 MANNHEIM

Data Mining Il
Ensembles

Heiko Paulheim

Introduction

 “Wisdom of the crowds”

— a single individual cannot know everything

— but together, a group of individuals knows a lot

* Examples

L X)

Wikipedia

:)
— Crowdsourcing wwf’**’
. s i"quPEmPL
— Prediction 2

Fajﬁmmprﬂs Tk G T A ||<F'ED|.F!| “_\

SPF!RK PLUG
oo (;

e el J_.r..,m TL T, ‘J 1

P = W v

“fooo anﬂ: whTH l‘tu«s!‘l?‘:

~

—|| MIKE1979: T REPLACED MY SPRRK, PLUGS AND

S| ME: THE SPRRK GAP MIGHT BE OFF.
-=|| ME: YOU CAM CHECK. WITH. A FEELER GRAUGE.
== || MIKEI979: WHAT SHOUWLD THE GAP BE?
HiToRt] ME USUALLY BETWEEN 0.035" AND 0.070°
= =N WE: BUT IT DEPENDS ON THE EMGINE.

POk MY AR 1S RUNNING WEIRD.

e s o]

"

—_——

|
|

o G

|

0 O O/ERRoR W+

« > C [

.-M.-‘Slv-—i— P el

]
TE— |

e \WIKIPEDIA HAS A PROBLEM

TRY WAITING A FEW MINUTES AND RELOADING

1K PEDIA (CANT CONTRCT THE DFTABASE SERVER:
- oW ERROR, (10.0.0.247))

ODO_Messace wim Mike 1979

MIKE 1979

ME: WJHAT
WE: HELRP

ME: WHAT Is A CART?

T REPLACED MY SPRRK, PGS AND
NDW) MY AR 15 RUNMING WEIRD.

1S A SPARK PLUG 77

—

_J

—]

WHEN WIKIPEDIA HAS A SERVER OUTAGE, MY APPARENT IQ DROPS BY ABOUT 30 FUINTS.

03/19/18

http://xkcd.com/903/

Heiko Paulheim

Introduction
e

* “SPIEGEL Wahlwette” (election bet) 2013

— readers of SPIEGEL Online were asked to guess
the federal election results

— average across all participants:
* only a few percentage points error for final result
* conservative-liberal coalition cannot continue

Aktuelle Prognosen

Schnitt aller abgegebenen Wahlwetten PLZ

Union - 38,0
SPD - 26,6
Linke I 7,2
Griine . 14,2

Stand: 14.08.2013

https://Ih6.googleusercontent.com/-U9DXTTcT-PM/UgsdSzdV3JI/AAAAAAAAFKs/GsRydeldasg/w800-h800/
Bildschirmfoto+2013-08-144+um+07.56.01.png

03/19/18 Heiko Paulheim

Introduction
e

* “Who wants to be a Millionaire?”

* Analysis by Franzen and Pointner (2009):
— "ask the audience” gives a correct majority result in 89% of all cases

— “telephone expert”: only 54%
$2,000

What is the native country of filr
Almodovar?

Argentina

Spain

http://hugapanda.com/wp-content/uploads/2010/05/who-wants-to-be-a-millionaire-2010.jpg

03/19/18 Heiko Paulheim

Ensembles
S e

* So far, we have addressed a learning problem like this:

Rule Induction
@ ot D (tra ~ mad :}
0 “‘u'; exa :'|
a

* Ensembles:
— wisdom of the crowds for learning operators

— instead of asking a single learner,
combine the predictions of different learners

03/19/18 Heiko Paulheim

Ensembles
S e

* Prerequisites for ensembles: accuracy and diversity
— different learning operators can address a problem (accuracy)
— different learning operators make different mistakes (diversity)

* That means:
— predictions on a new example may differ
— if one learner is wrong, others may be right

* Ensemble learning:
— use various base learners
— combine their results in a single prediction

03/19/18 Heiko Paulheim

Voting

* The most straight forward approach
— classification: use most-predicted label
— regression: use average of predictions

