
Data Mining II
Data Preprocessing

Heiko Paulheim

2/18/20 Heiko Paulheim 2

Introduction

• “Give me six hours
to chop down a tree
and I will spend the first four
sharpening the axe.”

Abraham Lincoln, 1809-1865

2/18/20 Heiko Paulheim 3

Recap: The Data Mining Process

Source: Fayyad et al. (1996)

2/18/20 Heiko Paulheim 4

Recap: The Data Mining Process

2/18/20 Heiko Paulheim 5

Data Preprocessing

• Your data may have some problems

– i.e., it may be problematic for the subsequent mining steps

• Fix those problems before going on

• Which problems can you think of?

2/18/20 Heiko Paulheim 7

Errors in Data

• Sources

– malfunctioning sensors

– errors in manual data processing (e.g., twisted digits)

– storage/transmission errors

– encoding problems, misinterpreted file formats

– bugs in processing code

– ...

Image: http://www.flickr.com/photos/16854395@N05/3032208925/

2/18/20 Heiko Paulheim 8

Errors in Data

• Simple remedy

– remove data points outside a given interval

• this requires some domain knowledge

• Typical Examples

– remove temperature values outside -30 and +50 °C

– remove negative durations

– remove purchases above 1M Euro

• Advanced remedies

– automatically find
suspicious data points

– see lecture “Anomaly Detection”

2/18/20 Heiko Paulheim 9

Missing Values

• Possible reasons

– Failure of a sensor

– Data loss

– Information was not collected

– Customers did not provide their age, sex, marital status, …

– ...

2/18/20 Heiko Paulheim 10

Missing Values

• Treatments
– Ignore records with missing values in training data

– Replace missing value with...

• default or special value (e.g., 0, “missing”)

• average/median value for numerics

• most frequent value for nominals

imp = SimpleImputer(missing_values=np.nan, strategy='mean')

– Try to predict missing values:

• handle missing values as learning problem

• target: attribute which has missing values

• training data: instances where the attribute is present

• test data: instances where the attribute is missing

imp = imputer = KNNImputer(n_neighbors=2, weights="uniform")

2/18/20 Heiko Paulheim 11

Missing Values

• Note: values may be missing for various reasons

– ...and, more importantly: at random vs. not at random

• Examples for not random

– Non-mandatory questions in questionnaires

• “how often do you drink alcohol?”

– Values that are only collected under certain conditions

• e.g., final grade of your university degree (if any)

– Sensors failing under certain conditions

• e.g., at high temperatures

• In those cases, averaging and imputation causes information loss

– In other words: “missing” can be information!

2/18/20 Heiko Paulheim 12

Unbalanced Distribution

• Example:

– learn a model that recognizes HIV

– given a set of symptoms

• Data set:

– records of patients who were
tested for HIV

• Class distribution:

– 99.9% negative

– 0.01% positive

2/18/20 Heiko Paulheim 13

Unbalanced Distribution

• Learn a decision tree

• Purity measure: Gini index

• Recap: Gini index for a given node t :

– (NOTE: p(j | t) is the relative frequency of class j at node t).

• Here, Gini index of the top node is

1 – 0.999² – 0.001² = 0.002

• It will be hard to find any splitting
that significantly improves the purity

GINI (t)=1−∑
j

[p(j∣t)]2

false

Decision tree learned:

2/18/20 Heiko Paulheim 14

Unbalanced Distribution

• Model has very high accuracy

– 99.9%

• ...but 0 recall/precision on positive class

– which is what we were interested in

• Remedy

– re-balance dataset for training

– but evaluate on unbalanced dataset!

• Balancing:

df_majority_downsampled = resample(df_majority,

 replace=False,

 n_samples=100)

false

Decision tree learned:

2/18/20 Heiko Paulheim 15

Resampling Unbalanced Data

• Two conflicting goals

1. use as much training data as possible

2. use as diverse training data as possible

• Strategies

– Downsampling larger class

• conflicts with goal 1

– Upsampling smaller class

• conflicts with goal 2

2/18/20 Heiko Paulheim 16

Resampling Unbalanced Data

• Consider an extreme example

– 1,000 examples of class A

– 10 examples of class B

• Downsampling

– does not use 990 examples

• Upsampling

– creates 100 copies of each example of B

– likely for the classifier to simply memorize the 10 B cases

2/18/20 Heiko Paulheim 17

Resampling

• SMOTE (Synthetic Minority Over Sampling Technique)

– creates synthetic examples of minority class

• Given an example x

– create synthetic example s

– choose n among the k nearest neighbors
(w/in same class) of x

– for each attribute a

• s.a ← x.a + rand(0,1) * (n.a – x.a)

• Python has >80 variants of SMOTE

import smote_variants as sv

x
s

n

3 nearest
neighbors

of x

2/18/20 Heiko Paulheim 18

False Predictors

• ~100% accuracy are a great result

– ...and a result that should make you suspicious!

