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Anomaly Detection
S

* Also known as “Outlier Detection”

* Automatically identify data points
that are somehow different from the rest

*  Working assumption:

— There are considerably more “normal” observations than “abnormal”
observations (outliers/anomalies) in the data

* Challenges
— How many outliers are there in the data?
— What do they look like?
— Method is unsupervised
* Validation can be quite challenging (just like for clustering)
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Recap: Errors in Data

* Sources
— malfunctioning sensors
— errors in manual data processing (e.g., twisted digits)
— storage/transmission errors
— encoding problems, misinterpreted file formats

— bugs in processing code

Image: http://www.flickr.com/photos/16854395@N05/3032208925/
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Recap: Errors in Data
e

* Simple remedy

Filter Examples
— remove data points outside a given interval q=s B g
* this requires some domain knowledge e
° Advanced remedles 5+ Parameters & context

b N = -

- automatlca”y f|nd T Filter Examples

SUSp|C|OUS data p0|nts condition class [attrihute_value_ﬂlter 'l

parameter string [Temperature>3[l B& Temperature<1UUl
[ invert filter
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Applications: Data Preprocessing
-

* Data preprocessing
— removing erroneous data
— removing true, but useless deviations

* Example: tracking people down using their GPS data
— GPS values might be wrong

— person may be on holidays in Hawaii
* what would be the result of a kNN classifier?
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Applications: Credit Card Fraud Detection
e

* Data: transactions for one customer
— €15.10 Amazon
— €12.30 Deutsche Bahn tickets, Mannheim central station
— €18.28 Edeka Mannheim
<= $500.00 Cash withdrawal. Dubai Intl. Airport > -
— €48.51 Gas station Heidelberg o |
— €21.50 Book store Mannheim

* Goal: identify unusual transactions
— possible attributes: location, amount, currency, ...
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Applications: Hardware Failure Detection
e

I'X powerlevel Temperature
in dBm in °C
-2,08
34 4
A N "...'
2,09 imn ! 1'_II| I'J.': LI L Ir AL 33!3
: | I.i 1 | J..JI _,
s 33,2

tA=26/10/2010 to 02/11/2010

collected data from one 10Gig Ethernet SR interface @ man-da

Thomas Weible: An Optic's Life (2010).
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Applications: Stock Monitoring

« Stock market prediction
* Computer trading

. . . THE DAY HAS COME
<o [eelative performance TO MAKE A HILLING
Fa
— Procter & Gamble S&P 500 Masdagq Crude = Dallar index
100 = = =
98
215]
o4
9z
80 I I | | %
1:45 2:00 2:15 2:30 2:45 300 315 330 345 4:00 !'._--
=
* Rebasad: May 6 2010, 1:45 p.m. = 100 REUTERS
Source; Thomson Reuters

http://blogs.reuters.com/reuters-investigates/2010/10/15/flash-crash-fallout/
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Errors vs. Natural Outliers
S e

Ozone Depletion History

® |n 1985 three researchers (Farman, Antarctic Ozone Hole
Gardinar and Shanklin) were Average Area
puzzled by data gathered by the -3,
British Antarctic Survey showing that AT s
ozone levels for Antarctica had ST £
dropped 10% below normal levels - 20 E
___________ Amarcica - £
® Why did the Nimbus 7 satellite, - 1D ﬂ%
which had instruments aboard for =
recording ozone levels, not record | - E
similarly low ozone concentrations? L
1979 a0 2001
) : Hole defined as area = 220 Dobson Units
The ozone concentrations recorded Source: NASA Goddard Space Flight Center

by the satellite were so low they
were being treated as outliers by a
computer program and discarded!

Sources:
http://exploringdata.cqu.edu.au/ozone.html
http://www.epa.gov/ozone/science/hole/size.html
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Errors, Outliers, Anomalies, Novelties...
e

* What are we looking for?

— Wrong data values (errors)

— Unusual observations (outliers or anomalies)

— Observations not in line with previous observations (novelties)
* Unsupervised Setting:

— Data contains both normal and outlier points

— Task: compute outlier score for each data point
* Supervised setting:

— Training data is considered normal

— Train a model to identify outliers in test dataset
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Methods for Anomaly Detection

e
* Graphical

— Look at data, identify suspicious observations
« Statistic

— Identify statistical characteristics of the data
* e.g., mean, standard deviation
— Find data points which do not follow those characteristics
* Density-based
— Consider distributions of data
— Dense regions are considered the “normal” behavior
* Model-based

— Fit an explicit model to the data
— ldentify points which do not behave according to that model
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Anomaly Detection Schemes

