
Data Mining II
Time Series Analysis

Heiko Paulheim



03/13/18 Heiko Paulheim 2 

Introduction

• So far, we have only looked at data without a time dimension

– or simply ignored the temporal aspect

• Many “classic” DM problems have variants that respect time

– frequent pattern mining → sequential pattern mining

– classification → predicting sequences of nominals

– regression → predicting the continuation of a numeric series
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Contents

• Sequential Pattern Mining

– Finding frequent subsequences in set of sequences

– the GSP algorithm

• Trend analysis

– Is a time series moving up or down?

– Simple models and smoothing

– Identifying seasonal effects

• Forecasting

– Predicting future developments from the past

– The windowing technique
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Mining Time Series Data in RapidMiner

• Basic methods are covered in standard edition

• Powerful (and complex) series extension available

– still under active development
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Sequential Pattern Mining: Application 1

• Web usage mining (navigation analysis)

• Input

– Server logs

• Patterns

– typical sequences of pages

• Usage

– restructuring web sites
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Sequential Pattern Mining: Application 2

• Recurring customers

– Typical book store example:

• (Twilight) (New Moon) → (Eclipse)

• Recommendation in online stores

• Allows more fine grained suggestions than frequent pattern mining

• Example:

– mobile phone → charger vs. charger → mobile phone 

• are indistinguishable by frequent pattern mining

– customers will select a charger after a mobile phone

• but not the other way around!

• however, Amazon does not respect sequences...
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Sequential Pattern Mining: Application 3

• Using texts as a corpus

– looking for common sequences of words

– allows for intelligent suggestions 
for autocompletion
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Sequential Pattern Mining: Application 4

• Chord progressions in music

– supporting musicians (or even computers) in jam sessions

– supporting producers in writing top 10 hits :-)

http://www.hooktheory.com/blog/i-analyzed-the-chords-of-1300-popular-songs-for-patterns-this-is-what-i-found/
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Sequence Data

• Data Model: transactions containing items

Sequence

E1
E2

E1
E3 E2 E3

E4E2

Element 
(Transaction)

Event 
(Item)

Sequence 
Database

Sequence Element (Transaction) Event (Item)

Customer 
Data

Purchase history of a given 
customer

A set of items bought by 
a customer at time t

Books, dairy 
products, CDs, etc

Web Server 
Logs

Browsing activity of a 
particular Web visitor

A collection of files 
viewed by a Web visitor 
after a single mouse click

Home page, index 
page, contact info, etc

Sensor Data History of events generated 
by a given sensor

Events triggered by a 
sensor at time t

Types of alarms 
generated by sensors 
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Sequence Data

Object Timestamp Events
A 10 2, 3, 5
A 20 6, 1
A 23 1
B 11 4, 5, 6
B 17 2
B 21 7, 8, 1, 2
B 28 1, 6
C 14 1, 8, 7

Sequence Database:
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Formal Definition of a Sequence

 A sequence is an ordered list of elements (transactions)

s = < e1 e2 e3 … >

 Each element contains a collection of items (events)

ei = {i1, i2, …, ik}

 Each element is attributed to a specific time

 Length of a sequence |s| is given by the number of 
elements of the sequence.

 A k-sequence is a sequence that contains k events (items).
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Further Examples of Sequences

• Web browsing sequence:

  < {Homepage}  {Electronics}  {Digital Cameras}  {Canon Digital 
Camera}  {Shopping Cart}  {Order Confirmation}  {Homepage} >

• Sequence of books checked out at a library:

< {Fellowship of the Ring} {The Two Towers, Return of the King} >

• Sequence of initiating events causing the nuclear accident 
at 3-mile Island:

      < {clogged resin} {outlet valve closure} {loss of feedwater} 
       {condenser polisher outlet valve shut} {booster pumps stop} 
       {main waterpump stops, main turbine stops} {reactor pressure  
        increases} >
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Formal Definition of a Subsequence

• A sequence <a1 a2 … an> is contained in another sequence 
<b1 b2 … bm> (m ≥ n) if there exist integers 
i1 < i2 < … < in such that a1  bi1 , a2  bi2, …, an  bin 

• The support of a subsequence w is defined as the fraction of data 
sequences that contain w

• A sequential pattern is a frequent subsequence 
(i.e., a subsequence whose support is ≥ minsup)

Data sequence <b> Subsequence <a> Contain?