• A tale from the road

– working with our Linked Open Data extension

– trying to predict the world university rankings

– with data from DBpedia

• Goal:

– understand what makes a top university

2/18/20 Heiko Paulheim 19

False Predictors

• The Linked Open Data extension

– extracts additional attributes
from Linked Open Data

– e.g., DBpedia

– unsupervised (i.e., attributes are created fully automatically)

• Model learned: THE<20 → TOP=true

– false predictor: target variable was included in attributes

• Other examples

– mark<5 → passed=true

– sales>1000000 → bestseller=true

2/18/20 Heiko Paulheim 20

Recognizing False Predictors

• By analyzing models
– rule sets consisting of only one rule

– decision trees with only one node

• Process: learn model, inspect model, remove suspect, repeat
– until the accuracy drops

– Tale from the road example: there were other indicators as well

• By analyzing attributes
– compute correlation of each attribute with label

– correlation near 1 (or -1) marks a suspect

• Caution: there are also strong (but not false) predictors
– it's not always possible to decide automatically!

2/18/20 Heiko Paulheim 21

Unsupported Data Types

• Not every learning operator supports all data types

– some (e.g., ID3) cannot handle numeric data

– others (e.g., SVM) cannot nominal data

– dates are difficult for most learners

• Solutions

– convert nominal to numeric data

– convert numeric to nominal data (discretization, binning)

– extract valuable information from dates

2/18/20 Heiko Paulheim 22

Conversion: Binary to Numeric

• Binary fields

– E.g. student=yes,no

• Convert to Field_0_1 with 0, 1 values

– student = yes → student_0_1 = 0

– student = no → student_0_1 = 1

2/18/20 Heiko Paulheim 23

Conversion: Ordered to Numeric

• Some nominal attributes incorporated an order

• Ordered attributes (e.g. grade) can be converted to numbers
preserving natural order, e.g.

– A → 4.0

– A- → 3.7

– B+ → 3.3

– B → 3.0

• Using such a coding schema allows learners
to learn valuable rules, e.g.

– grade>3.5 → excellent_student=true

2/18/20 Heiko Paulheim 24

Conversion: Nominal to Numeric

• Multi-valued, unordered attributes with small no. of values

– e.g. Color=Red, Orange, Yellow, …, Violet

– for each value v, create a binary “flag” variable C_v , which is 1 if
Color=v, 0 otherwise

ID Color …

371 red

433 yellow

ID C_red C_orange C_yellow …

371 1 0 0

433 0 0 1

2/18/20 Heiko Paulheim 25

Conversion: Nominal to Numeric

• Many values:

– US State Code (50 values)

– Profession Code (7,000 values,
but only few frequent)

• Approaches:

– manual, with background
knowledge

– e.g., group US states

• Use binary attributes

– then apply dimensionality reduction (see later today)

2/18/20 Heiko Paulheim 26

Discretization: Equal-width

Equal Width, bins Low <= value < High

[64,67) [67,70) [70,73) [73,76) [76,79) [79,82) [82,85]

Temperature values:
64 65 68 69 70 71 72 72 75 75 80 81 83 85

2 2

Count

4
2 2 20

2/18/20 Heiko Paulheim 27

Discretization: Equal-width

[0 – 200,000) … ….

1

Count

Salary in a company

[1,800,000 –
2,000,000]

2/18/20 Heiko Paulheim 28

Discretization: Equal-height

Equal Height = 4, except for the last bin

[64 69] [70 .. 72] [73 81] [83 .. 85]

Temperature values:
64 65 68 69 70 71 72 72 75 75 80 81 83 85

4

Count

4 4
2

2/18/20 Heiko Paulheim 29

Discretization by Entropy

• Top-down approach

• Tries to minimize the entropy in each bin

– Entropy:

– where the x are all the attribute values

• Goal

– make intra-bin similarity as high as possible

– a bin with only equal values has entropy=0

• Algorithm

– Split into two bins so that overall entropy is minimized

– Split each bin recursively as long as entropy decreases significantly

−∑ p(x)log (p(x))

2/18/20 Heiko Paulheim 30

Discretization: Training and Test Data

• Training and test data have to be equally discretized!

• Learned rules:

– income=high → give_credit=true

– income=low → give_credit=false

• Applying rules

– income=low has to have the same semantics
on training and test data!

