wikimedia.org/wiki/File:LOF-idea.svg

Nearest-Neighbor vs. LOF

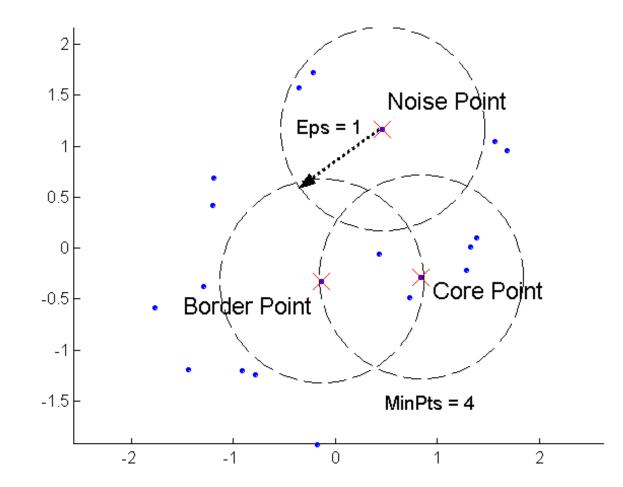
- With kNN, only p₁ is found as an outlier
 - there are enough near neighbors for p_2 in cluster C_2
- With LOF, both p_1 and p_2 are found as outliers



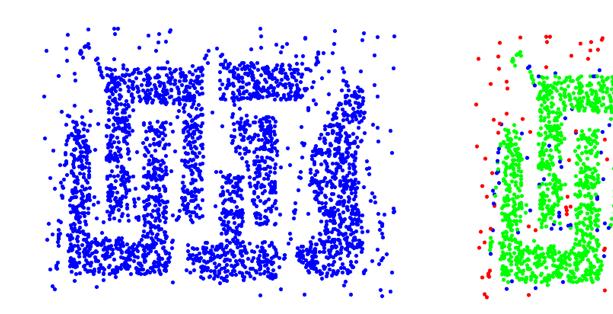
Recap: DBSCAN

- DBSCAN is a density-based algorithm
 - Density = number of points within a specified radius (Eps)
- Divides data points in three classes:
 - A point is a core point if it has more than a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
 - A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point

Recap: DBSCAN



Recap: DBSCAN



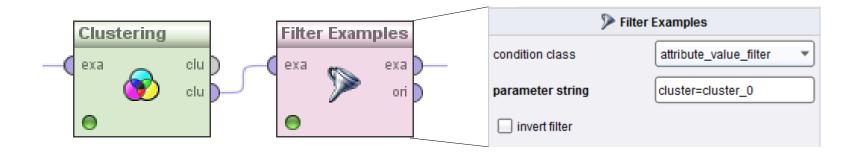
Original Points

Point types: core, border and noise

Eps = 10, MinPts = 4

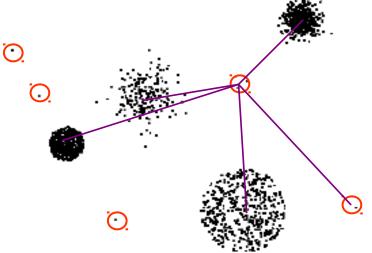
DBSCAN for Outlier Detection

- DBSCAN directly identifies noise points
 - these are outliers not belonging to any cluster
 - in RapidMiner: assigned to cluster 0
 - allows for performing outlier detection directly



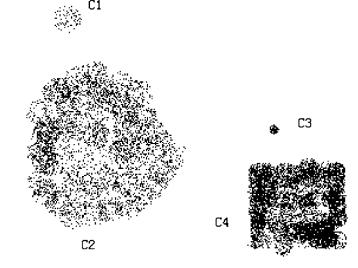
Clustering-based Outlier Detection

- Basic idea:
 - Cluster the data into groups of different density
 - Choose points in small cluster as candidate outliers
 - Compute the distance between candidate points and non-candidate clusters.
 - If candidate points are far from all other non-candidate points, they are outliers



