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Introduction

 “Wisdom of the crowds”

— a single individual cannot know everything

— but together, a group of individuals knows a lot

* Examples

L X )

Wikipedia

: )
— Crowdsourcing wwf’**’
. s i"quPEmPL
— Prediction 2

Fajﬁmmprﬂs Tk G T A ||<F'ED|.F!| “\_\

SPF!RK PLUG
oo (;

e el J_.r..,m TL T, ‘J 1

P = W v

“fooo anﬂ: whTH l‘tu«s!‘l?‘:

~

—|| MIKE1979: T REPLACED MY SPRRK, PLUGS AND

S| ME: THE SPRRK GAP MIGHT BE OFF.
-=|| ME: YOU CAM CHECK. WITH. A FEELER GRAUGE.
== || MIKEI979: WHAT SHOUWLD THE GAP BE?
HiToRt] ME USUALLY BETWEEN 0.035" AND 0.070°
= =N WE: BUT IT DEPENDS ON THE EMGINE.

POk MY AR 1S RUNNING WEIRD.

e s o]

"

—_——

|
|

o G

|

0 O O/ERRoR W+

« > C [

.-M.-‘Slv-—i— P el

]
TE— |

e \WIKIPEDIA HAS A PROBLEM

TRY WAITING A FEW MINUTES AND RELOADING

1K PEDIA (CANT CONTRCT THE DFTABASE SERVER:
- oW ERROR, (10.0.0.247))

ODO_Messace wim Mike 1979

MIKE 1979

ME: WJHAT
WE: HELRP

ME: WHAT Is A CART?

T REPLACED MY SPRRK, PGS AND
NDW) MY AR 15 RUNMING WEIRD.

1S A SPARK PLUG 77

—

_J

—]

WHEN WIKIPEDIA HAS A SERVER OUTAGE, MY APPARENT IQ DROPS BY ABOUT 30 FUINTS.
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Introduction
e

* “SPIEGEL Wahlwette” (election bet) 2013

— readers of SPIEGEL Online were asked to guess
the federal election results

— average across all participants:
* only a few percentage points error for final result
* conservative-liberal coalition cannot continue

Aktuelle Prognosen

Schnitt aller abgegebenen Wahlwetten PLZ

Union - 38,0
SPD - 26,6
Linke I 7,2
Griine . 14,2

Stand: 14.08.2013

https://Ih6.googleusercontent.com/-U9DXTTcT-PM/UgsdSzdV3JI/AAAAAAAAFKs/GsRydeldasg/w800-h800/
Bildschirmfoto+2013-08-144+um+07.56.01.png
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Introduction
e

* “Who wants to be a Millionaire?”

* Analysis by Franzen and Pointner (2009):
— "ask the audience” gives a correct majority result in 89% of all cases

— “telephone expert”: only 54%
$2,000

What is the native country of filr
Almodovar?

Argentina

Spain

http://hugapanda.com/wp-content/uploads/2010/05/who-wants-to-be-a-millionaire-2010.jpg
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Ensembles
S e

* So far, we have addressed a learning problem like this:

Rule Induction
@ ot D ( tra ~ mad :}
0 “‘u'; exa :'|
a

* Ensembles:
— wisdom of the crowds for learning operators

— instead of asking a single learner,
combine the predictions of different learners
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Ensembles
S e

* Prerequisites for ensembles: accuracy and diversity
— different learning operators can address a problem (accuracy)
— different learning operators make different mistakes (diversity)

* That means:
— predictions on a new example may differ
— if one learner is wrong, others may be right

* Ensemble learning:
— use various base learners
— combine their results in a single prediction
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Voting

* The most straight forward approach
— classification: use most-predicted label
— regression: use average of predictions

* We have already seen this
— k-nearest neighbors

— each neighbor can be regarded
as an individual classifier
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Voting in RapidMiner

* Vote operator uses different base learners

Retrieve Sonar
w ot tra l:'_‘l miod D

(3] Lo # IEJ | Apply Model | | W&

per :1
Rule Induction..] e :'
tra :I {: tra rmod :} ( bas
Q) |
tra :I 7 exa :} ( bas
tra [} (5] {] bas
tra [} (] bas
Haive Bayes
{: tra (—\I rmod :}
U exa :}
o
k-HH
{: tra m rmod :}
U exd ::I
o
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Voting in RapidMiner

Accuracy in this example:
— Naive Bayes: 0.71

— Ripper: 0.71

— k-NN: 0.81
* Voting: 0.91

Retrieve Sonar
@ out [} Jta ) mod])
A
& & = Apply Model Performance
{] mod —,  lab B - per [}
Spiit Data { uni 'ul mad [} i per % exa )
{ exa par [} e @
ﬁ par [}
par [)
&
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Why does Voting Work?
-

* Suppose there are 25 base classifiers

— Each classifier has an accuracy of 0.65, i.e., error rate £=0.35
— Assume classifiers are independent

* i.e., probability that a classifier makes a mistake does not depend
on whether other classifiers made a mistake

* Note: in practice they are not independent!