* We have already seen this
— k-nearest neighbors

— each neighbor can be regarded
as an individual classifier

03/19/18 Heiko Paulheim

Voting in RapidMiner

* Vote operator uses different base learners

Retrieve Sonar
w ot tra l:'_‘l miod D

(3] Lo # IEJ | Apply Model | | W&

per :1
Rule Induction..] e :'
tra :I {: tra rmod :} (bas
Q) |
tra :I 7 exa :} (bas
tra [} (5] {] bas
tra [} (] bas
Haive Bayes
{: tra (—\I rmod :}
U exa :}
o
k-HH
{: tra m rmod :}
U exd ::I
o

03/19/18 Heiko Paulheim

Voting in RapidMiner

Accuracy in this example:
— Naive Bayes: 0.71

— Ripper: 0.71

— k-NN: 0.81
* Voting: 0.91

Retrieve Sonar
@ out [} Jta) mod])
A
& & = Apply Model Performance
{] mod —, lab B - per [}
Spiit Data { uni 'ul mad [} i per % exa)
{ exa par [} e @
ﬁ par [}
par [)
&

03/19/18 Heiko Paulheim

Why does Voting Work?
-

* Suppose there are 25 base classifiers

— Each classifier has an accuracy of 0.65, i.e., error rate £=0.35
— Assume classifiers are independent

* i.e., probability that a classifier makes a mistake does not depend
on whether other classifiers made a mistake

* Note: in practice they are not independent!

* Probability that the ensemble classifier makes a wrong prediction

— The ensemble makes a wrong prediction if the majority of the classifiers
makes a wrong prediction

— The probability that 13 or more classifiers are wrong is

25

2

i=13

25
i

e'(1—¢)” '~0.06<e

03/19/18 Heiko Paulheim

Why does Voting Work?
-

* In theory, we can lower the error infinitely 225 (25)8%1_8)25,-%0 06 <
; .

— just by adding more base learners =13

* But thatis hard in practice
— Why?

* The formula only holds for independent base learners
— ltis hard to find many truly independent base learners
— ...at a decent level of accuracy

* Recap: we need both accuracy and diversity

03/19/18 Heiko Paulheim

Recap: Overfitting and Noise
e
Likely to overfit the data
X

]

<2
26 3 "T I <2 1T 2
-..:l E_'.h' = L. - = =
. i
- = 2.0 206 =3
’, ¥ 4 F}:l
(B The decision tree

0 I

X

Heiko Paulheim

03/19/18

Bagging
-

* Biases in data samples may mislead classifiers
— overfitting problem
— model is overfit to single noise points

* |f we had different samples
— e.g., data sets collected at different times, in different places, ...
— ...and trained a single model on each of those data sets...
— only one model would overfit to each noise point
— voting could help address these issues

* But usually, we only have one dataset!

03/19/18 Heiko Paulheim

Bagging
-

* Models may differ when learned on different data samples
* |dea of bagging:
— create samples by picking examples with replacement
— learn a model on each sample
— combine models
* Usually, the same base learner is used
* Samples
— differ in the subset of examples
— replacement randomly re-weights instances (see later)

03/19/18 Heiko Paulheim

Bagging: illustration

Training Data

Modell Model2) © °® = ° = * @

Model Combiner

4

@al Model)

03/19/18 Heiko Paulheim

Bagging: Generating Samples
S

* Generate new training sets using sampling with replacement
(bootstrap samples)

Original Data 1 2 3 4 5 6 7 8 9 10
Bagging (Round 1) 7 8 10 2 5 10 10 5 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

— some examples may appear in more than one set
— some examples will appear more than once in a set

— for each set of size n, the probability that a given example appears in it
IS n
Pr(xeD)=1—(1-L) -0.6322
n
* i.e., on average, less than 2/3 of the examples appear in any single
bootstrap sample

03/19/18 Heiko Paulheim

Bagging in RapidMiner

Bagging operator uses a base learner

Number and ratio of samples can be specified

Retrieve Sonar Performance
@ out [} { tra ~ mod [{ 1ab @ per [
o g exald i per _-f‘,éj exa [
@ &l @
Split Data Apply Model
{] exa par [} { mod . lab K
'ﬁ |Jar:| f‘ unl -.'i.l- rmod :I
par))
E —_
;) Bagging
sample ratio |El.5 |
iterations |‘II:I |

average confidences

|:| use local random seed

03/19/18 Heiko Paulheim

Bagging in RapidMiner

* Accuracy in this example:
— Ripper alone: 0.71

— Ripper with bagging (10x0.5): 0.86

Retrieve Sonar Performance
out [} { tra mod [a0 - per [
O @ (: exa)] per % exa [
@) @
Split Data Apply Model
{ exa par [{] mod —, lab [
ﬁ par [} ¢ unl I'ul mod [}
par o
o]