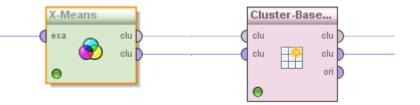
Clustering-based Local Outlier Factor

- Idea: anomalies are data points that are
 - in a very small cluster or
 - far away from other clusters
- CBLOF is run on clustered data
- Assigns a score based on
 - the size of the cluster a data point is in
 - the distance of the data point to the next large cluster



Clustering-based Local Outlier Factor

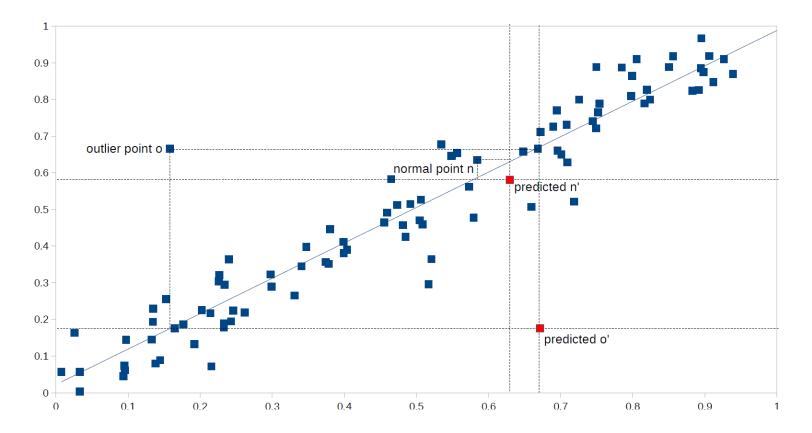
- In RapidMiner
 - first, run a clustering algorithm (of your choice)
 - then, apply CBLOF
- Result: data points with outlier score



Data Vie	w 🔘 Meta D	ata View 🔘 I	Plot View 🔾	Advanced Cha	arts 🔵 Annota	tions					
ExampleSet (208 examples, 4 special attributes, 60 regular attributes)											
Row No.	cluster	class	id	outlier	attribute_1	attribute_2	attribute_3	attribute_4	attribute_5	attribute_6	attribute_7
1	cluster_0	Rock	1	38.516	0.020	0.037	0.043	0.021	0.095	0.099	0.154
2	cluster_2	Rock	2	65.452	0.045	0.052	0.084	0.069	0.118	0.258	0.216
3	cluster_2	Rock	3	75.490	0.026	0.058	0.110	0.108	0.097	0.228	0.243
4	cluster_0	Rock	4	45.112	0.010	0.017	0.062	0.020	0.020	0.037	0.110
5	cluster_2	Rock	5	68.759	0.076	0.067	0.048	0.039	0.059	0.065	0.121
6	cluster_2	Rock	6	69.133	0.029	0.045	0.028	0.017	0.038	0.099	0.120
7	cluster_2	Rock	7	65.306	0.032	0.096	0.132	0.141	0.167	0.171	0.073
8	cluster_3	Rock	8	48.851	0.052	0.055	0.084	0.032	0.116	0.092	0.103
9	cluster_3	Rock	9	52.493	0.022	0.038	0.048	0.048	0.065	0.059	0.075
10	cluster_3	Rock	10	48.437	0.016	0.017	0.035	0.007	0.019	0.067	0.106
11	cluster_1	Rock	11	68.168	0.004	0.006	0.015	0.034	0.031	0.028	0.040
12	cluster_3	Rock	12	46.765	0.012	0.031	0.017	0.031	0.036	0.010	0.018
13	cluster_2	Rock	13	56.138	0.008	0.009	0.006	0.025	0.034	0.055	0.053
14	cluster_1	Rock	14	69.857	0.009	0.006	0.025	0.049	0.120	0.159	0.139
15	cluster_1	Rock	15	84.639	0.012	0.043	0.060	0.045	0.060	0.036	0.053
16	cluster_0	Rock	16	44.131	0.030	0.062	0.065	0.092	0.162	0.229	0.218
17	cluster_0	Rock	17	33.057	0.035	0.012	0.019	0.047	0.074	0.118	0.168