* Probability that the ensemble classifier makes a wrong prediction

— The ensemble makes a wrong prediction if the majority of the classifiers
makes a wrong prediction

— The probability that 13 or more classifiers are wrong is

25

2

i=13

25
i

e'(1—¢)” '~0.06<e
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Why does Voting Work?
-

* In theory, we can lower the error infinitely 225 (25)8%1_8)25,-%0 06 <
; .

— just by adding more base learners =13

* But thatis hard in practice
— Why?

* The formula only holds for independent base learners
— ltis hard to find many truly independent base learners
— ...at a decent level of accuracy

* Recap: we need both accuracy and diversity
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Recap: Overfitting and Noise
e
Likely to overfit the data
X

]

<2
26 3 "T I <2 1T 2
_-._.:l E_'.h' = L. - = =
. i
- = 2.0 206 =3
’, ¥ 4 F}:l
(B The decision tree

0 I

X

Heiko Paulheim
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Bagging
-

* Biases in data samples may mislead classifiers
— overfitting problem
— model is overfit to single noise points

* |f we had different samples
— e.g., data sets collected at different times, in different places, ...
— ...and trained a single model on each of those data sets...
— only one model would overfit to each noise point
— voting could help address these issues

* But usually, we only have one dataset!
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Bagging
-

* Models may differ when learned on different data samples
* |dea of bagging:
— create samples by picking examples with replacement
— learn a model on each sample
— combine models
* Usually, the same base learner is used
* Samples
— differ in the subset of examples
— replacement randomly re-weights instances (see later)
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Bagging: illustration

Training Data

Modell Model2) © °® = ° = * @

Model Combiner

4

@al Model)
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Bagging: Generating Samples
S

* Generate new training sets using sampling with replacement
(bootstrap samples)

Original Data 1 2 3 4 5 6 7 8 9 10
Bagging (Round 1) 7 8 10 2 5 10 10 5 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

— some examples may appear in more than one set
— some examples will appear more than once in a set

— for each set of size n, the probability that a given example appears in it
IS n
Pr(xeD)=1—(1-L) -0.6322
n
* i.e., on average, less than 2/3 of the examples appear in any single
bootstrap sample
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Bagging in RapidMiner

Bagging operator uses a base learner

Number and ratio of samples can be specified

Retrieve Sonar Performance
@ out [} { tra ~ mod [ { 1ab @ per [
o g exald i per \_-f‘,éj exa [
@ &l @
Split Data Apply Model
{] exa par [} { mod . lab K
'ﬁ |Jar:| f‘ unl -.'i.l- rmod :I
par ) )
E —_
;) Bagging
sample ratio |El.5 |
iterations |‘II:I |

average confidences

|:| use local random seed
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Bagging in RapidMiner

* Accuracy in this example:
— Ripper alone: 0.71

— Ripper with bagging (10x0.5): 0.86

Retrieve Sonar Performance
out [} { tra mod [ a0 - per [
O @ (: exa ) ] per % exa [
@ ) @
Split Data Apply Model
{ exa par [ {] mod —,  lab [
ﬁ par [} ¢ unl I'ul mod [}
par o
o]
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Bagging in RapidMiner
e
* 10 different rule models are learned:

») MetaModel Annotations
(]
=]

Elajgging (Bagging) ») Text View ( ) Annotations

e Madel 2 (Rule Induction)
ff Maodel 3 (Rule Induction)

' Model 4 (Rule Induction) RuleModel

ff Maodel 5 (Rule Induction)

MGG G

1+

E“S Model 6 (Rule Induction) | if attribute 12 < 0.168 and attribute 25 > 0.553 then Rock (28 / 0)
& Model 7 (Rule Induction) ;¢ ttripute 28 > 0.854 then Mine (2 / 23)

y Model 8 (Rule Induction) ] ] - ) )
%)MDHHQERMEHMummn} if attribute 31 = 0.443 and attribute 30 > 0.246 then Mine (0 f 18)
[}