03/19/18 Heiko Paulheim

Bagging in RapidMiner
e
* 10 different rule models are learned:

») MetaModel Annotations
(]
=]

Elajgging (Bagging) ») Text View () Annotations

e Madel 2 (Rule Induction)
ff Maodel 3 (Rule Induction)

' Model 4 (Rule Induction) RuleModel

ff Maodel 5 (Rule Induction)

MGG G

1+

E“S Model 6 (Rule Induction) | if attribute 12 < 0.168 and attribute 25 > 0.553 then Rock (28 / 0)
& Model 7 (Rule Induction) ;¢ ttripute 28 > 0.854 then Mine (2 / 23)

y Model 8 (Rule Induction)]] -))
%)MDHHQERMEHMummn} if attribute 31 = 0.443 and attribute 30 > 0.246 then Mine (0 f 18)
[}

Model 10 (Rule Inducticn)| if attribute 4 =< 0.061 then Rock (16 / 0)
else Mine (2 / 5)

G

correct: BB out of 92 training examples.

03/19/18 Heiko Paulheim

Variant of Bagging: Randomization
S

* Randomize the learning algorithm instead of the input data
* Some algorithms already have a random component
— e.g. initial weights in neural net

* Most algorithms can be randomized, e.g., greedy algorithms:

— Pick from the N best options at random instead of always picking the
best options

— e.g.: test selection in decision trees or rule learning

* Can be combined with bagging

03/19/18 Heiko Paulheim

Random Forests
e

* A variation of bagging with decision trees

* Train a number of individual decision trees
— each on a random subset of examples

— only analyze a random subset of attributes for each split
(Recap: classic DT learners analyze all attributes at each split)

— usually, the individual trees are left unpruned

|::] tra ™y rmioid D

03/19/18 Heiko Paulheim

Paradigm Shift: Many Simple Learners
S

* So far, we have looked at learners that are as good as possible

| attribute_12 |

* Bagging allows a different approach

— several simple models
instead of a single complex one

— Analogy: the SPIEGEL poll
(mostly no political scientists,
nevertheless: accurate results) = 0.071 < 0.071

— extreme case: using only decision stumps

* Decision stumps:

— decision trees with only one node b
Mine Rock

03/19/18 Heiko Paulheim

Bagging with Weighted Voting
-

* Some learners provide confidence values
— e.g., decision tree learners
— e.g., Naive Bayes

* Weighted voting
— use those confidence values for weighting the votes

— some models may be rather sure about an example,
while others may be indifferent

03/19/18 Heiko Paulheim

Weighted Voting with Decision Stumps

* Weights: confidence values | attribute_12 |

in each leaf
high confidence
=0.071 = 0.071 that it is rock

lower confidence (weight = 1.0)
that it is mine

(weight = 0.6) \

¥
Mine Rock
B] —

03/19/18 Heiko Paulheim

Intermediate Recap
-

* What we've seen so far
— ensembles often perform better than single base learners
— simple approach: voting, bagging

* More complex approaches coming up
— Boosting
— Stacking

* Boosting requires learning with weighted instances
— we'll have a closer look at that problem first

03/19/18 Heiko Paulheim

Intermezzo: Learning with Weighted Instances
-

* So far, we have looked at learning problems
where each example is equally important

* Weighted instances
— assign each instance a weight (think: importance)
— getting a high-weighted instance wrong is more expensive
— accuracy etc. can be adapted

* Example:
— data collected from different sources (e.g., sensors)

— sources are not equally reliable
* we want to assign more weight to the data from reliable sources

03/19/18 Heiko Paulheim

Intermezzo: Learning with Weighted Instances
-

* Two possible strategies of dealing with weighted instances

* Changing the learning algorithm

— e.g., decision trees, rule learners: adapt splitting/rule growing heuristics,
example on following slides

* Duplicating instances
— an instance with weight n is copied n times
— simple method that can be used on all learning algorithms

03/19/18 Heiko Paulheim

Recap: Accuracy
e

Most frequently used metrics:

TP+TN
ITP+TN+ FP+ FN

Accuracy =

Error Rate =1— Accuracy
PREDICTED CLASS

Class=Yes | Class=No

ACTUAL
CLASS | Class=Yes TP EN

Class=No FP TN

03/19/18 Heiko Paulheim

Accuracy with Weights
-

* Definition of accuracy

TP+TN
ITP+TN+ FP+ FN

Accuracy =

* Without weights, TP, FP etc. are counts of instances

* With weights, they are sums of their weights
— classic TP, FP etc. are the special case where all weights are 1

03/19/18 Heiko Paulheim

Adapting Algorithms: Decision Trees
-

* Recap: Gini index as splitting criterion
GINI(1)=1-> [p(j DT
J

* The probabilities are obtained by counting examples
— Again, we can sum up weights instead

* The same works for rule-based classifiers and their heuristics

03/19/18 Heiko Paulheim

Adapting Algorithms: k-NN

« Standard approach
— use average of neighbor predictions

* With weighted instances
— weighted average

03/19/18 Heiko Paulheim

Back to Ensembles: Boosting
-

* Idea of boosting
— train a set of classifiers, one after another

— later classifiers focus on examples that were misclassified by earlier
classifiers

— weight the predictions of the classifiers with their error

* Realization
— perform multiple iterations
* each time using different example weights
— weight update between iterations
* increase the weight of incorrectly classified examples

* so they become more important in the next iterations
(misclassification errors for these examples count more heavily)

— combine results of all iterations
* weighted by their respective error measures

03/19/18 Heiko Paulheim

Boosting — Algorithm AdaBoost.M1
S

1. initialize example weights w;=1/N (i=1..N)

2. form=1tot¢t //'t ... number of iterations
a) learn a classifier C,, using the current example weights

b) compute a weighted _ D w,of all incorrectly classified e,
error estimate = N

w;, | =1 because weights
are normalized

i=1

c) if err >0.5 — exit loop

- . 1, e,
d) compute a classifier weight c.,== In(gy) update weights so

e) for all correctly classified examples ¢; : W, w, e * that sum of
correctly classified
examples equals

g) normalize the weights w; so that they sum to 1 sum of incorrectly
classified examples

f) for all incorrectly classified examples e;: w,«—w,e"" <

3. for each test example
a) try all classifiers C,,

b) predict the class that receives the highest sum of weights a ,,

03/19/18 Heiko Paulheim

lllustration of the Weights
e

« Classifier Weights o,

— differences near 0 or 1
are emphasized

* Good classifier
— highly positive weight ~
* Bad classifier
— highly negative weight

(weight)
[ogl i 1-x050)
0
|

 (Classifier with error 0.5]
— weight O

— this is equal to guessing|! |
0.0 02 04 06 0.8 1.0

(error)

03/19/18 Heiko Paulheim

lllustration of the Weights

* Example Weights
— multiplier for correct and incorrect examples
— depending on error

* Later iterations need to focus =

on examples that are /
correct 85
oo — rect examples

— Incorrectly classified by a
good classifier

Itiplier
4]
|

— Correctly classified by a
bad classifier

weight mu
4
|

oo nz 0.4 0.6 0.8 1.0

=1

03/19/18 Heiko Paulheim

Boosting — Error Rate Example
S

* boosting of decision stumps on simulated data

el -
o
sSingle Stump
e A
o
e =
= 400 Mode Tree
o
€1
T e
"—-—_-__-_.
= 4
T ! T ! T
0 100 200 300 400

Boosting terations

from Hastie, Tibshirani, Friedman: The Elements of Statistical Learning, Springer Verlag 2001

03/19/18 Heiko Paulheim

Toy Example
-

(taken from Verma & Thrun, Slides to CALD Course CMU 15-781,
Machine Learning, Fall 2000)

03/19/18 Heiko Paulheim

Round 1

hy Dy
e +
® @~ + 4+
+| — + -
+ —| |+ -
€1=0.30
0t=0.42

03/19/18 Heiko Paulheim

Round 2

03/19/18

Heiko Paulheim

Ds
+ -+ +
+ + —|— _|_
| _
— @,
€5 =021
(1'.2=0.65

Round 3

03/19/18

Heiko Paulheim

+ +
+ 4 o + +
4+ = _ —
| —
€2=0.14
0t3=0.92

Final Hypothesis
S

H_ =sign| 0.42 + 0.65 +0.92
final
+
+ 4+
— _I_ —_— L
+ —

03/19/18 Heiko Paulheim

Hypothesis Space of Ensembles
S

* Each learner has a hypothesis space
— e.g., decision stumps: a linear separation of the dataset