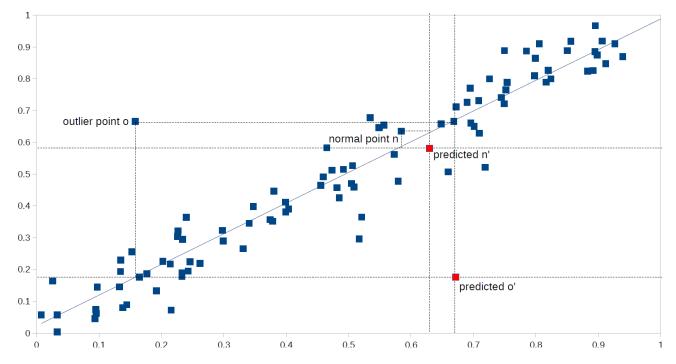
Model-based Outlier Detection (ALSO)

- · Idea: there is a model underlying the data
 - Data points deviating from the model are outliers

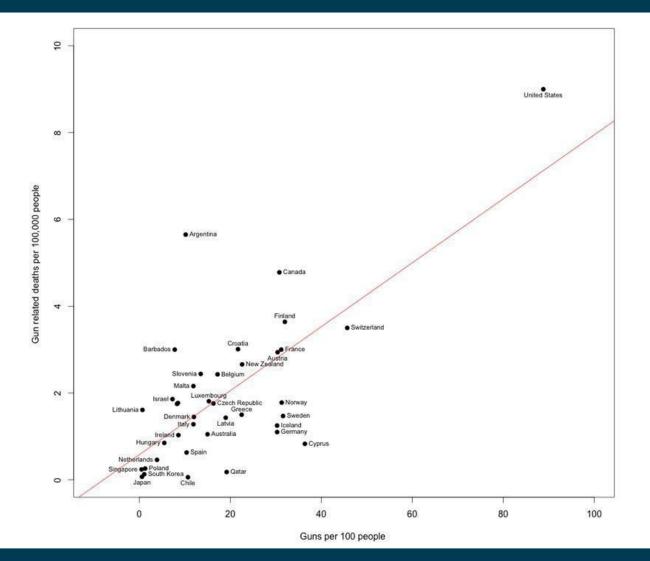


Model-based Outlier Detection (ALSO)

- ALSO (Attribute-wise Learning for Scoring Outliers)
 - Learn a model for each attribute given all other attributes
 - Use model to predict expected value
 - Deviation between actual and predicted value \rightarrow outlier



Interpretation: What is an Outlier? (recap)



Model-based Outlier Detection (ALSO)

- For each data point *i*, compute vector of predictions *i*'
- Outlier score: Euclidean distance of *i* and *i*'
 - in z-transformed space

$$o_{unweighted}(i) := \sqrt{\sum_{k=1}^{n} (i_k - i'_k)^2}$$

- Refinement: assign weights to attributes
 - given the strength of the pattern learned

t

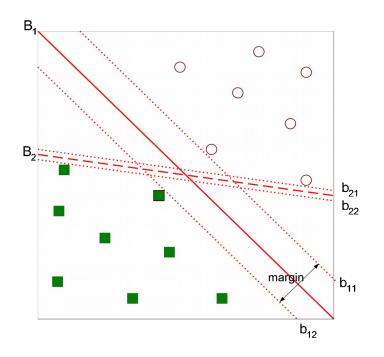
measure: RRSE

$$p(i) := \sqrt{\frac{1}{\sum_{k=1}^{n} w_k} \sum_{k=1}^{n} w_k \cdot (i_k - i'_k)^2},$$

- Rationale:
 - ignores deviations on unpredictable attributes (e.g., database IDs)
 - for an outlier, require *both* a strong pattern *and* a strong deviation

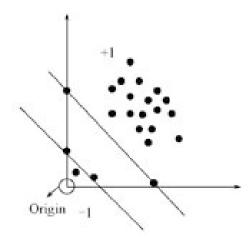
One-Class Support Vector Machines

- Recap: Support Vector Machines
 - Find a maximum margin hyperplane to separate two classes
 - Use a transformation of the vector space
 - Thus, non-linear boundaries can be found