– Naively applying discretization will lead to different ranges!

2/18/20 Heiko Paulheim 31

Discretization: Training and Test Data

• Wrong:

2/18/20 Heiko Paulheim 32

Discretization: Training and Test Data

• Right:

• Accuracy in this example, using equal frequency (three bins):

– wrong: 42.7% accuracy

– right: 50% accuracy

• Python: fit discretizer on training set, transform test set

2/18/20 Heiko Paulheim 33

Dealing with Date Attributes

• Dates (and times) can be formatted in various ways

– first step: normalize and parse

• Dates have lots of interesting information in them

• Example: analyzing shopping behavior

– time of day

– weekday vs. weekend

– begin vs. end of month

– month itself

– quarter, season

• Python: use, e.g., datetime

2/18/20 Heiko Paulheim 34

High Dimensionality

• Datasets with large number of attributes

• Examples:

– text classification

– image classification

– genome classification

– …

• (not only a) scalability problem

– e.g., decision tree: search all attributes
for determining one single split

2/18/20 Heiko Paulheim 35

Curse of Dimensionality

• Learning models gets more complicated in high-dimensional spaces

• Higher number of observations are needed

– For covering a meaningful number of combinations

– “Combinatorial Explosion”

• Distance functions collapse

– i.e., all distances converge in high dimensions

– Nearest neighbor classifiers are no longer meaningful

euclidean distance=√∑
k=1

n

(pk−qk)
2

2/18/20 Heiko Paulheim 36

Feature Subset Selection

• Preprocessing step

• Idea: only use valuable features

– “feature”: machine learning terminology for “attribute”

• Basic heuristics: remove nominal attributes...

– which have more than p% identical values

• example: millionaire=false

– which have more than p% different values

• example: names, IDs

• Basic heuristics: remove numerical attributes

– which have little variation, i.e., standard deviation <s

2/18/20 Heiko Paulheim 37

Feature Subset Selection

• Basic Distinction: Filter vs. Wrapper Methods

• Filter methods

– Use attribute weighting criterion, e.g., Chi², Information Gain, ...

– Select attributes with highest weights

– Fast (linear in no. of attributes), but not always optimal

• Example:

• X_f = SelectKBest(chi2, k=20).fit_transform(X, y)

2/18/20 Heiko Paulheim 38

Feature Subset Selection

• Remove redundant attributes

– e.g., temperature in °C and °F

– e.g., textual features “Barack” and “Obama”

• Method:

– compute pairwise correlations between attributes

– remove highly correlated attributes

• Recap:

– Naive Bayes requires independent attributes

– Will benefit from removing correlated attributes

2/18/20 Heiko Paulheim 39

Feature Subset Selection

• Wrapper methods

– Use classifier internally

– Run with different feature sets

– Select best feature set

• Advantages

– Good feature set for given classifier

• Disadvantages

– Expensive (naively: at least quadratic in number of attributes)

– Heuristics can reduce number of classifier runs

2/18/20 Heiko Paulheim 40

Feature Subset Selection

• Forward selection:

start with empty attribute set
do {
 for each attribute {
 add attribute to attribute set
 compute performance (e.g., accuracy)
 }
 use attribute set with best performance
} while performance increases

• An learning algorithm is used for computing the performance

– cross validation is advised

2/18/20 Heiko Paulheim 41

Feature Subset Selection

• Searching for optimal attribute sets

• Backward elimination:

start with full attribute set
do {
 for each attribute in attribute set {
 remove attribute to attribute set
 compute performance (e.g., accuracy)
 }
 use attribute set with best performance
} while performance increases

• An learning algorithm is used for computing the performance

– cross validation is advised

2/18/20 Heiko Paulheim 42

Feature Subset Selection

• The checkerboard example revisited

– Recap: Rule learners can perfectly learn this!

– But what happens if we apply forward selection here?

2/18/20 Heiko Paulheim 43

Feature Subset Selection

• Further approaches

– Brute Force search

– Evolutionary algorithms
(will be covered in parameter optimization session)

• Trade-off

– simple heuristics are fast

• but may not be the most effective

– brute-force is most effective

• but the slowest

– forward selection, backward elimination, and evolutionary algorithms

• are often a good compromise

2/18/20 Heiko Paulheim 44

Recap: Overfitting

• Example: predict credit rating

– possible decision tree:

Name Net Income Job status Debts Rating

John 40000 employed 0 +

Mary 38000 employed 10000 -

Stephen 21000 self-employed 20000 -

Eric 2000 student 10000 -

Alice 35000 employed 4000 +

Debts
>5000

Yes No

- +

2/18/20 Heiko Paulheim 45

Name Net Income Job status Debts Rating

John 40000 employed 0 +

Mary 38000 employed 10000 -

Stephen 21000 self-employed 20000 -

Eric 2000 student 10000 -

Alice 35000 employed 4000 +

Recap: Overfitting

• Example: predict credit rating

– alternative decision tree:

Name
=”John”

No Yes

+Name=
“Alice”

Yes No

+ -

2/18/20 Heiko Paulheim 46

Recap: Overfitting

• Both trees seem equally good

– Classify all instances in the training set correctly

– Which one do you prefer?