* The hypothesis space of an ensemble
— can be larger than that of its base learners

* Example: bagging with decision stumps
— different stumps — different linear separations
— resulting hypothesis space also allows polygon separations

03/19/18 Heiko Paulheim

Boosting in RapidMiner

Just like voting and bagging

Retrieve Sonar AdaBoost Performance
@ out :'l {: tra l:'_"l rmiod jl {: lab U_? |:E-|':|
'S ',q-'_"“ exa _'} {: per 6 exa :}
O) 0
Spiit Data Apply Model
(] exa par [{] mod) lab [
:ﬁ par [¢ uni w mod[)
par) 0
&

03/19/18 Heiko Paulheim

Experimental Results on Ensembles
-

* Ensembles have been used to improve generalization accuracy
on a wide variety of problems

* On average, Boosting provides a larger increase in accuracy than Bagging
— Boosting on rare occasions can degrade accuracy

— Bagging more consistently provides a modest improvement

* Boosting is particularly subject to over-fitting
when there is significant noise in the training data

— subsequent learners over-focus on noise points

(Freund & Schapire, 1996; Quinlan, 1996)

03/19/18 Heiko Paulheim

Back to Combining Predictions

e
* Voting
— each ensemble member votes for one of the classes
— predict the class with the highest number of vote (e.g., bagging)

* Weighted Voting
— make a weighted sum of the votes of the ensemble members

— weights typically depend Mannheim
RapidMiner Toolbox

* on the classifier's confidence in its prediction
(e.g., the estimated probability of the predicted class)

* on error estimates of the classifier (e.g., boosting)
« Stacking

— Why not use a classifier for making the final decision?

— training material are the class labels of the training data and the
(cross-validated) predictions of the ensemble members

03/19/18 Heiko Paulheim

Stacking
-

* Basic ldea:

— learn a function that combines the predictions of the individual classifiers
* Algorithm:
— train n different classifiers C;...C, (the base classifiers)

— obtain predictions of the classifiers for the training examples
— form a new data set (the meta data)

* classes
— the same as the original dataset
 attributes
— one attribute for each base classifier
— value is the prediction of this classifier on the example

— train a separate classifier M (the meta classifier)

03/19/18 Heiko Paulheim

Stacking (2)
S

* Example: * Using a stacked
classifier:
Attributes Class v O Cha.
11 Tin, t ot i — try each of the
T2 T2n, f [t ; classifiers Cy...C,
s S R " — form a feature
dicti ed vector consisting
training set predictions ol the of their predictions
classfiers _
— submit these
feature vectors
(;1 (’;2 (,»},_, f:.l:i'sﬂ to the meta
' ' ' lassifier M
P , f classifie
for t t
training set for stacking

03/19/18

Heiko Paulheim

Stacking and Overfitting
S

* Consider a dumb base learner D, which works as follows:
— during training: store each training example
— during classification: if example is stored, return its class

otherwise: return a random prediction do you know that
 Classifier?

* If D is used along with a number of classifiers in stacking,
what will the meta classifier look like?

— D is perfect on the training set
— so the meta classifier will say: always use D's result

Implementation in
RapidMiner :-(

03/19/18 Heiko Paulheim

Stacking and Overfitting

* Solution 1: split dataset (e.g., 50/50)
— use one portion for training the base classifiers
— use other portion to train meta model

* Solution 2: cross-validate base classifiers X-Stacking in Mannheim
— train classifier on 90% of training data ‘ RapidMiner Toolbox jJ

— create features for the remaining 10% on that classifier
— repeat 10 times

* The second solution is better in most cases
— uses whole dataset for meta learner
— uses 90% of the dataset for base learners

03/19/18 Heiko Paulheim

Stacking in RapidMiner
e

* Looks familiar again
— we need a set of base learners (like for voting)
— and a learner for the stacking model

| Stacking | ——————— Performance |

Haive Bayes Haive Bayes (2}

(tra ™y rmiod bas sta :I (tra P rmiad :) C sta
Yy exa bas Y oeal

has &)

bas

tra

tra

TR

tra

8

tra

LT
e W e W Y

Rule Induction

tra rmiod
@« o
7] exa

W T

=)

k-HH

tra rmad
@)
|7 | exa

AR

<)