Model 10 (Rule Inducticn)| if attribute 4 =< 0.061 then Rock (16 / 0)
else Mine (2 / 5)

G

correct: BB out of 92 training examples.
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Variant of Bagging: Randomization
S

* Randomize the learning algorithm instead of the input data
* Some algorithms already have a random component
— e.g. initial weights in neural net

* Most algorithms can be randomized, e.g., greedy algorithms:

— Pick from the N best options at random instead of always picking the
best options

— e.g.: test selection in decision trees or rule learning

* Can be combined with bagging
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Random Forests
e

* A variation of bagging with decision trees

* Train a number of individual decision trees
— each on a random subset of examples

— only analyze a random subset of attributes for each split
(Recap: classic DT learners analyze all attributes at each split)

— usually, the individual trees are left unpruned

|::] tra ™y rmioid D
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Paradigm Shift: Many Simple Learners
S

* So far, we have looked at learners that are as good as possible

| attribute_12 |

* Bagging allows a different approach

— several simple models
instead of a single complex one

— Analogy: the SPIEGEL poll
(mostly no political scientists,
nevertheless: accurate results) = 0.071 < 0.071

— extreme case: using only decision stumps

* Decision stumps:

— decision trees with only one node b
Mine Rock
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Bagging with Weighted Voting
-

* Some learners provide confidence values
— e.g., decision tree learners
— e.g., Naive Bayes

*  Weighted voting
— use those confidence values for weighting the votes

— some models may be rather sure about an example,
while others may be indifferent
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Weighted Voting with Decision Stumps

* Weights: confidence values | attribute_12 |

in each leaf
high confidence
=0.071 = 0.071 that it is rock

lower confidence (weight = 1.0)
that it is mine

(weight = 0.6) \

¥
Mine Rock
B ] —
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Intermediate Recap
-

* What we've seen so far
— ensembles often perform better than single base learners
— simple approach: voting, bagging

* More complex approaches coming up
— Boosting
— Stacking

* Boosting requires learning with weighted instances
— we'll have a closer look at that problem first
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Intermezzo: Learning with Weighted Instances
-

* So far, we have looked at learning problems
where each example is equally important

* Weighted instances
— assign each instance a weight (think: importance)
— getting a high-weighted instance wrong is more expensive
— accuracy etc. can be adapted

* Example:
— data collected from different sources (e.g., sensors)

— sources are not equally reliable
* we want to assign more weight to the data from reliable sources
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Intermezzo: Learning with Weighted Instances
-

* Two possible strategies of dealing with weighted instances

* Changing the learning algorithm

— e.g., decision trees, rule learners: adapt splitting/rule growing heuristics,
example on following slides

* Duplicating instances
— an instance with weight n is copied n times
— simple method that can be used on all learning algorithms
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Recap: Accuracy
e

Most frequently used metrics:

TP+TN
ITP+TN+ FP+ FN

Accuracy =

Error Rate =1— Accuracy
PREDICTED CLASS

Class=Yes | Class=No

ACTUAL
CLASS | Class=Yes TP EN

Class=No FP TN
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Accuracy with Weights
-

* Definition of accuracy

TP+TN
ITP+TN+ FP+ FN

Accuracy =

*  Without weights, TP, FP etc. are counts of instances

*  With weights, they are sums of their weights
— classic TP, FP etc. are the special case where all weights are 1
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Adapting Algorithms: Decision Trees
-

* Recap: Gini index as splitting criterion
GINI(1)=1-> [p(j DT
J

* The probabilities are obtained by counting examples
— Again, we can sum up weights instead

* The same works for rule-based classifiers and their heuristics
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Adapting Algorithms: k-NN

« Standard approach
— use average of neighbor predictions

* With weighted instances
— weighted average
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Back to Ensembles: Boosting
-

* Idea of boosting
— train a set of classifiers, one after another

— later classifiers focus on examples that were misclassified by earlier
classifiers

— weight the predictions of the classifiers with their error

* Realization
— perform multiple iterations
* each time using different example weights
— weight update between iterations
* increase the weight of incorrectly classified examples

* so they become more important in the next iterations
(misclassification errors for these examples count more heavily)

