Introduction

• “Wisdom of the crowds”
 – a single individual cannot know everything
 – but together, a group of individuals knows a lot

• Examples
 – Wikipedia
 – Crowdsourcing
 – Prediction

http://xkcd.com/903/
Introduction

• “SPIEGEL Wahlwette” (election bet) 2013
 – readers of SPIEGEL Online were asked to guess the federal election results
 – average across all participants:
 • only a few percentage points error for final result
 • conservative-liberal coalition cannot continue

https://lh6.googleusercontent.com/-U9DXTTcT-PM/UgsdSzdV3JI/AAAAAAAAFKs/GsRydeldasg/w800-h800/Bildschirmfoto+2013-08-14+um+07.56.01.png
Introduction

• “Who wants to be a Millionaire?”
• Analysis by Franzen and Pointner (2009):
 – “ask the audience” gives a correct majority result in 89% of all cases
 – “telephone expert”: only 54%

Ensembles

• So far, we have addressed a learning problem like this:

```python
classifier = DecisionTreeClassifier(max_depth=5)
...and hoped for the best
```

• Ensembles:
 – wisdom of the crowds for learning operators
 – instead of asking a single learner,
 combine the predictions of different learners
Ensembles

• Prerequisites for ensembles: accuracy and diversity
 – different learning operators can address a problem (accuracy)
 – different learning operators make different mistakes (diversity)

• That means:
 – predictions on a new example may differ
 – if one learner is wrong, others may be right

• Ensemble learning:
 – use various base learners
 – combine their results in a single prediction
Voting

• The most straightforward approach
 – classification: use most-predicted label
 – regression: use average of predictions

• We have already seen this
 – k-nearest neighbors
 – each neighbor can be regarded as an individual classifier
Voting in RapidMiner & SciKit Learn

- **RapidMiner**: Vote operator uses different base learners
- **Python**: `VotingClassifier(
 ("dt", DecisionTreeClassifier()),
 "nb", GaussianNB(),
 "knn", KNeighborsClassifier())`
Performance of Voting

• Accuracy in this example:
 – Naive Bayes: 0.71
 – Ripper: 0.71
 – k-NN: 0.81
• Voting: 0.91
Why does Voting Work?

• Suppose there are 25 base classifiers
 – Each classifier has an accuracy of 0.65, i.e., error rate $\varepsilon = 0.35$
 – Assume classifiers are independent
 • i.e., probability that a classifier makes a mistake does not depend on whether other classifiers made a mistake
 • Note: in practice they are not independent!

• Probability that the ensemble classifier makes a wrong prediction
 – The ensemble makes a wrong prediction if the majority of the classifiers makes a wrong prediction
 – The probability that 13 or more classifiers are wrong is

$$\sum_{i=13}^{25} \binom{25}{i} \varepsilon^i (1-\varepsilon)^{25-i} \approx 0.06 \ll \varepsilon$$
Why does Voting Work?

• In theory, we can lower the error infinitely
 – just by adding more base learners

\[\sum_{i=13}^{25} \binom{25}{i} \varepsilon^i (1 - \varepsilon)^{25-i} \approx 0.06 \ll \varepsilon \]

• But that is hard in practice
 – Why?

• The formula only holds for independent base learners
 – It is hard to find many truly independent base learners
 – ...at a decent level of accuracy

• Recap: we need both accuracy and diversity
Recap: Overfitting and Noise

Likely to overfit the data
Bagging

• Biases in data samples may mislead classifiers
 – overfitting problem
 – model is overfit to single noise points

• If we *had* different samples
 – e.g., data sets collected at different times, in different places, …
 – …and trained a single model on each of those data sets...
 – only one model would overfit to each noise point
 – voting could help address these issues

• But usually, we only have one dataset!
Bagging

• Models may differ when learned on different data samples
• Idea of bagging:
 – create samples by picking examples with replacement
 – learn a model on each sample
 – combine models
• Usually, the same base learner is used
• Samples
 – differ in the subset of examples
 – replacement randomly re-weights instances (see later)
Bagging: illustration

Training Data

Data 1

Data 2

... ...