03/19/18 Heiko Paulheim

Stacking in RapidMiner

Accuracy in this experiment:
— Naive Bayes: 0.71

— k-NN: 0.81

— Ripper: 0.71

« Stacked model: 0.86

Retrieve Sonar Stacking Performance
w out [{ tr ﬁ mod { 1ab U;F per [}
e ¢ per ‘éj exa [
""" 8]
Split Data Apply Model
{] exa par [} (] mod lab [
| |
ﬁ par :I {: unl -U mod ::I
par) o
o

03/19/18 Heiko Paulheim

Stacking
-

* Variant: also keep the original attributes

* Predictions of base learners are additional attributes
for the stacking predictor

— allows the identification of “blind spots” of individual base learners

* Variant: stacking with confidence values

— if learners output confidence values,
those can be used by the stacking learner

— often further improves the results

03/19/18 Heiko Paulheim

The Classifier Selection Problem
e

* (Question: decision trees or rule learner — which one is better?
* Two corner cases — recap from Data Mining 1

Accuracy: Accuracy:

Baseline: 0.89
Decision Tree: 1.0
Rule Learner: 0.89

Baseline: 0.45
Decision Tree: 0.45
Rule Learner: 0.7

* Voting: 0.65 * Voting: 0.89
* Weighted Voting: 0.7 * Weighted Voting: 1.0
 Stacking: 0.83 * Stacking: 1.0

03/19/18 Heiko Paulheim

Regression Ensembles

* Most ensemble methods also work for regression
— voting: use average
— bagging: use average or weighted average
— stacking: learn regression model as stacking model!
— boosting: the regression variant is called additive regression

Retrieve Poly... Performance
@ out [} { 1ab ';'_? per [
a i per _é) exa)
e
Split Data Apply Model
{] exa par [{] mod —, lab K
'ﬁ par [¢ unl W mod[)
par ['S
o]

03/19/18 Heiko Paulheim

Additive Regression
S

* Boosting can be seen as a greedy algorithm for fitting additive
models

* Same kind of algorithm for numeric prediction:
— Build standard regression model
— Gather residuals, learn model predicting residuals, and repeat
* Given a prediction p(x), residual = (x-p(x))?
* To predict, simply sum up weighted individual predictions from all

models
Additive Reqgr...
{: tra Yy rmod :I
Y o exal)
0 e

03/19/18 Heiko Paulheim

Additive Regression w/ Linear Regression
S

* What happens if we use Linear Regression
inside of Additive Regression?

« The first iteration learns a linear regression model Ir,
— By minimizing the sum of squared errors
« The second iteration aims at learning a LR Ir, model for
— X' = (X-Ir (x))?
— Since (x-Ir,(x))? is already minimal, Ir, cannot improve upon this

* Hence, the subsequent linear models
will always be a constant O

03/19/18 Heiko Paulheim

Additive Regression w/ Linear Regression
S

* First regression model:

03/19/18 Heiko Paulheim

Additive Regression w/ Linear Regression
S

* Second (and third, fourth, ...) regression model:

03/19/18 Heiko Paulheim

Additive Regression
S

% Result Overview f-,__,f’ AdditiveRegression (Additive Regression)

&) MetaModel Annotations
[

) .?gditiueRegressinn (Additive Regression)) Tapja iew () Text View: () Annotations

L4
f-._.,-’ Model 2 (Linear Regression)
f-._.,-’ Model 3 (Linesr Regression)

f-._.,:’ Model 4 (Linear Regressicn) LlﬂearREgrESSIDﬂ
f-._.,-j Model 5 (Linear Regression)
f-._.,-’ Model 6 (Linear Regression) 65.578 * attl

P i ;
(I"‘, Model 7 EL!I‘IEE[REE[EEE-!E}I‘I} + 4.504 % att3
 § Model 8 (Linesr Regression)

f-._.,-’ Model 9 (Linear Regression) 2.624 * att4
f-._,-’ Model 10 (Linear Regressicn) + 2.0209 * atts

27.281

% Fesult Overview f-,__,-" AdditiveReagression (Additive Regression)

&) MetaModel Annotations

) AdditiveRegression (Additive Regression) Table View (8)Text View: () Annotations