— combine results of all iterations
* weighted by their respective error measures
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Boosting — Algorithm AdaBoost.M1
S

1. initialize example weights w;=1/N (i=1..N)

2. form=1tot¢t //'t ... number of iterations
a) learn a classifier C,, using the current example weights

b) compute a weighted _ D w,of all incorrectly classified e,
error estimate = N

w;, | =1 because weights
are normalized

i=1

c) if err >0.5 — exit loop

- . 1, e,
d) compute a classifier weight c.,== In( gy ) update weights so

e) for all correctly classified examples ¢; : W, w, e *  that sum of
correctly classified
examples equals

g) normalize the weights w; so that they sum to 1 sum of incorrectly
classified examples

f) for all incorrectly classified examples e;: w,«—w,e"" <

3. for each test example
a) try all classifiers C,,

b) predict the class that receives the highest sum of weights a ,,

03/19/18 Heiko Paulheim




lllustration of the Weights
e

« Classifier Weights o,

— differences near 0 or 1
are emphasized

* Good classifier
— highly positive weight ~
* Bad classifier
— highly negative weight

(weight)
[ogl i 1-x050)
0
|

 (Classifier with error 0.5 ]
— weight O

— this is equal to guessing|! | . . . . .
0.0 02 04 06 0.8 1.0

(error)
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lllustration of the Weights

* Example Weights
— multiplier for correct and incorrect examples
— depending on error

* Later iterations need to focus =

on examples that are /
correct 85
oo — rect examples

— Incorrectly classified by a
good classifier

Itiplier
4]
|

— Correctly classified by a
bad classifier

weight mu
4
|

oo nz 0.4 0.6 0.8 1.0

=1
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Boosting — Error Rate Example
S

* boosting of decision stumps on simulated data

el -
o
sSingle Stump
e A
o
e =
= 400 Mode Tree
o
€1
T e
"—-—_-__-_.
= 4
T ! T ! T
0 100 200 300 400

Boosting terations

from Hastie, Tibshirani, Friedman: The Elements of Statistical Learning, Springer Verlag 2001

03/19/18 Heiko Paulheim




Toy Example
-

(taken from Verma & Thrun, Slides to CALD Course CMU 15-781,
Machine Learning, Fall 2000)
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Round 1

hy Dy
e +
® @~ + 4+
+|  — + -
+ —| |+ -
€1=0.30
0t=0.42
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Round 2

03/19/18

Heiko Paulheim

Ds
+ -+ +
+ + —|— _|_
_|_ _
— @,
€5 =021
(1'.2=0.65




Round 3
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Heiko Paulheim

+ +
+ 4 o + +
4+ = _ —
_|_ —
€2=0.14
0t3=0.92




Final Hypothesis
S

H_ =sign| 0.42 + 0.65 +0.92
final
+
+ 4+
— _I_ —_— L
+ —
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Hypothesis Space of Ensembles
S

* Each learner has a hypothesis space
— e.g., decision stumps: a linear separation of the dataset

* The hypothesis space of an ensemble
— can be larger than that of its base learners

* Example: bagging with decision stumps
— different stumps — different linear separations
— resulting hypothesis space also allows polygon separations
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Boosting in RapidMiner

Just like voting and bagging

Retrieve Sonar AdaBoost Performance
@ out :'l {: tra l:'_"l rmiod jl {: lab U_? |:E-|':|
'S ',q-'_"“ exa _'} {: per 6 exa :}
O ) 0
Spiit Data Apply Model
(] exa par [ {] mod ) lab [
:ﬁ par [ ¢ uni w  mod[)
par ) 0
&
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Experimental Results on Ensembles
-

* Ensembles have been used to improve generalization accuracy
on a wide variety of problems

* On average, Boosting provides a larger increase in accuracy than Bagging
— Boosting on rare occasions can degrade accuracy

— Bagging more consistently provides a modest improvement

* Boosting is particularly subject to over-fitting
when there is significant noise in the training data

— subsequent learners over-focus on noise points

(Freund & Schapire, 1996; Quinlan, 1996)
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Back to Combining Predictions

e
* Voting
— each ensemble member votes for one of the classes
— predict the class with the highest number of vote (e.g., bagging)

* Weighted Voting
— make a weighted sum of the votes of the ensemble members

— weights typically depend Mannheim
RapidMiner Toolbox

* on the classifier's confidence in its prediction
(e.g., the estimated probability of the predicted class)

* on error estimates of the classifier (e.g., boosting)
« Stacking

— Why not use a classifier for making the final decision?