® General Steps

— Build a profile of the “normal” behavior

¢ Profile can be patterns or summary statistics for the overall
population

— Use the “normal” profile to detect anomalies
¢ Anomalies are observations whose characteristics

differ significantly from the normal profile *
@ ... | n .
® Types of anomaly detection o . *ﬁﬂ“ ®,
schemes ® R

— Graphical & Statistical-based
— Distance-based
— Model-based
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Graphical Approaches
e
® Boxplot (1-D), Scatter plot (2-D), Spin plot (3-D)

® Limitations
— Time consuming
— Subjective

QJ.T T

0,
L 0,

. L

Ll
[
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Convex Hull Method
e

® Extreme points are assumed to be outliers
® Use convex hull method to detect extreme values

Convex hull

® \What if the outlier occurs in the middle of the data?
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Interpretation: What is an Outlier?
-

o
-
-
Unitad States
w -
2
[=%
[+]
@
(=4
=
= w
=
=3 ® Argenting
(=]
=
=
@
o
2 # Canada
"
]
b=l
-
£ =
% Fi nl.anﬂ
= ® Swizerland
= r
o Croatia g
Barbados @ [ o8 Frince
Austria
& New Zpaland
Slovenia @ @ Balgium -
Maka & 4
™ - Luixemibourg
i
lsrag s 8g Croch Republic ® Monway
Lithuanis e 1]
Denmark & . ¥ @ Sweden
Jtafy @ Latda @ lceland
Ireland @ # Australia @ Gemany
Hungary @ & Cyprus
o~ @ Spain
Nethetands @
pore Poland
,5 pga ssnum Korea o » Catar
= Jagan Chile
T T T T T I
0 20 40 60 80 100

Guns per 100 people
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Statistical Approaches
e

® Assume a parametric model describing the distribution of the data
(e.g., normal distribution)

® Apply a statistical test that depends on
— Data distribution
— Parameter of distribution (e.g., mean, variance)
— Number of expected outliers (confidence limit)

//—\
95 %\

S aa

2.5% 5%
/{ 9597 Confidence \I -

Limits —j»

Probability

Data Values

3/31/20 Heiko Paulheim




Interquartile Range
e

* Divides data in quartiles

* Definitions:
— Q1: x 2 Q1 holds for 75% of all x
— Q3: x =2 Q3 holds for 25% of all x
- IQR = Q3-Q1

* Qutlier detection:
— All values outside [median-1.5*IQR ; median+1.5*IQR]

* Example:
- 0,1,1,3,3,5,7,42 — median=3, Q1=1, Q3=7 - IQR =6
— Allowed interval: [3-1.5%6 ; 3+1.5*6] = [-6 ; 12]
— Thus, 42 is an outlier
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Interquartile Range
e

* Assumes a normal distribution

IQR
—Hi
Q1 Q3
Q1 -1.5 X IQR Q3+ 1.5 X IQR

| |

| |
. Median

-40 -3¢0 -20¢ -lo 00 lo 20 30 40

~2.6980 -0.67450 0.67450 2.6980

2465%  50%  24.65%

—ﬂlrU —3IU' —EIU —1a DIU lo ZIU 3IU 4IU

15.73% 68.27% 15.73%
—40 —-30 20 -1lo 0o lo 20 3g 4a

3/31/20 Heiko Paulheim




Interquartile Range
e

* Visualization in box plot

Outliers ;
j} -~ Q2+15%QR
—T 1 Q3
5 Median
QR
+ —— Q2-1.5"IQR
Outliers 8
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Median Absolute Deviation (MAD)
-

* MAD is the median deviation from the median of a sample, i.e.

MAD:=mediani(Xi—medianj(X-))

J

* MAD can be used for outlier detection

— all values that are k*MAD away from the median
are considered to be outliers

- e.g., k=3

* Example: _
- 0.1,1,3,5,7,42 — median = 3 Carl Friedrich Gauss,
— deviations: 3,2,2,0,2,4,39 — MAD = 2 1777-1855

— allowed interval: [3-3*2 ; 3+3*2] = [-3,9]
— therefore, 42 is an outlier
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Fitting Elliptic Curves
S

* Multi-dimensional datasets
— can be seen as following a normal distribution on each dimension
— the intervals in one-dimensional cases become elliptic curves

Mahalanobis distances of a contaminated data set:

* ool dal, | ——- MLE dist

‘ - robust dist
@ Inliers

@ outliers
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Limitations of Statistical Approaches
-

* Most of the tests are for a single attribute (called: univariate)

* For high dimensional data, it may be difficult to estimate the true
distribution

* In many cases, the data distribution may not be known

— e.g., IQR Test: assumes Gaussian distribution
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Examples for Distributions
e