Data m

Learner 1

Learner 2

... ...

Learner m

Model 1

Model 2

... ...

Model m

Model Combiner

Final Model
Bagging: Generating Samples

- Generate new training sets using sampling with replacement (bootstrap samples)

<table>
<thead>
<tr>
<th>Original Data</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bagging (Round 1)</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Bagging (Round 2)</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Bagging (Round 3)</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

- some examples may appear in more than one set
- some examples will appear more than once in a set
- for each set of size n, the probability that a given example appears in it is
 \[\Pr(x \in D_i) = 1 - \left(1 - \frac{1}{n}\right)^n \rightarrow 0.6322 \]

 - i.e., on average, less than 2/3 of the examples appear in any single bootstrap sample
Bagging in RapidMiner and Python

- Bagging operator uses a base learner
- Number and ratio of samples can be specified
 - `bagging = BaggingClassifier(DecisionTreeClassifier(), 10, 0.5)`
Performance of Bagging

- Accuracy in this example:
 - Ripper alone: 0.71
 - Ripper with bagging (10x0.5): 0.86
Bagging in RapidMiner

- 10 different rule models are learned:

```
RuleModel

if attribute_12 ≤ 0.168 and attribute_25 > 0.553 then Rock (28 / 0)
if attribute_28 > 0.854 then Mine (2 / 23)
if attribute_31 ≤ 0.443 and attribute_30 > 0.246 then Mine (0 / 16)
if attribute_4 ≤ 0.061 then Rock (16 / 0)
else Mine (2 / 5)

correct: 88 out of 92 training examples.
```
Variant of Bagging: Randomization

• Randomize the learning algorithm instead of the input data
• Some algorithms already have a random component
 – e.g. initial weights in neural net
• Most algorithms can be randomized, e.g., greedy algorithms:
 – Pick from the N best options at random instead of always picking the best options
 – e.g.: test selection in decision trees or rule learning
• Can be combined with bagging
Random Forests

• A variation of bagging with decision trees
• Train a number of individual decision trees
 – each on a random subset of examples
 – only analyze a random subset of attributes for each split
 (Recap: classic DT learners analyze all attributes at each split)
 – usually, the individual trees are left unpruned

rf = RandomForestClassifier(n_estimators=10)
Paradigm Shift: Many Simple Learners

- So far, we have looked at learners that are as good as possible

- Bagging allows a different approach
 - several simple models instead of a single complex one
 - Analogy: the SPIEGEL poll (mostly no political scientists, nevertheless: accurate results)
 - extreme case: using only decision stumps

- Decision stumps:
 - decision trees with only one node
Bagging with Weighted Voting

• Some learners provide confidence values
 – e.g., decision tree learners
 – e.g., Naive Bayes

• Weighted voting
 – use those confidence values for weighting the votes
 – some models may be rather sure about an example, while others may be indifferent
 – Python: parameter `voting=soft`
 • sums up all confidences for each class and predicts argmax
 • caution: requires *comparable* confidence scores!
Weighted Voting with Decision Stumps

- Weights: confidence values in each leaf

 ![Decision Stump Diagram]

 - High confidence that it is rock (weight = 1.0)
 - Lower confidence that it is mine (weight = 0.6)
Intermediate Recap

• What we've seen so far
 – ensembles often perform better than single base learners
 – simple approach: voting, bagging

• More complex approaches coming up
 – Boosting
 – Stacking

• Boosting requires learning with *weighted instances*
 – we'll have a closer look at that problem first
Intermezzo: Learning with Weighted Instances

• So far, we have looked at learning problems where each example is equally important

• Weighted instances
 – assign each instance a weight (think: importance)
 – getting a high-weighted instance wrong is more expensive
 – accuracy etc. can be adapted

• Example:
 – data collected from different sources (e.g., sensors)
 – sources are not equally reliable
 • we want to assign more weight to the data from reliable sources
Intermezzo: Learning with Weighted Instances

- Two possible strategies of dealing with weighted instances

- Changing the learning algorithm
 - e.g., decision trees, rule learners: adapt splitting/rule growing heuristics, example on following slides