— training material are the class labels of the training data and the
(cross-validated) predictions of the ensemble members
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Stacking
-

* Basic ldea:

— learn a function that combines the predictions of the individual classifiers
* Algorithm:
— train n different classifiers C;...C, (the base classifiers)

— obtain predictions of the classifiers for the training examples
— form a new data set (the meta data)

* classes
— the same as the original dataset
 attributes
— one attribute for each base classifier
— value is the prediction of this classifier on the example

— train a separate classifier M (the meta classifier)
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Stacking (2)
S

* Example: * Using a stacked
classifier:
Attributes Class v O Cha.
11 Tin, t ot i — try each of the
T2 T2n, f [t ; classifiers Cy...C,
s S R " — form a feature
dicti ed vector consisting
training set predictions ol the of their predictions
classfiers _
— submit these
feature vectors
(;1 (’;2 (,»},_, f:.l:i'sﬂ to the meta
' ' ' lassifier M
P , f classifie
for t t
training set for stacking
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Stacking and Overfitting
S

* Consider a dumb base learner D, which works as follows:
— during training: store each training example
— during classification: if example is stored, return its class

otherwise: return a random prediction do you know that
 Classifier?

* If D is used along with a number of classifiers in stacking,
what will the meta classifier look like?

— D is perfect on the training set
— so the meta classifier will say: always use D's result

Implementation in
RapidMiner :-(
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Stacking and Overfitting

* Solution 1: split dataset (e.g., 50/50)
— use one portion for training the base classifiers
— use other portion to train meta model

* Solution 2: cross-validate base classifiers X-Stacking in Mannheim
— train classifier on 90% of training data ‘ RapidMiner Toolbox jJ

— create features for the remaining 10% on that classifier
— repeat 10 times

* The second solution is better in most cases
— uses whole dataset for meta learner
— uses 90% of the dataset for base learners
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Stacking in RapidMiner
e

* Looks familiar again
— we need a set of base learners (like for voting)
— and a learner for the stacking model

| Stacking |  ——————— Performance |

Haive Bayes Haive Bayes (2}

( tra ™y rmiod bas sta :I ( tra P rmiad :) C sta
Yy exa bas Y oeal

has &)

bas

tra

tra

TR

tra

8

tra

LT
e W e W Y

Rule Induction

tra rmiod
@« o
7 ] exa

W T

=)

k-HH

tra rmad
@ )
|7 | exa

AR

<)
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Stacking in RapidMiner

Accuracy in this experiment:
— Naive Bayes: 0.71

— k-NN: 0.81

— Ripper: 0.71

« Stacked model: 0.86

Retrieve Sonar Stacking Performance
w out [ { tr ﬁ mod { 1ab U;F per [}
e ¢ per ‘éj exa [
""" 8]
Split Data Apply Model
{] exa par [} (] mod lab [
| |
ﬁ par :I {: unl -U mod ::I
par ) o
o
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Stacking
-

* Variant: also keep the original attributes

* Predictions of base learners are additional attributes
for the stacking predictor

— allows the identification of “blind spots” of individual base learners

* Variant: stacking with confidence values

— if learners output confidence values,
those can be used by the stacking learner

— often further improves the results
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The Classifier Selection Problem
e

* (Question: decision trees or rule learner — which one is better?
* Two corner cases — recap from Data Mining 1

Accuracy: Accuracy:

Baseline: 0.89
Decision Tree: 1.0
Rule Learner: 0.89

Baseline: 0.45
Decision Tree: 0.45
Rule Learner: 0.7

* Voting: 0.65 * Voting: 0.89
* Weighted Voting: 0.7 * Weighted Voting: 1.0
 Stacking: 0.83 * Stacking: 1.0
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Regression Ensembles

* Most ensemble methods also work for regression
— voting: use average
— bagging: use average or weighted average
— stacking: learn regression model as stacking model!
— boosting: the regression variant is called additive regression

Retrieve Poly... Performance
@ out [} { 1ab ';'_? per [
a i per _é) exa )
e
Split Data Apply Model
{] exa par [ {] mod —,  lab K
'ﬁ par [ ¢ unl W mod[)
par [ 'S
o]
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Additive Regression
S

* Boosting can be seen as a greedy algorithm for fitting additive
models

* Same kind of algorithm for numeric prediction:
— Build standard regression model
— Gather residuals, learn model predicting residuals, and repeat
* Given a prediction p(x), residual = (x-p(x))?
* To predict, simply sum up weighted individual predictions from all

models
Additive Reqgr...
{: tra Yy rmod :I
Y o exal)
0 e
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Additive Regression w/ Linear Regression
S

* What happens if we use Linear Regression
inside of Additive Regression?