< {2,4} {3,5,6} {8} > < {2} {3,5} > Yes

< {1,2} {3,4} > < {1} {2} > No

< {2,4} {2,4} {2,5} > < {2} {4} > Yes



03/13/18 Heiko Paulheim 14 

Examples of Sequential Patterns
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Examples of Sequential Patterns
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Sequential Pattern Mining

• Given: 

– a database of sequences 

– a user-specified minimum support threshold, minsup

• Task:

– Find all subsequences with support ≥ minsup

• Challenge:

– Very large number of candidate subsequences that need to be checked 
against the sequence database

– By applying the Apriori principle, the number of candidates can
be pruned significantly
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Determining the Candidate Subsequences

 Given n events:   i1, i2, i3, …, in

 Candidate 1-subsequences: 
<{i1}>, <{i2}>, <{i3}>, …, <{in}>

 Candidate 2-subsequences:
<{i1, i2}>, <{i1, i3}>, …, <{in-1,in}>, <{i1} {i1}>, <{i1} {i2}>, …, <{in-1} {in}>, <{in} {in}>,
<{i2, i1}>, <{i3, i1}>, …, <{in,in-1}>,                <{i2} {i1}>, …, <{in} {in-1}>

 Candidate 3-subsequences:
<{i1, i2 , i3}>, <{i1, i2 , i4}>, …, <{i1, i2} {i1}>, <{i1, i2} {i2}>, …,
<{i1} {i1 , i2}>, <{i1} {i1 , i3}>, …, <{i1} {i1} {i1}>, <{i1} {i1} {i2}>, …
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Generalized Sequential Pattern Algorithm (GSP) 

 Step 1: 
 Make the first pass over the sequence database D to yield all 

the 1-element frequent subsequences

 Step 2:  Repeat until no new frequent subsequences are found
1. Candidate Generation: 

- Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate 
sequences that contain k items 

2. Candidate Pruning:

- Prune candidate k-sequences that contain infrequent (k-1)-subsequences 
(Apriori principle)

3. Support Counting:

- Make a new pass over the sequence database D to find the support for 
these candidate sequences

4. Candidate Elimination:

- Eliminate candidate k-sequences whose actual support is less than minsup
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Candidate Generation Examples

• Intuitively, merging two sequences w1 and w2

1. should lead to a sequence which has both w1 and w2 as 
subsequences

2. is as short as possible

• Merging the sequences 
w1=<{1} {2 3} {4}> and w2 =<{2 3} {4 5}> 

will produce the candidate sequence < {1} {2 3} {4 5}> 

• < {1} {2 3} {4} {5}> would fulfill (1), but it is longer
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Candidate Generation Examples

• Intuitively, merging two sequences w1 and w2

1. should lead to a sequence which has both w1 and w2 as 
subsequences

2. is as short as possible

• Merging the sequences  
w1=<{1} {2 3} {4}> and w2 =<{2 3} {4} {5}> 

will produce the candidate sequence < {1} {2 3} {4} {5}> 

• < {1} {2 3} {4 5}> is shorter, but violates (1)

– w2 is not a subsequence
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Candidate Generation – Formal Description

• Base case (k=2): 
– Merging two frequent 1-sequences <{i1}>  and <{i2}> will produce 

three candidate 2-sequences:  <{i1} {i2}>,<{i2} {i1}>, and <{i1 i2}>

• General case (k>2):
– A frequent (k-1)-sequence w1 is merged with another frequent 

(k-1)-sequence w2 to produce a candidate k-sequence if  the 
subsequence obtained by removing the first event in w1 is the same as 
the subsequence obtained by removing the last event in w2

– The resulting candidate after merging is given by the sequence w1 
extended with the last event of w2. 

• If the last two events in w2 belong to the same element, 
then the last event in w2 becomes part of the last element in w1

• Otherwise, the last event in w2 becomes a separate element appended to 
the end of w1
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GSP Example

• Only one 4-sequence survives the candidate pruning step

• All other 4-sequences are removed because they contain 
subsequences that are not part of the set of frequent 3-sequences
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Comparison of Apriori and GSP

• Apriori finds frequent patterns in non-sequential data

• Differences:

– definition of containment (subset vs. subsequence)

– generation of candidates (set union vs. merging sequences)
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Timing Constraints

• Timing constraints allow us to pose additional restrictions 
on whether a sequence is counted to support a pattern or not

• Motivating Example:

        < {Statistics}  {Database Systems} {Data Mining} >

        < {Database Systems} {Statistics}  {Data Mining} >

• We are interested in students that support the pattern

        < {Database Systems, Statistics}  {Data Mining} >

• We don’t care about the order of Database Systems 
and Statistics

• We do care about that the gap 
between these courses and Data Mining is not too long
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Window Size

• Specifies a time window in the data sequence in which all events 
will be considered to belong to the same element

• Given a candidate pattern: <{a, c}>

• Any data sequences that contain 

<… {a c} … >,
<… {a} … {c}…>   (where time({c}) – time({a}) ≤ ws) 
<…{c} … {a} …>   (where time({a}) – time({c}) ≤ ws)

will contribute to the support count of the candidate pattern.

maxg = 2, ming = 0, ws = 1

Data sequence Subsequence Contain?