- Duplicating instances
 - an instance with weight n is copied n times
 - simple method that can be used on all learning algorithms
Recap: Accuracy

- Most frequently used metrics:

\[
\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}
\]

Error Rate = 1 – Accuracy

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class=Yes</td>
<td>Class=Yes</td>
</tr>
<tr>
<td>Class=Yes</td>
<td>TP</td>
</tr>
<tr>
<td>Class=No</td>
<td>FP</td>
</tr>
</tbody>
</table>
Accuracy with Weights

- Definition of accuracy

\[
\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}
\]

- Without weights, TP, FP etc. are counts of instances
- With weights, they are sums of their weights
 - classic TP, FP etc. are the special case where all weights are 1
Adapting Algorithms: Decision Trees

• Recap: Gini index as splitting criterion

\[GINI(t) = 1 - \sum_j [p(j \mid t)]^2 \]

• The probabilities are obtained by counting examples
 – Again, we can sum up weights instead

• The same works for rule-based classifiers and their heuristics
Adapting Algorithms: k-NN

• Standard approach
 – use average of neighbor predictions

• With weighted instances
 – weighted average
Intermezzo: Learning with Weighted Instances

• Handling imbalanced classification problems
• So far:
 – undersampling
 • removes examples → loss of information
 – oversampling
 • adds examples → larger data (performance!)
• Alternative:
 – lowering instance weights for larger class
 – simplest approach: weight 1/|C| for each instance in class C
Back to Ensembles: Boosting

• Idea of boosting
 – train a set of classifiers, one after another
 – later classifiers focus on examples that were misclassified by earlier classifiers
 – weight the predictions of the classifiers with their error

• Realization
 – perform multiple iterations
 • each time using different example weights
 – weight update between iterations
 • *increase* the weight of *incorrectly* classified examples
 • so they become more important in the next iterations (misclassification errors for these examples count more heavily)
 – combine results of all iterations
 • weighted by their respective error measures
Boosting – Algorithm AdaBoost.M1

1. initialize example weights \(w_i = 1/N \) \((i = 1..N)\)

2. for \(m = 1 \) to \(t \) \(\text{ // } t \ldots \text{ number of iterations}\)
 a) learn a classifier \(C_m \) using the current example weights
 b) compute a weighted error estimate
 \[
 err_m = \frac{\sum_{i \text{ of all incorrectly classified } e_i} w_i}{\sum_{i=1}^{N} w_i}
 \]
 \(= 1 \) because weights are normalized
 c) if \(err_m > 0.5 \) → exit loop
 d) compute a classifier weight
 \[
 \alpha_m = \frac{1}{2} \ln \left(\frac{1 - err_m}{err_m} \right)
 \]
 e) for all correctly classified examples \(e_i : w_i \leftarrow w_i e^{-\alpha_m} \)
 f) for all incorrectly classified examples \(e_i : w_i \leftarrow w_i e^{\alpha_m} \)
 g) normalize the weights \(w_i \) so that they sum to 1

3. for each test example
 a) try all classifiers \(C_m \)
 b) predict the class that receives the highest sum of weights \(\alpha_m \)
Illustration of the Weights

- Classifier Weights α_m
 - differences near 0 or 1 are emphasized
- Good classifier
 \rightarrow highly positive weight
- Bad classifier
 \rightarrow highly negative weight
- Classifier with error 0.5
 \rightarrow weight 0
 \rightarrow this is equal to guessing!
Illustration of the Weights

- Example Weights
 - multiplier for correct and incorrect examples
 - depending on error

- Later iterations need to focus on examples that are
 - Incorrectly classified by a good classifier
 - Correctly classified by a bad classifier
Boosting – Error Rate Example

- boosting of decision stumps on simulated data

from Hastie, Tibshirani, Friedman: The Elements of Statistical Learning, Springer Verlag 2001
Toy Example

D_1

(taken from Verma & Thrun, Slides to CALD Course CMU 15-781, Machine Learning, Fall 2000)
Round 1