& Model 1 (Linear Regressicn) | T toremeeeees

.:';

GG G BT G e G

Model 3 (Linear Regression) . .
Model 4 (Linear Regression) LlﬂEﬂl’REgl‘ESSlﬂﬂ
Model 5 (Linear Regression)

Model 6 (Linear Regression) - 0.000

Model 7 (Linear Regression)

Model 8 (Linear Regression)

Model 9 (Linear Regressicn)

Model 10 (Lingsr Regression)

e

* Bottom line: additive and linear regression are not a good match

03/19/18 Heiko Paulheim

Example 1: One-dimensional, Non-linear

tttttttt

Linear Regression: RMSE = 0.199

L1
(144
oo
o0 ®
oo®
®
oo
e0®
oo®
oo
o00®

ee?®
eo®
o0
0o®
eo®
10
YL
oo®
oo®
oo®
oo
o0®
)
oo
144
e0®
o0
000®
e0®®
oooooooo

eo®”
eo®
oo ®
o0®
oooooooo
00®
.......

.
''''''
., .,
.....
.........

~ Isotonic Regression: RMSE = 0.171 Additive Isotonic Regression:
RMSE = 0.073

03/19/18 Heiko Paulheim

Example 2: Multidimensional, Non-Linear
z=10x?-y?

o

f

‘,. : x\
ol
§

NVN
NS
S
SO0
O
POTeON

KX
i
t:‘,.,_““\g‘_‘
ool
i

,__,,

)

S
&)

¢ \\“\ __ _,/

7\

oo

%

i
W
i
Wi

i
Wil
iy

\

385
293
122

...Additive Isotonic Regression:

...Linear Regression:
...Isotonic Regression:

RMSE of...

£
@
=
-
©
o
o
=
@
L

03/19/18

XGBoost
e

* Currently wins most Kaggle competitions etc.
* Additive Regression w/ Regression Trees

* Regularization
— Respect size of trees
— Larger trees: more likely to overfit!
* Introduce penalty for tree size
— Overcomes the problem of overfitting in boosting

03/19/18 Heiko Paulheim

Intermediate Recap
-

* Ensemble methods
— outperform base learners
— Help minimizing shortcomings of single learners/models
— simple and complex methods for method combination

* Reasons for performance improvements
— individual errors of single learners can be “outvoted”
— more complex hypothesis space

03/19/18 Heiko Paulheim

Ensembles for Other Problems
e

* There are ensembles also for...

* ...clustering (Vega-Pons and Ruiz-Shulkloper, 2011)

— trying to unify different clusterings

— using a consensus function mapping different clusterings to each other
* ...outlier detection (Zimek et al., 2014)

— unifying outlier scores of different approaches

— requires score normalization and/or rank aggregation

* efc.

03/19/18 Heiko Paulheim

Learning with Costs
e

* Most classifiers aim at reducing the number of errors
— all errors are regarded as being equally important

* In reality, misclassification costs may differ

* Consider a warning system in an airplane
— issue a warning if stall is likely to occur
— based on a classifier using different sensor data

— wrong warnings may be ignored by the pilot
— missing warnings may cause the plane to crash

* Here, we have different costs for
— actual: true, predicted: false — very expensive
— actual: false, predicted true — not so expensive

http://i.telegraph.co.uk/multimedia/archive/01419/plane_1419831c.jpg

03/19/18 Heiko Paulheim

The MetaCost Algorithm
e

* Form multiple bootstrap replicates of the training set
— Learn a classifier on each training set

— i.e., perform bagging
* Estimate each class’s probability for each example

— by the fraction of votes that it receives from the ensemble
* Use conditional risk equation to relabel each training example

— with the estimated optimal class
* Reapply the classifier to the relabeled training set

03/19/18 Heiko Paulheim

MetaCost
e

* Conditional risk R(i|x) is the expected cost of predicting that x
belongs to class i

— R(ilx) = 2P(Ix)C(i, j)
— C(i,j) are the classification costs
(classify an example of class j as class i)

— P(j|x) are obtained by running the bagged classifiers

* The goal of MetaCost procedure is: to relabel the training examples
with their “optimal” classes

— |.e., those with lowest risk
* Then, re-run the classifier to build a final model