Debts
>5000

Yes No

- +

Name
=”John”

No Yes

+Name=
“Alice”

Yes No

+ -

2/18/20 Heiko Paulheim 47

Recap: Overfitting

• Overfitting can happen with feature subsect selection, too

– Here, name seems to be a useful feature

– ...but is it?

• Remedies

– Hard for filtering methods

• e.g., name has
highest information gain!

– Wrapper methods:

• use cross validation inside!

2/18/20 Heiko Paulheim 48

Principal Component Analysis (PCA)

• So far, we have looked at feature selection methods

– we select a subset of attributes

– no new attributes are created

• PCA creates a (smaller set of) new attributes

– artificial linear combinations of existing attributes

– as expressive as possible

• Dates back to the pre-computer age

– invented by Karl Pearson (1857-1936)

– also known for Pearson's correlation coefficient

2/18/20 Heiko Paulheim 49

Principal Component Analysis (PCA)

• Idea: transform coordinate system so that each new coordinate
(principal component) is as expressive as possible

– expressivity: variance of the variable

– the 1st, 2nd, 3rd... PC should account for as much variance as possible

• further PCs can be neglected

http://setosa.io/ev/principal-component-analysis/

2/18/20 Heiko Paulheim 50

Principal Component Analysis

• Method used for computation:

– Compute covariance matrix

– Perform eigenvector factorization

– See lecture: “Data Mining and Matrices”

2/18/20 Heiko Paulheim 51

Principle Component Analysis illustrated

• Example by James X. Li, 2009

• Which 2D projection conveys most information about the teapot?

Approach:

– find longest axis first

• in practice: use average/median diameter to limit effect of outliers

– fix that axis, find next longest

2/18/20 Heiko Paulheim 52

Sampling revisited

• Feature Subset Selection reduces the width of the dataset

• Sampling reduces the height of the dataset

– i.e., the number of instances

• Trade-off

– Maximum usage of information

– Fast computation

• Notes

– Stratified sampling respects class distribution

– Kennard-Stone sampling tries to select heterogenous points

2/18/20 Heiko Paulheim 53

Kennard-Stone Sampling

1) Compute pairwise distances of points

2) Add points with largest distance from one another

3) While target sample size not reached

1) For each candidate, find smallest distance to any point in the sample

2) Add candidate with largest smallest distance

● This guarantees that heterogeneous data points are added
● i.e., sample gets more diverse
● includes more corner cases

● but potentially also more outliers
● distribution may be altered

2/18/20 Heiko Paulheim 54

Sampling Strategies and Learning Algorithms

• There are interaction effects

• Some learning algorithms rely on distributions

– e.g., Naive Bayes

– usually, stratified sampling works better

• Some rely less on distributions

– and may work better if they see more corner cases

– e.g., Decision Trees

Decision Tree Naive Bayes

Stratified .727 .752

Kennard Stone .742 .721

Titanic Dataset
Filter: 50 training examples

2/18/20 Heiko Paulheim 55

A Note on Sampling

• Often, the training data in a real-world project is already a sample

– e.g., sales figures of last month

– to predict the sales figures for the rest of the year

• How representative is that sample?

– What if last month was December? Or February?

• Effect known as selection bias

– Example: phone survey with 3,000 participants,
carried out Monday, 9-17

– Thought experiment: effect of selection bias for prediction,
e.g., with a Naive Bayes classifier

2/18/20 Heiko Paulheim 56

Summary Data Preprocessing

• Raw data has many problems

– missing values

– errors

– high dimensionality

– …

• Good preprocessing is essential for good data mining

– one of the first steps in the pipeline

– requires lots of experimentation and fine-tuning

• often the most time consuming step of the pipeline

2/18/20 Heiko Paulheim 57

Recap: The Data Mining Process

Source: Fayyad et al. (1996)

2/18/20 Heiko Paulheim 58

Questions?

	Folie 1
	Folie 2
	3. The Data Mining Process
	Folie 4
	Folie 5
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Questions?