$\varepsilon_1 = 0.30$
$\alpha_1 = 0.42$
Round 3

\[h_3 \]

\[\varepsilon_3 = 0.14 \]
\[\alpha_3 = 0.92 \]
Final Hypothesis

\[H_{\text{final}} = \text{sign}(0.42 + 0.65 + 0.92) \]
Hypothesis Space of Ensembles

• Each learner has a hypothesis space
 – e.g., decision stumps: a linear separation of the dataset

• The hypothesis space of an ensemble
 – can be larger than that of its base learners

• Example: bagging with decision stumps
 – different stumps → different linear separations
 – resulting hypothesis space also allows polygon separations
Boosting in RapidMiner and Python

- Just like voting and bagging

```python
bdt = AdaBoostClassifier(DecisionTreeClassifier(), n_estimators=200)
```
Experimental Results on Ensembles

- Ensembles have been used to improve generalization accuracy on a wide variety of problems.
- On average, Boosting provides a larger increase in accuracy than Bagging:
 - Boosting on rare occasions can degrade accuracy.
 - Bagging more consistently provides a modest improvement.
- Boosting is particularly subject to over-fitting when there is significant noise in the training data:
 - Subsequent learners over-focus on noise points.

(Freund & Schapire, 1996; Quinlan, 1996)
Back to Combining Predictions

• Voting
 – each ensemble member votes for one of the classes
 – predict the class with the highest number of vote (e.g., bagging)

• Weighted Voting
 – make a *weighted* sum of the votes of the ensemble members
 – weights typically depend
 • on the classifier's confidence in its prediction
 (e.g., the estimated probability of the predicted class)
 • on error estimates of the classifier (e.g., boosting)

• Stacking
 – Why not use a classifier for making the final decision?
 – training material are the class labels of the training data and the
 (cross-validated) predictions of the ensemble members
Stacking

• Basic Idea:
 – learn a function that combines the predictions of the individual classifiers

• Algorithm:
 – train \(n \) different classifiers \(C_1 \ldots C_n \) (the base classifiers)
 – obtain predictions of the classifiers for the training examples
 – form a new data set (the meta data)
 • classes
 – the same as the original dataset
 • attributes
 – one attribute for each base classifier
 – value is the prediction of this classifier on the example
 – train a separate classifier \(M \) (the meta classifier)
Stacking (2)

- Example:

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{11}</td>
<td>t</td>
</tr>
<tr>
<td>x_{21}</td>
<td>f</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>x_{n_e1}</td>
<td>t</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C_1</th>
<th>C_2</th>
<th>...</th>
<th>C_{nc}</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>...</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>...</td>
<td>t</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>...</td>
<td>t</td>
</tr>
</tbody>
</table>

training set

predictions of the classifiers

<table>
<thead>
<tr>
<th>C_1</th>
<th>C_2</th>
<th>...</th>
<th>C_{nc}</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>...</td>
<td>f</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>...</td>
<td>t</td>
<td>f</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>...</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>

training set for stacking

- Using a stacked classifier:
 - try each of the classifiers $C_1...C_n$
 - form a feature vector consisting of their predictions
 - submit these feature vectors to the meta classifier M
Stacking and Overfitting

• Consider a dumb base learner D, which works as follows:
 – during training: store each training example
 – during classification: if example is stored, return its class
 otherwise: return a random prediction

• If D is used along with a number of classifiers in stacking, what will the meta classifier look like?
 – D is perfect on the training set
 – so the meta classifier will say: always use D's result

Implementation in RapidMiner :-(

do you know that classifier?
Stacking and Overfitting

• Solution 1: split dataset (e.g., 50/50)
 – use one portion for training the base classifiers
 – use other portion to train meta model

• Solution 2: cross-validate base classifiers
 – train classifier on 90% of training data
 – create features for the remaining 10% on that classifier
 – repeat 10 times

• The second solution is better in most cases
 – uses whole dataset for meta learner
 – uses 90% of the dataset for base learners

X-Stacking in Mannheim
RapidMiner Toolbox :-}
Stacking in RapidMiner and Python

• Looks familiar again
 – we need a set of base learners (like for voting)
 – and a learner for the stacking model