One-Class Support Vector Machines

- One-Class Support Vector Machines
 - Find best hyperplane that separates the origin from the rest of the data
 - Maximize margin
 - Minimize errors
 - Points on the same side as the origin are outliers



One-Class Support Vector Machines

- Recap: SVMs require extensive parameter tunining
- Difficult to automatize for anomaly detection, since we have no training data

- A large number of attributes may cause problems
 - many anomaly detection approaches use distance measures
 - those get problematic for very high-dimensional spaces
 - meaningless attributes obscure the distances
- Practical hint:
 - perform dimensionality reduction first
 - i.e., feature subset selection
 - note: anomaly detection is unsupervised
 - thus, supervised selection (like forward/backward selection) does not work

- Recap: attributes may have different scales
 - Hence, different attributes may have different contributions to outlier scores
- Compare the following two datasets:
- Baden-Württemberg
 - population = 10,569,111
 - area = 35,751.65 km²
- Bavaria

. . .

•

- population = 12,519,571
- area = 70,549.44 km²

- Baden-Württemberg
 - population = 10,569,111
 - area = 35,751,650,000 m²
- Bavaria
 - population = 12,519,571
 - area = 70,549,440,000 m²

- Baden-Württemberg
 - population = 10,569,111
 - area = 35,751.65 km²
- Bavaria

. . .

٠

- population = 12,519,571
- area = 70,549.44 km²

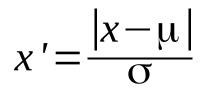
- Baden-Württemberg
 - population = 10,569,111
 - area = 35,751,650,000 m²
- Bavaria

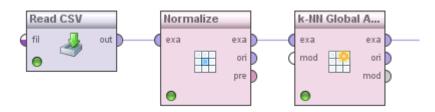
. . .

- population = 12,519,571
- area = 70,549,440,000 m²

- In the second set, outliers in the population are unlikely to be discovered
 - Even if we change the population of Bavaria by a factor of 100, the Euclidean distance does not change much
- Thus, outliers in the population are *masked* by the area attribute

- Solution:
 - Normalization!
- Advised:
 - z-Transformation
 - More robust w.r.t. outliers than simple projection to [0;1]



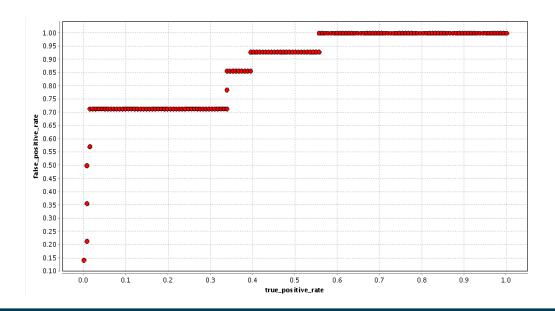


Evaluation Measures

- Anomaly Detection is an *unsupervised* task
- Evaluation: usually on a labeled subsample
- Evaluation Measures:
 - F-measure on outliers
 - Area under ROC curve

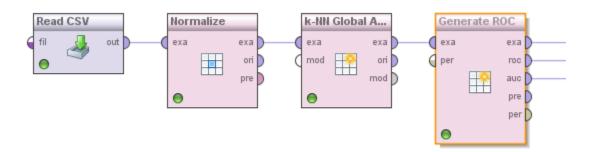
Evaluation Measures

- Anomaly Detection is an *unsupervised* task
- Evaluation: usually on a labeled subsample
 - Note: no splitting into training and test data!
- Evaluation Measures:
 - F-measure on outliers
 - Area under ROC curve
 - Plots false positives against true positives