< {2,4} {3,5,6} {4,7} {4,6} {8} > < {3} {5} > No

< {1} {2} {3} {4} {5}> < {1,2} {3} > Yes

< {1,2} {2,3} {3,4} {4,5}> < {1,2} {3,4} > Yes
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Max-Gap, Min-Gap

Data sequence Subsequence Contain?

< {2,4} {3,5,6} {4,7} {4,5} {8} > < {6} {5} > Yes

< {1} {2} {3} {4} {5}> < {1} {4} > No

< {1} {2,3} {3,4} {4,5}> < {2} {3} {5} > Yes

< {1,2} {3} {2,3} {3,4} {2,4} {4,5}> < {1,2} {5} > No

maxg = 2, ming = 0

 Max-Gap: Sequence is counted
if gap between consecutive elements is at most maxg.

 Min-Gap: Sequence is counted
if gap between consecutive elements is at least ming.
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Sequential Patterns in RapidMiner

• Input data needs to contain:

– customer id attribute being of type integer and 

– Sequence attribute being of type integer, real, or date/time

– all other attributes need to be of type binominal
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Mining Sequential Patterns with RapidMiner

All parameters must be filled !
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Mining Sequential Patterns with RapidMiner
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Wrap Up Sequential Patterns

• Data model: sequences of transactions

• Goal: find frequent sub sequences

– with a generalized version of Apriori (GSP)

• Relaxing criteria: 

– window size

– min and max gap
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Trend Detection

• Task

– given a time series

– find out what the general trend is 
(e.g., rising or falling)

• Possible obstacles

– random effects: ice cream sales have been low this week due to rain

• but what does that tell about next week?

– seasonal effects: sales have risen in December

• but what does that tell about January?

– cyclical effects: less people attend a lecture towards the end of the 
semester

• but what does that tell about the next semester?
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Trend Detection

• Example: Data Analysis at Facebook

http://www.theatlantic.com/technology/archive/2014/02/when-you-fall-in-love-this-is-what-facebook-sees/283865/
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Estimation of Trend Curves

 The freehand method

 Fit the curve by looking at the graph

 Costly and barely reliable for large-scale data mining

 The least-squares method

 Find the curve minimizing the sum of the squares of the deviation of 

points on the curve from the corresponding data points

 cf. linear regression

 The moving-average method

The time series exhibit a 
downward trend pattern.

Predicted value
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Example: Average Global Temperature

http://www.bbc.co.uk/schools/gcsebitesize/science/aqa_pre_2011/rocks/fuelsrev6.shtml
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Example: German DAX 2013
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Linear Trend

• Given a time series that has timestamps and values, i.e., 

– (ti,vi), where ti is a time stamp, and vi is a value at that time stamp

• A linear trend is a linear function

– m*ti + b

• We can find via linear regression, e.g., using the least squares fit
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Linear Trend in RapidMiner
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Example: German DAX 2013
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A Component Model of Time Series

A time series can consist of four components:

• Long - term trend (Tt)

• Cyclical effect (Ct)

• Seasonal effect (St)

• Random variation (Rt)

Additive Model:

• Series = Tt + Ct + St + Rt

Multiplicative Model:

• Series = Tt x Ct x St x Rt

this is what we
want to find

we need to 
eliminate those

we need to 
eliminate those

we need to 
eliminate those
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Seasonal and Cyclical Effects

• Seasonal effects occur regularly each year

– quarters

– months

– …

• Cyclical effects occur regularly over other intervals

– every N years

– in the beginning/end of the month

– on certain weekdays or on weekends

– at certain times of the day

– ...
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Identifying Seasonal and Cyclical Effects

• There are methods of identifying and isolating those effects

– given that the periodicity is known

• Unfortunately, no simple operator 
in RapidMiner

– Example on the right: R
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Identifying Seasonal and Cyclical Effects

• Variation may occur within a year or another period

• To measure the seasonal effects we compute seasonal indexes

• Seasonal index

– degree of variation of seasons in relation to global average

http://davidsills.blogspot.de/2011/10/seasons.html
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Identifying Seasonal and Cyclical Effects

• Algorithm

– Compute the trend  ŷt (i.e., linear regression)