« The first iteration learns a linear regression model Ir,
— By minimizing the sum of squared errors
« The second iteration aims at learning a LR Ir, model for
— X' = (X-Ir (x))?
— Since (x-Ir,(x))? is already minimal, Ir, cannot improve upon this

* Hence, the subsequent linear models
will always be a constant O
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Additive Regression w/ Linear Regression
S

* First regression model:
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Additive Regression w/ Linear Regression
S

* Second (and third, fourth, ...) regression model:
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Additive Regression
S

% Result Overview f-,__,f’ AdditiveRegression (Additive Regression)

&) MetaModel Annotations
[

) .?gditiueRegressinn (Additive Regression) ) Tapja iew () Text View: () Annotations

L4
f-._.,-’ Model 2 (Linear Regression)
f-._.,-’ Model 3 (Linesr Regression)

f-._.,:’ Model 4 (Linear Regressicn) LlﬂearREgrESSIDﬂ
f-._.,-j Model 5 (Linear Regression)
f-._.,-’ Model 6 (Linear Regression) 65.578 * attl

P i ;
(I"‘, Model 7 EL!I‘IEE[ REE[EEE-!E}I‘I} + 4.504 % att3
 § Model 8 (Linesr Regression)

f-._.,-’ Model 9 (Linear Regression) 2.624 * att4
f-._,-’ Model 10 (Linear Regressicn) + 2.0209 * atts

27.281

% Fesult Overview f-,__,-" AdditiveReagression (Additive Regression)

&) MetaModel Annotations

) AdditiveRegression (Additive Regression) Table View (8)Text View: () Annotations

& Model 1 (Linear Regressicn) | T toremeeeees

.:';

GG G BT G e G

Model 3 (Linear Regression) . .
Model 4 (Linear Regression) LlﬂEﬂl’REgl‘ESSlﬂﬂ
Model 5 (Linear Regression)

Model 6 (Linear Regression) - 0.000

Model 7 (Linear Regression)

Model 8 (Linear Regression)

Model 9 (Linear Regressicn)

Model 10 (Lingsr Regression)

e

* Bottom line: additive and linear regression are not a good match
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Example 1: One-dimensional, Non-linear

tttttttt

Linear Regression: RMSE = 0.199
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~ Isotonic Regression: RMSE = 0.171 Additive Isotonic Regression:
RMSE = 0.073
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Example 2: Multidimensional, Non-Linear
z=10x?-y?
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XGBoost
e

* Currently wins most Kaggle competitions etc.
* Additive Regression w/ Regression Trees

* Regularization
— Respect size of trees
— Larger trees: more likely to overfit!
* Introduce penalty for tree size
— Overcomes the problem of overfitting in boosting
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Intermediate Recap
-

* Ensemble methods
— outperform base learners
— Help minimizing shortcomings of single learners/models
— simple and complex methods for method combination

* Reasons for performance improvements
— individual errors of single learners can be “outvoted”
— more complex hypothesis space
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Ensembles for Other Problems
e

* There are ensembles also for...

* ...clustering (Vega-Pons and Ruiz-Shulkloper, 2011)

— trying to unify different clusterings

— using a consensus function mapping different clusterings to each other
* ...outlier detection (Zimek et al., 2014)

— unifying outlier scores of different approaches

— requires score normalization and/or rank aggregation

* efc.
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Learning with Costs
e

* Most classifiers aim at reducing the number of errors
— all errors are regarded as being equally important

* In reality, misclassification costs may differ

* Consider a warning system in an airplane
— issue a warning if stall is likely to occur
— based on a classifier using different sensor data

— wrong warnings may be ignored by the pilot
— missing warnings may cause the plane to crash

* Here, we have different costs for
— actual: true, predicted: false — very expensive
— actual: false, predicted true — not so expensive

http://i.telegraph.co.uk/multimedia/archive/01419/plane_1419831c.jpg
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The MetaCost Algorithm
e

* Form multiple bootstrap replicates of the training set
— Learn a classifier on each training set