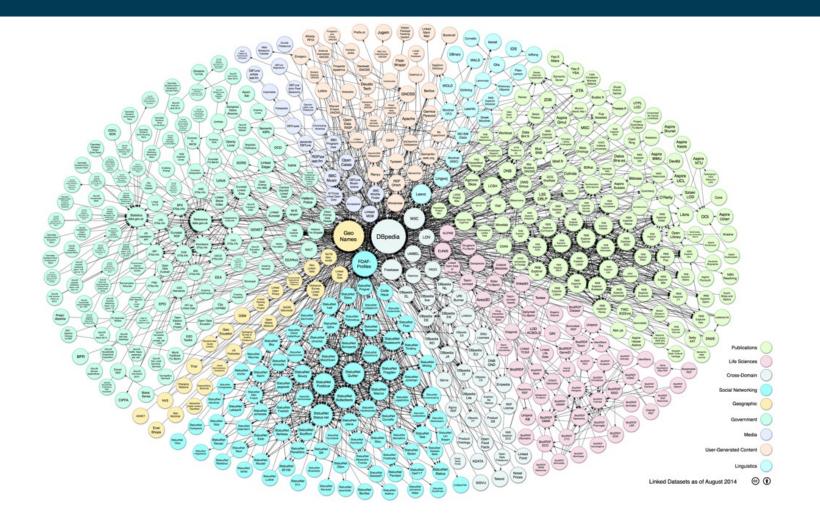
Evaluation Measures

- Anomaly Detection is an *unsupervised* task
- Evaluation: usually on a labeled subsample
 - Note: no splitting into training and test data!
- Evaluation Measures:
 - F-measure on outliers
 - Area under ROC curve
 - Plots false positives against true positives



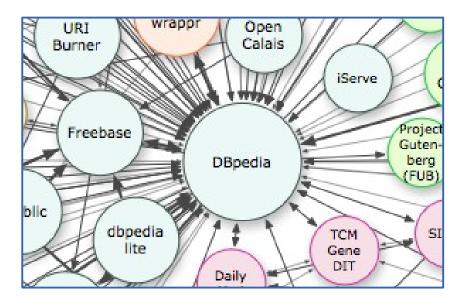
Semi-Supervised Anomaly Detection

- All approaches discussed so far are unsupervised
 - they run fully automatic
 - without human intelligence
- Semi-supervised anomaly detection
 - experts manually label some data points as being outliers or not
 - \rightarrow anomaly detection becomes similar to a classification task
 - the class label being outlier/non-outlier
 - Challenges:
 - Outliers are scarce \rightarrow unbalanced dataset
 - Outliers are not a class



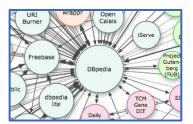
Linking Open Data cloud diagram, http://lod-cloud.net/

- Cross domain knowledge on millions of entities
- 500 million triples
- Linked to another 100 datasets
 - The most strongly linked data set in LOD

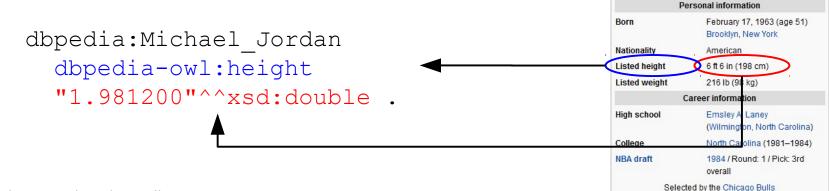


Linking Open Data cloud diagram, http://lod-cloud.net/

Motivation



- DBpedia
 - extracts data from infoboxes in Wikipedia
 - based on crowd-sourced mappings to an ontology
- Example
 - Wikipedia page on Michael Jordan



Dominik Wienand, Heiko Paulheim: Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014

Michael Jordan

Michael Jordan in 2006

No. 23, 45, 12^[a] Shooting guard

1984-2003

Pro playing career

- DBpedia is based on heuristic extraction
- Several things can go wrong
 - wrong data in Wikipedia
 - unexpected number/date formats
 - errors in the extraction code

- ...

• Can we use anomaly detection to remedy the problem?

Dominik Wienand, Heiko Paulheim: Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014

Motivation

Challenge

- ...