* Normal (gaussian) distribution
— e.g., people's height

8 2 8

Frecquency
& 8

:

http://www.usablestats.com/images/men_women_height_histogram.jpg
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Examples for Distributions
e

* Power law distribution
— e.g., city population

200,000

250,000 T
a0 ]

155,000 -

Batangas 2000 Population, by City/Municipality

small/Medium Cities

Large Towns

Small/ Medium Towns

waoe H- -

50,000 -8
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CUENCA )
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1
1BAAN
LA rn [
L

AR
SICEE 1
SRASCUAL

http://www.jmc2007compendium.com/V2-ATAPE-P-12.php
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Examples for Distributions
e

* Pareto distribution
— e.g., wealth

FIGURE |

Wealth Distribution in the United States — 2003
(married households headed by a 60-69 year old)

Percent
100
Wealth Share of Top ———
1 Percent: 25.8%
20 Wealth Share of TOp ee—
3 Percent: 30.T%
i Wealth Share of Top ’
10 Percent: 62.9%
4a
0 msama it ||||IIII|||||”|I|I|||||||||||”|H|| H
o 10 20 30 40 =0 B0 o 80 g0 100

Percentile
Source: Authors' calculations from the 2004 Survey of Consumer Finances.

http://www.ncpa.org/pub/st289?pg=3

3/31/20 Heiko Paulheim




Examples for Distributions

* Uniform distribution
— e.g., distribution of web server requests across an hour

Arrival Time of HTTP Requests Within Hour

0.10
2 008 -
T 0.06 -
‘.E“um
0.02
% g00
A0 o 0 Ep .fn b,c}
AT @5 A '-';. of® Al
f& oy X "1- o P
EE G *&Q’B & 2 anhw
Seconds

O Observed @ Estimated

http://www.brighton-webs.co.uk/distributions/uniformc.aspx
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Outliers vs. Extreme Values
S e

* So far, we have looked at extreme values only
— But outliers can occur as non-extremes
— In that case, methods like IQR fail

-1.5 -1 -0.5 0 0.5 1 15
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Outliers vs. Extreme Values
S e

* IQR on the example below:
— Q2 (Median) is 0
- Q1is-1,Q3is 1
— everything outside [-1.5,+1.5] is an outlier
— there are no outliers in this example

-1.5 -1 -0.5 0 0.5 1 15
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Time for a Short Break

CAN MY BOYFRIEND
COME ALONG?

\

TM NOT YOUR
BOYFRIEND!

[ You TOTALLY ARE.

TM CASUALLY
DATING A NUMBER

L8

OF PEOPLE.

N

3/31/20

BUT YOU SPEND TWICE A8 MucH
TIME WITH ME AS WITH ANYONE
ELSE. IM ACLEAR OUTLER.

HOH -

http://xkcd.com/539/

Heiko Paulheim

YoUR MATH 15
IRREFUTABLE.

FACE IT—=IM
YoUR STATSNCALLY
SIGNIFICANT OTHER.
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Distance-based Approaches
-

® Data is represented as a vector of features

® Various approaches
— Nearest-neighbor based
— Density based
— Clustering based
— Model based
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Nearest-Neighbor Based Approach
-

® Approach:
— Compute the distance between every pair of data points
— There are various ways to define outliers:

¢ Data points for which there are fewer than p neighboring points
within a distance D

¢ The top n data points whose distance to the ki nearest neighbor is
greatest \Bﬁ RapidMiner j

¢ The top n data points whose average distance to the k nearest
neighbors is greatest

H+ Detect Qutlier (Distances)

I::]E":-H _ E":-.'-l[:l numbper of neighbors [10 l

i ori [ _
number of outliers [10 l

=)

distance function [euclidian distance *]
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Density-based: LOF approach
-

® For each point, compute the density of its local
neighborhood

— if that density is higher than the average density,
the point is in a cluster

— if that density is lower than the average density,
the point is an outlier
® Compute local outlier factor (LOF) of a point A

— ratio of average density to density of point A

® Outliers are points with large LOF value

— typical: larger than 1
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LOF: lllustration
I EE——

* Using 3 nearest neighbors

— average density is the inverse of the average radius
of all 3-neighborhoods

— density of A is the inverse of the radius of A's 3-neighborhood

average density o1
density (A)

* here

http://commons.wikimedia.org/wiki/File:LOF-idea.svg
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Nearest-Neighbor vs. LOF

E——
« With kNN, only p, is found as an outlier

— there are enough near neighbors for p, in cluster C,

« With LOF, both p, and p, are found as outliers

[ -] L]