— i.e., perform bagging
* Estimate each class’s probability for each example

— by the fraction of votes that it receives from the ensemble
* Use conditional risk equation to relabel each training example

— with the estimated optimal class
* Reapply the classifier to the relabeled training set
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MetaCost
e

* Conditional risk R(i|x) is the expected cost of predicting that x
belongs to class i

— R(ilx) = 2P(Ix)C(i, j)
— C(i,j) are the classification costs
(classify an example of class j as class i)

— P(j|x) are obtained by running the bagged classifiers

* The goal of MetaCost procedure is: to relabel the training examples
with their “optimal” classes

— |.e., those with lowest risk
* Then, re-run the classifier to build a final model

— the resulting classifier will be defensive,
l.e., make low-risk predictions

— in the end, the costs are minimized
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MetaCost
e

8/10 classifiers .
° I t
Pilot stall alarm example arecorrect] predicted
— x,: stall, P(stalllx,) = 0.8 = stall no stall
— X, no, P(no|x,) = 0.9 e 0 10
(®)
* Risk values: =0 g | nostal 1 L

— R(stall|x,) = P(stall|x1)*C(staII,€taII) + P(no|x,)*C(stall,no) = 0.2*1 = 0.2

— R(no|x,) = P(stall|x,)*C(no,stall) + P(no|x,)*C(no,no) = 0.8*10 =8

— R(stall|x,) = P(stall|x,)*C(stall,stall) + P(no|x,)*C(stall,no) = 0.9*1 = 0.9

— R(no|x,) = P(stall|x,)*C(no,stall) + P(no|x,)*C(no,no) = 0.1*10 = 1
* Since 0.9<1 —

— X, is relabeled to “stall”

http://i.telegraph.co.uk/multimedia/archive/01419/plane_1419831c.jpg
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MetaCost vs. Balancing
S

* Recap balancing:
— in an unbalanced dataset, there is a bias towards the larger class
— balancing the dataset helps building more meaningful models

* MetaCost:

— incidentally unbalance the dataset,
labeling more instances with the “cheap” class

— make the learner have a bias towards the “cheap” class
* i.e., expensive mis-classifications are avoided
— in the end, the overall cost is reduced

* In the example:

— there will be more false alarms (stall warning, but actually no stall)
— the risk of not issuing a warning is reduced
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MetaCost in RapidMiner

Hint: use the performance (cost) operator for evaluation

Retrieve Sonar MetaCost

@ out :} C tra ﬁ mod

0

{] ea o e:aD
% |JEI'D
L

Spiit Data

Apply Model
( exd pal':]l f_ rnod f_“- labs :]l
‘? par ::I ( unl .U rniaid ::I
par D o
e

. Edit Parameter Matrbc cost matrix

| Edit Parameter Matrix: cost matrix

? The matrix of missclassification costs. Columns and Rows in order of internal mapping.

Cost Matrix
Predicted Class 1 0.0

Predicted Class 2 2.0

True Class 1 True Class 2

1.0
0.0

(B rownse] (Bovmsse ] (o) (|
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MetaCost in RapidMiner

Experiment: set misclassification cost
Rock — Mine = 2; Mine — Rock = 1

Non-cost sensitive decision tree:
— misclassification cost = 0.33
* MetaCost with decision tree:

— misclassification cost = 0.24

Retrieve Sonar MetaCost

@ out :} C tra |"'H"'| maod

0

{] ea o e:aD
?Kj |JEI'D
L

Spiit Data

Apply Model
( exd par:]l f_ rnod —~ labs :]l
? par [} Qui g mod
par [ o]
o
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Another Example for Cost-Sensitive Prediction
e

* Predicting ordinal attributes
— e.g., very low, low, medium, high, very high

* A standard classifier just looks at correct/incorrect classifications
— i.e., for a very low instance, predicting low or very high is equally bad

* |In practice, predicting low for a very low instance is much better
than predicting very high

* Solution: assign costs C(actual,predicted) to predictions
— C(very low, very low) = 0, C(very low, low) = 1, C(very low, medium) = 2
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Wrap-up
e

* Ensemble methods in general

— build a strong model from several weak ones
* Ingredients

— base learners

— a combination method

* Variants
— Voting
— Bagging (based on sampling)
— Boosting (based on reweighting instances)
— Stacking (use learner for combination)

* Also used for cost-sensitive predictions (MetaCost)

03/19/18 Heiko Paulheim




Questions?

s

&
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