— the resulting classifier will be defensive,
l.e., make low-risk predictions

— in the end, the costs are minimized

03/19/18 Heiko Paulheim

MetaCost
e

8/10 classifiers .
° I t
Pilot stall alarm example arecorrect] predicted
— x,: stall, P(stalllx,) = 0.8 = stall no stall
— X, no, P(no|x,) = 0.9 e 0 10
(®)
* Risk values: =0 g | nostal 1 L

— R(stall|x,) = P(stall|x1)*C(staII,€taII) + P(no|x,)*C(stall,no) = 0.2*1 = 0.2

— R(no|x,) = P(stall|x,)*C(no,stall) + P(no|x,)*C(no,no) = 0.8*10 =8

— R(stall|x,) = P(stall|x,)*C(stall,stall) + P(no|x,)*C(stall,no) = 0.9*1 = 0.9

— R(no|x,) = P(stall|x,)*C(no,stall) + P(no|x,)*C(no,no) = 0.1*10 = 1
* Since 0.9<1 —

— X, is relabeled to “stall”

http://i.telegraph.co.uk/multimedia/archive/01419/plane_1419831c.jpg

03/19/18 Heiko Paulheim

MetaCost vs. Balancing
S

* Recap balancing:
— in an unbalanced dataset, there is a bias towards the larger class
— balancing the dataset helps building more meaningful models

* MetaCost:

— incidentally unbalance the dataset,
labeling more instances with the “cheap” class

— make the learner have a bias towards the “cheap” class
* i.e., expensive mis-classifications are avoided
— in the end, the overall cost is reduced

* In the example:

— there will be more false alarms (stall warning, but actually no stall)
— the risk of not issuing a warning is reduced

03/19/18 Heiko Paulheim

MetaCost in RapidMiner

Hint: use the performance (cost) operator for evaluation

Retrieve Sonar MetaCost

@ out :} C tra ﬁ mod

0

{] ea o e:aD
% |JEI'D
L

Spiit Data

Apply Model
(exd pal':]l f_ rnod f_“- labs :]l
‘? par ::I (unl .U rniaid ::I
par D o
e

. Edit Parameter Matrbc cost matrix

| Edit Parameter Matrix: cost matrix

? The matrix of missclassification costs. Columns and Rows in order of internal mapping.

Cost Matrix
Predicted Class 1 0.0

Predicted Class 2 2.0

True Class 1 True Class 2

1.0
0.0

(B rownse] (Bovmsse] (o) (|

03/19/18 Heiko Paulheim

MetaCost in RapidMiner

Experiment: set misclassification cost
Rock — Mine = 2; Mine — Rock = 1

Non-cost sensitive decision tree:
— misclassification cost = 0.33
* MetaCost with decision tree:

— misclassification cost = 0.24

Retrieve Sonar MetaCost

@ out :} C tra |"'H"'| maod

0

{] ea o e:aD
?Kj |JEI'D
L

Spiit Data

Apply Model
(exd par:]l f_ rnod —~ labs :]l
? par [} Qui g mod
par [o]
o

03/19/18 Heiko Paulheim

Another Example for Cost-Sensitive Prediction
e

* Predicting ordinal attributes
— e.g., very low, low, medium, high, very high

* A standard classifier just looks at correct/incorrect classifications
— i.e., for a very low instance, predicting low or very high is equally bad

* |In practice, predicting low for a very low instance is much better
than predicting very high

* Solution: assign costs C(actual,predicted) to predictions
— C(very low, very low) = 0, C(very low, low) = 1, C(very low, medium) = 2

03/19/18 Heiko Paulheim

Wrap-up
e

* Ensemble methods in general

— build a strong model from several weak ones
* Ingredients

— base learners

— a combination method

* Variants
— Voting
— Bagging (based on sampling)
— Boosting (based on reweighting instances)
— Stacking (use learner for combination)

* Also used for cost-sensitive predictions (MetaCost)

03/19/18 Heiko Paulheim

Questions?

s

&

03/19/18 Heiko Paulheim

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Why does it work?
	Folie 11
	Example of Overfitting
	Folie 13
	Folie 14
	Folie 15
	Bagging
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Boosting Algorithm
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Experimental Results on Ensembles (Freund & Schapire, 1996; Quinlan, 1996)
	Combining Ensembles
	Stacking
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	MetaCost procedure
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Questions?