Cpe- -
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Recap: DBSCAN

 DBSCAN is a density-based algorithm

— Density = number of points within a specified radius (Eps)
* Divides data points in three classes:

— A point is a core point if it has more than a specified number of
points (MinPts) within Eps

* These are points that are at the interior of a cluster

— A border point has fewer than MinPts within Eps, but is in the
neighborhood of a core point

— A noise point is any point that is not a core point or a border
point
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Recap: DBSCAN
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1.5

05

-05

-1.5

f

MinPts =4
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Recap: DBSCAN

Point types: core,

Original Points

border and noise

=4

Eps = 10, MinPts

=
@
<
-
©
o
o
=
@
I




DBSCAN for Outlier Detection

S
 DBSCAN directly identifies noise points

— these are outliers not belonging to any cluster

* in RapidMiner: assigned to cluster 0

* in scikit-learn: label -1

— allows for performing outlier detection directly

- - — % Filter Examples
Clustering Filter Examples
; condition class [attribute value_filter *]
{: Exa clu _-:| {: EXa Exa ::I = =
@) clu :| % ari :| parameter string [cluster:cluster_tl l
& 3 [ ] invert filter
;\
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Clustering-based Outlier Detection
e

® Basicidea:
— Cluster the data into groups of different density
— Choose points in small cluster as candidate outliers

— Compute the distance between candidate points and non-candidate
clusters.

— If candidate points are far from all other non-candidate points,
they are outliers
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Clustering-based Local Outlier Factor
e

* ldea: anomalies are data points that are s 1
— in a very small cluster or
— far away from other clusters

* CBLOF is run on clustered data
* Assigns a score based on

— the size of the cluster a data point is in
— the distance of the data point to the next large cluster
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Clustering-based Local Outlier Factor
e

* General process:

— first, run a clustering algorithm (of your choice)
- then, apply CBLOF Cluster-Base...

{] exa elu [3 clu clu
@ clu D clu Ej:i clu

+ Result: data points with outlier score o

£ 5Ty
L

@) Data View Meta Data View Plot View Advanced Charts Annotations

ExampleSet (208 examples, 4 special attributes, 60 regular attributes)

Row Mo. cluster class id outlier attribute_1  attribute_2  attribute_3  attribute_4  attribute_5  attribute_6  attribute_7
1 cluster_0 Rock 1 38.516 0.020 0.037 0.043 0.021 0.095 0.099 0.154
2 cluster_2 Rock 2 65.452 0.045 0.052 0.084 0.069 0.118 0.258 0.218
3 cluster_2 Rock 3 75.490 0.026 0.058 0.110 0.108 0.097 0.228 0.243
4 cluster_0 Rock 4 45112 0.010 0.017 0.062 0.020 0.020 0.037 0.110
5 cluster_2 Rock 5 68.759 0.076 0.067 0.048 0.039 0.059 0.065 0121
g cluster_2 Rock G 69.133 0.029 0.045 0.028 0.017 0.038 0.099 0.120
7 cluster_2 Rock 7 G5.306 0.032 0.096 0132 0.141 0167 0.171 0.073
8 cluster_3 Rock 8 48.851 0.052 0.055 0.084 0.032 0.116 0.092 0.103
g cluster_3 Rock 9 52.493 0.022 0.038 0.048 0.048 0.065 0.059 0.075
10 cluster_3 Rock 10 45.437 0.016 0.017 0.035 0.007 0.019 0.067 0.106
il cluster_1 Rock 11 68.168 0.004 0.006 0.015 0.034 0.031 0.028 0.040
12 cluster_3 Rock 12 46.765 0.012 0.031 0.017 0.031 0.036 0.010 0.018
13 cluster_2 Rock 13 56.138 0.008 0.008 0.006 0.025 0.034 0.055 0.053
14 cluster_1 Rock 14 69.857 0.009 0.006 0.025 0.049 0.120 0.159 0.139
15 cluster_1 Rock 15 84.639 0.012 0.043 0.060 0.045 0.060 0.036 0.053
16 cluster_0 Rock 16 44131 0.030 0.062 0.065 0.092 0.162 0.229 0.218
7 cluster_0 Rock 17 33.057 0.035 0.012 0.019 0.047 0.074 0.118 0.168
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PCA and Reconstruction Error
e

* Recap: PCA tries to capture most dominant variations in the data
— those can be seen as the “normal” behavior

* Reconstruct original data point by inversing PCA
— close to original: normally behaving data point
— far from original: unnormally behaving data point
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Model-based Outlier Detection (ALSO)
e

* |dea: there is a model underlying the data
— Data points deviating from the model are outliers