• Python: not in scikit-learn, use, e.g., package mlxtend
 – requires setting base classifiers and meta learner as well
Performance of Stacking

- Accuracy in this experiment:
 - Naive Bayes: 0.71
 - k-NN: 0.81
 - Ripper: 0.71
- Stacked model: 0.86
Stacking

• Variant: also keep the original attributes

• Predictions of base learners are additional attributes for the stacking predictor
 – allows the identification of “blind spots” of individual base learners

• Variant: stacking with confidence values
 – if learners output confidence values, those can be used by the stacking learner
 – often further improves the results
The Classifier Selection Problem

- Question: decision trees or rule learner – which one is better?
- Two corner cases – recap from Data Mining 1

Accuracy:
- Baseline: 0.45
- Decision Tree: 0.45
- Rule Learner: 0.7

- Voting: 0.65
- Weighted Voting: 0.7
- Stacking: 0.83

Accuracy:
- Baseline: 0.89
- Decision Tree: 1.0
- Rule Learner: 0.89

- Voting: 0.89
- Weighted Voting: 1.0
- Stacking: 1.0
Regression Ensembles

• Most ensemble methods also work for regression
 – voting: use average
 – bagging: use average or weighted average
 – stacking: learn *regression* model as stacking model!
 – boosting: the regression variant is called *additive regression*

• In Python: usually the same class ending in *Regressor* instead of *Classifier*
Additive Regression

• Boosting can be seen as a greedy algorithm for fitting additive models

• Same kind of algorithm for numeric prediction:
 – Build standard regression model
 – Gather residuals, learn model predicting residuals, and repeat
 • Given a prediction $p(x)$, residual = $(x - p(x))^2$

• To predict, simply sum up weighted individual predictions from all models
Additive Regression w/ Linear Regression

• What happens if we use Linear Regression inside of Additive Regression?

• The first iteration learns a linear regression model lr_1
 – By minimizing the sum of squared errors

• The second iteration aims at learning a LR lr_2 model for
 – $x' = (x-\text{lr}_1(x))^2$
 – Since $(x-\text{lr}_1(x))^2$ is already minimal, lr_2 cannot improve upon this
 • Hence, the subsequent linear models will always be a constant 0
Additive Regression w/ Linear Regression

• First regression model:
Additive Regression w/ Linear Regression

• Second (and third, fourth, ...) regression model:
Additive Regression

- Bottom line: additive and linear regression are not a good match
Example 1: One-dimensional, Non-linear

- Linear Regression: RMSE = 0.199
- Isotonic Regression: RMSE = 0.171
- Additive Isotonic Regression: RMSE = 0.073
Example 2: Multidimensional, Non-Linear

- \[z = 10x^2 - y^3 \]
XGBoost

• Currently wins most Kaggle competitions etc.
• Additive Regression w/ Regression Trees
• Regularization
 – Respect size of trees
 – Larger trees: more likely to overfit!
 • Introduce penalty for tree size
 – Overcomes the problem of overfitting in boosting
Intermediate Recap

• Ensemble methods
 – outperform base learners
 – Help minimizing shortcomings of single learners/models
 – simple and complex methods for method combination

• Reasons for performance improvements
 – individual errors of single learners can be “outvoted”
 – more complex hypothesis space
Ensembles for Other Problems

• There are ensembles also for...
• ...clustering (Vega-Pons and Ruiz-Shulkloper, 2011)
 – trying to unify different clusterings
 – using a consensus function mapping different clusterings to each other
• ...outlier detection (Zimek et al., 2014)
 – unifying outlier scores of different approaches
 – requires score normalization and/or rank aggregation
• etc.
Learning with Costs

• Most classifiers aim at reducing the number of errors
 – all errors are regarded as being equally important

• In reality, misclassification costs may differ
• Consider a warning system in an airplane
 – issue a warning if stall is likely to occur
 – based on a classifier using different sensor data
 – wrong warnings may be ignored by the pilot
 – missing warnings may cause the plane to crash
• Here, we have different costs for
 – actual: true, predicted: false → very expensive
 – actual: false, predicted true → not so expensive

http://i.telegraph.co.uk/multimedia/archive/01419/plane_1419831c.jpg
The MetaCost Algorithm