– For each time period

• compute the ratio yt/ŷt

– For each season (or other relevant period)

• compute the average of yt/ŷt

• this gives us the average deviation for that season

here, we assume
the multiplicative model

tt
t

ttt

t

t RS
T

RST

ŷ

y





the computed ratios
isolate the seasonal 
and random variation
from the overall trend*

*) given that no additional cyclical variation exists
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Example for Seasonal Effects

• Calculate the quarterly seasonal indexes for hotel occupancy rate in 
order to measure seasonal variation

• Data:

Year Quarter Rate Year Quarter Rate Year Quarter Rate

1996 1 0.561 1998 1 0.594 2000 1 0.665
2 0.702 2 0.738 2 0.835
3 0.8 3 0.729 3 0.873
4 0.568 4 0.6 4 0.67

1997 1 0.575 1999 1 0.622
2 0.738 2 0.708
3 0.868 3 0.806
4 0.605 4 0.632

This example is taken from the course “Regression Analysis”
at University of Umeå, Department of Statistics
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Example for Seasonal Effects

• First step: compute trend from the data

– i.e., linear regression

0 5 10 15 20 25

t

R
a
te

ŷ=0 .639368+0 .005246 tTime (t)  Rate
1  0.561
2  0.702
3  0.800
4  0.568
5  0.575
6  0.738
7  0.868
8  0.605
 .    .
 .    .
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Example for Seasonal Effects

• Second step: compute ratios yt/ŷt 

t   yt Ratio
1 .561 .645 .561/.645=.870
2 .702 .650 .702/.650=1.08
3 ………………………………………………….

Rate/Predicted rate

0

0.5

1

1.5

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

No trend is observed, but
seasonality and randomness
still exist.

t

t

ŷ

y

tŷ

=0.639368+0.005245*t
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Rate/Predicted rate

0

0.5

1

1.5

1 3 5 7 9 11 13 15 17 19

(.870 + .864 + .865 + .879 + .913)/5 = .878Average ratio for quarter 1: 

Average ratio for quarter 2:  (1.080+1.100+1.067+.993+1.138)/5 = 1.076 

Average ratio for quarter 3:  (1.221+1.284+1.046+1.122+1.181)/5 = 1.171

Average ratio for quarter 4:  (.860 +.888 + .854 + .874 + .900)/ 5 =  .875

• Third step: compute average ratios by season

Rate/Predicted rate

0.870

1.080

1.221

0.860

0.864

1.100

1.284

0.888

0.865

1.067

1.046

0.854

0.879

0.993

1.122

0.874

0.913

1.138

1.181

0.900

Example for Seasonal Effects
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Example for Seasonal Effects

• Interpretation of seasonal indexes:

– ratio between the time series' value at a certain season
and the overall seasonal average

• In our problem:

Quarter 2 Quarter 3Quarter 3Quarter 2

Annual average
occupancy (100%)

Quarter 1 Quarter 4 Quarter 1 Quarter 4

87.8%
107.6%

117.1%

87.5%12.2% below the
annual average

7.6% above the
annual average

17.1% above the
annual average

12.5% below the
annual average
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Example for Seasonal Effects

• Deseasonalizing time series

– when ignoring seasonal effects, is there still an increase?

Seasonally adjusted time series = Actual time series
Seasonal index

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

Trend on deseasonalized time series: slightly positive
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Determining the Periodicity

• There are methods of identifying and isolating those effects

– given that the periodicity is known

• What if we don’t know the periodicity?
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Determining the Periodicity

• Assumption: time series is a sum of sine waves

– With different periodicity

– Different representation of the time series

• The frequencies of those sine waves is called spectrum

– Fourier transformation transforms between spectrum and series

– Spectrum gives hints at the frequency of periodic effects

– Details: see textbooks
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Determining the Periodicity

• Example: three interfering sine waves with noise added
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Determining the Periodicity

• The corresponding spectrum
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Dealing with Random Variations

 Moving average of order n

 Key idea:

– upcoming value is the average of the last n

– cf.: nearest neighbors

 Properties:
– Smoothes the data

– Eliminates random movements

– Loses the data at the beginning or end of a series

– Sensitive to outliers (can be reduced by weighted moving average)
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Moving Average in RapidMiner

• Alternatives for average:

– median, mode, ...
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Dealing with Random Variations

• Exponential Smoothing

– St = αyt + (1-α)St-1

– α is a smoothing factor

– recursive definition

• in practice, start with S0 = y0

• Properties:

– Smoothes the data

– Eliminates random movements

• and even seasonal effects for smaller values of α

– Smoothing values for whole series

– More recent values have higher influence
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Dealing with Random Variations
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Recap: Trend Analysis

• Allows to identify general trends (upward, downward)

• Overall approach:

– eliminate all other components so that only the trend remains

• Method for factoring out seasonal variations

– and compute deseasonalized time series

• Methods for eliminating with random variations (smoothing)

– moving average

– exponential smoothing
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Time Series Prediction: Definition

• Given a sequence of events

– predict the next event(s)

Day Weather Temperature Wind Speed

Monday Sunny 28°C 13 km/h

Tuesday Cloudy 25°C 18 km/h

Wednesday Cloudy 26°C 21 km/h

Thursday Rain 19°C 35 km/h

Friday ? ? ?

Saturday ? ? ?

Sunday ? ? ?
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Time Series Prediction: Definition

http://xkcd.com/1245/
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Time Series Prediction by Windowing

• Idea: transformation of prediction into “classical” learning problem

• Example: weather forecasting

– using the weather from the three previous days

• Possible model:

– sunny, sunny, sunny → sunny

– sunny, cloudy, rainy → rainy

– sunny, cloudy, cloudy → rainy

– ...
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Time Series Prediction by Windowing

Date Weather

1.1. Sunny

2.1. Cloudy

3.1. Cloudy

4.1. Rainy

5.1. Cloudy

6.1. Sunny

7.1. Sunny

8.1. Sunny

9.1. Rainy

Date Weather-3 Weather-2 Weather-1 Weather

1.1. ? ? ? Sunny

2.1. ? ? Sunny Cloudy

3.1. ? Sunny Cloudy Cloudy

4.1. Sunny Cloudy Cloudy Rainy

5.1. Cloudy Cloudy Rainy Cloudy

6.1. Cloudy Rainy Cloudy Sunny

7.1. Rainy Cloudy Sunny Sunny

8.1. Cloudy Sunny Sunny Sunny

9.1. Sunny Sunny Sunny Rainy
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Time Series Prediction by Windowing

• New task: classify variable “Weather”

– using “Weather-3”, “Weather-2” and “Weather-1” as attributes

– any classifier (Naive Bayes, Decision Trees, …) can be used

Date Weather-3 Weather-2 Weather-1 Weather

1.1. ? ? ? Sunny

2.1. ? ? Sunny Cloudy

3.1. ? Sunny Cloudy Cloudy

4.1. Sunny Cloudy Cloudy Rainy

5.1. Cloudy Cloudy Rainy Cloudy

6.1. Cloudy Rainy Cloudy Sunny

7.1. Rainy Cloudy Sunny Sunny

8.1. Cloudy Sunny Sunny Sunny

9.1. Sunny Sunny Sunny Rainy
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Windowing in RapidMiner
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Windowing in RapidMiner
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Windowing in RapidMiner

• Also possible for multi-variate data
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Windowing in RapidMiner

• Also possible for multi-variate data
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Windowing in RapidMiner

• Also possible for numerical prediction

– the learning problem becomes a regression problem
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Missing Values in Series Data

• Remedies in non-series data:

– replace with average, median, most frequent

– Imputation (e.g., k-NN)

– replace with most frequent

– …

• What happens if we apply those to time series?



03/13/18 Heiko Paulheim 70 

Missing Values in Series Data

• Original time series

– with missing values inserted
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Missing Values in Series Data

• Replace with average
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Missing Values in Series Data

• Alternatives

– Linear interpolation

– Replace with previous

– Replace with next

– K-NN imputation

• Essentially: this is the average of previous and next
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Missing Values in Series Data

• Linear interpolation plotted
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Evaluating Time Series Prediction

• So far, our gold standard has been 10-fold cross validation

– Divide data into 10 equal shares

– Random sampling:

• Each data point is randomly assigned to a fold
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Evaluating Time Series Prediction

• Using Cross Validation?

1 11 21 31 41 51 61 71 81 91 10
1
11
1
12
1
13
1
14
1
15
1
16
1
17
1
18
1
19
1
20
1
21
1
22
1
23
1
24
1
25
1

7000

7500

8000

8500

9000

9500

10000
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Evaluating Time Series Prediction

• Variant 1

– Use hold out set at the end of the training data

– E.g., train on 2000-2015, evaluate on 2016

• Variant 2:

– Sliding window evaluation

– E.g., train on one year, evaluate on consecutive year
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Wrap-up

• Time series data is data sequentially collected at different times

• Analysis methods discussed in this lecture

– frequent pattern mining

– trend analysis

– predictions with windowing
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Questions?
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