- Wikipedia is made for humans, not machines
- Input format in Wikipedia is not constrained
- The following are all valid representations of the same height value (and perfectly understandable by humans)
 - 6 ft 6 in, 6ft 6in, 6'6'', 6'6", 6´6´´,...
 - 1.98m, 1,98m, 1m 98, 1m 98cm, 198cm, 198 cm, ...
 - 6 ft 6 in (198 cm), 6ft 6in (1.98m), 6'6'' (1.98 m),...
 - 6 ft 6 in^[1], 6 ft 6 in ^[citation needed], ...

Dominik Wienand, Heiko Paulheim: Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014

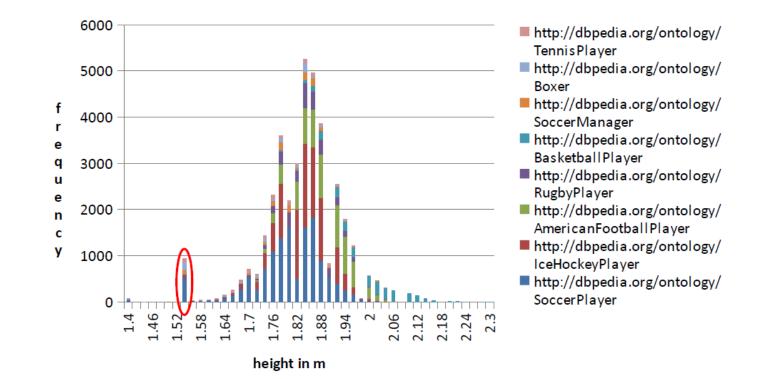
- Preprocessing: split data for different types
 - height is used for persons or buildings
 - population is used for villages, cities, countries, and continents

- ...

- Separate into single distributions
 - makes anomaly detection better
- Result
 - errors are identified at ~90% precision
 - systematic errors in the extraction code can be found

Dominik Wienand, Heiko Paulheim: Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014

• Footprint of a systematic error



Dominik Wienand, Heiko Paulheim: Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014

- Typical error sources
 - unit conversions gone wrong (e.g., imperial/metric)
 - misinterpretation of numbers
- e.g., village Semaphore in Australia
 - population: 28,322,006(all of Australia: 23,379,555!)
 - a clear outlier among villages

Dominik Wienand, Heiko Paulheim: Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014

Errors vs. Natural Outliers

- Hard task for a machine
- e.g., an adult person 58cm high
- e.g., a 7.4m high vehicle

Dominik Wienand, Heiko Paulheim: Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014

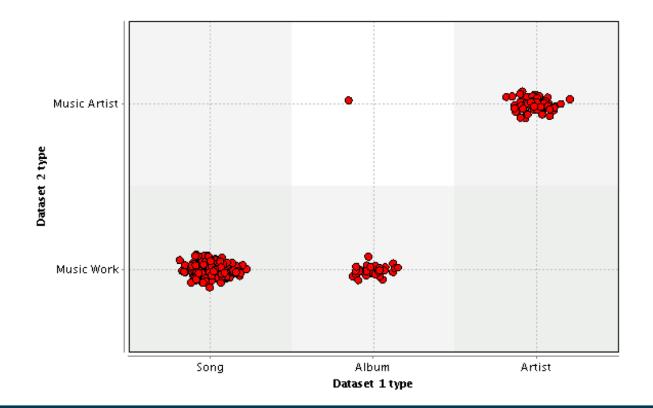
Pauline Musters

Musters next to an average man

Born	February 26, 1876				
0000	Ossendrecht, Netherlands				
Died	March 1, 1895 (aged 19)				
1000	New York City				
Cause of	Combination of pneumonia and				
death	meningitis				
Known for	Shortest verified woman ever				
Height	23 inches (58 cm)				

Practical Application: Link Debugging

- Links between datasets are often created using heuristics
 - e.g., linking things of equal name



Wrap-up

- Anomaly Detection is useful for
 - data preprocessing and cleansing
 - finding suspect data (e.g., network intrusion, credit card fraud)
- Methods
 - visual/manual
 - statistics based
 - model based (clustering, 1-class SVMs)

Questions?