• Form multiple bootstrap replicates of the training set
 – Learn a classifier on each training set
 – i.e., perform bagging
• Estimate each class’s probability for each example
 – by the fraction of votes that it receives from the ensemble
• Use conditional risk equation to relabel each training example
 – with the estimated optimal class
• Reapply the classifier to the relabeled training set
MetaCost

- Conditional risk $R(i|x)$ is the expected cost of predicting that x belongs to class i
 - $R(i|x) = \sum P(j|x)C(i, j)$
 - $C(i, j)$ are the classification costs
 (classify an example of class j as class i)
 - $P(j|x)$ are obtained by running the bagged classifiers

- The goal of MetaCost procedure is: to relabel the training examples with their “optimal” classes
 - i.e., those with lowest risk

- Then, re-run the classifier to build a final model
 - the resulting classifier will be defensive, i.e., make low-risk predictions
 - in the end, the costs are minimized
MetaCost

- Pilot stall alarm example
 - x_1: stall, $P(\text{stall}|x_1) = 0.8$
 - x_2: no, $P(\text{no}|x_2) = 0.9$

- Risk values:
 - $R(\text{stall}|x_1) = P(\text{stall}|x_1) \times C(\text{stall, stall}) + P(\text{no}|x_1) \times C(\text{stall, no}) = 0.2 \times 1 = 0.2$
 - $R(\text{no}|x_1) = P(\text{stall}|x_1) \times C(\text{no, stall}) + P(\text{no}|x_1) \times C(\text{no, no}) = 0.8 \times 10 = 8$
 - $R(\text{stall}|x_2) = P(\text{stall}|x_2) \times C(\text{stall, stall}) + P(\text{no}|x_2) \times C(\text{stall, no}) = 0.9 \times 1 = 0.9$
 - $R(\text{no}|x_2) = P(\text{stall}|x_2) \times C(\text{no, stall}) + P(\text{no}|x_2) \times C(\text{no, no}) = 0.1 \times 10 = 1$

- Since $0.9<1$
 - x_2 is relabeled to “stall”

<table>
<thead>
<tr>
<th>actual</th>
<th>predicted</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>stall</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>no stall</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

8/10 classifiers are correct
MetaCost vs. Balancing

• Recap balancing:
 – in an unbalanced dataset, there is a bias towards the larger class
 – balancing the dataset helps building more meaningful models

• MetaCost:
 – incidentally unbalance the dataset,
 labeling more instances with the “cheap” class
 – make the learner have a bias towards the “cheap” class
 • i.e., expensive mis-classifications are avoided
 – in the end, the overall cost is reduced

• In the example:
 – there will be more false alarms (stall warning, but actually no stall)
 – the risk of not issuing a warning is reduced
MetaCost in RapidMiner

• Hint: use the performance (cost) operator for evaluation
MetaCost in RapidMiner

- Experiment: set misclassification cost
 Rock \rightarrow Mine $= 2$; Mine \rightarrow Rock $= 1$

- Non-cost sensitive decision tree:
 - misclassification cost $= 0.33$

- MetaCost with decision tree:
 - misclassification cost $= 0.24$
Another Example for Cost-Sensitive Prediction

- Predicting *ordinal* attributes
 - e.g., very low, low, medium, high, very high

- Typical cost matrix:

<table>
<thead>
<tr>
<th>actual</th>
<th>very low</th>
<th>low</th>
<th>medium</th>
<th>high</th>
<th>very high</th>
</tr>
</thead>
<tbody>
<tr>
<td>very low</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>low</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>medium</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>high</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>very high</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Wrap-up

• Ensemble methods in general
 – build a strong model from several weak ones

• Ingredients
 – base learners
 – a combination method

• Variants
 – Voting
 – Bagging (based on sampling)
 – Boosting (based on reweighting instances)
 – Stacking (use learner for combination)

• Also used for cost-sensitive predictions (MetaCost)
Questions?