1

| /
! | |
0.9 | = u" = /‘/l/
| [ | |
../ [ n
0.8 g !/;
; |
-../‘
0.7 I/
outlier POINt O M- L] ~ R -
| o, R Wy
0.6 normal pointni | |
’ S = E Mdictedn T
| s | =
0.5 e . [ |
| H /./. ‘
i ' [ |
0.4 | - l/
u A { .
0.3 L !./ m
. Ly -
L [ 1]
0.2 |
""".' """""""""""" ;"7 ‘..i """" r - l.“““-“' """""" . .
m | i predicted o
0.1 - |
' T L m '
nn §
0 u
0 01 02 03 04 05 06 07 08 09 1
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Model-based Outlier Detection (ALSO)

e
* ALSO (Attribute-wise Learning for Scoring Outliers)

— Learn a model for each attribute given all other attributes

— Use model to predict expected value

— Deviation between actual and predicted value — outlier

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

3/31/20

m § Eg
L I [ __/‘. -
nlt =
ol | C
] [
™ | | ./‘
[
outlier point o | .- - ‘.
normal point n. 1
" ] .predicted n'
../ u
../' ™
N n
] _/./. ‘
[ l/ "
/
g =" )
) | |
n " m
- g Eg
- :/.I/ ] | |
./ ™ predicted o
g -
nn §
]
0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1

Heiko Paulheim




Interpretation: What is an Outlier? (recap)
e

3/31/20

Gun related deaths per 100,000 people
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Model-based Outlier Detection (ALSO)
e

* For each data point /, compute vector of predictions /’
* Outlier score: Euclidean distance of i and /'

— in z-transformed space

ﬂ'unu-f.-z'_r_;.‘lEc.-d'[i::l F= Z {H‘ o Ei]g

f—
* Refinement: assign weights to attributes
— given the strength of the pattern learned
— measure: RRSE -
. 1 . y
o(i) = Zu.*,::-{n; —E‘A,]E.

T .
Zk:l Wi L—1

— ignores deviations on unpredictable attributes (e.g., database IDs)

 Rationale;:

— for an outlier, require both a strong pattern and a strong deviation
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One-Class Support Vector Machines

* Recap: Support Vector Machines
— Find a maximum margin hyperplane to separate two classes
— Use a transformation of the vector space
* Thus, non-linear boundaries can be found

B1
O
O O
O
O
N 9
_i___:_:_::E:.E:E--\ -------- :‘.‘Z;...
, . b22
|
| .
. N.‘\l:nar . Y b11
¥ | R4
b12
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One-Class Support Vector Machines
e

* One-Class Support Vector Machines
— Find best hyperplane that separates the origin from the rest of the data
* Maximize margin
* Minimize errors
— Points on the same side as the origin are outliers

B2
Ldrmg i | hx‘x HK&
%

* Recap: SVMs require extensive parameter tunining

— Difficult to automatize for anomaly detection,
since we have no training data
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Isolation Forests
S e

* [solation tree:

— a decision tree that has only leaves with one example each
* Isolation forests:

— train a set of random isolation trees
* l|dea:

— path to outliers in a tree is shorter than path to normal points

— across a set of random trees, average path length is an outlier score

IsolationForest

o training observations
® new regular ocbservations
e new abnormal observations

-4
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Isolation Forest
S e

* Training a single isolation tree
— for each leaf node w/ more than one data point
* pick an attribute Att and a value V at random

* create inner node with test Att<V
— train isolation tree for each subtree

* Output
— A tree with just one instance per node

— Usually, an upper limit on height is used . solationForest
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Isolation Forest

*  Probability of (0,0) ending .
in a leaf at height 1 0.9 - o

— pick Att X, pick V<0.52  , L R
0.7 - | |
0.6

0.5

0.4
0.3

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Isolation Forest

S
*  Probability of (0,0) ending -
in a leaf at height 1 0.9 = =
— pick Att Y, pick V<0.62 08 m " L . an
0.7 H N |

0.6

0.5

0.4
0.3

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Isolation Forest

1 ‘ |

* Probability of (0,0) endino
in a leaf at height 1 .9 N 0
B0 ok Att X, pick V<0.52, or - " .

0.8 | | m m

=_pick Att Y, pick V<0.62 m " g u

0.6

* 0.570.52 +0.5*0.62
— 0.57 0.5

0.4
0.3

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Isolation Forest

*  Probability of (0.74,1) ending ~

in a leaf at height 1 O By &
|
— pick Att Y, pick V>0.91 08 m " L . an
m ¥ g n
0.7 H N |
* 0.570.09 g i
— 0.045 v
0.5
0.3
(0.74,1)
0.2
0.1
om
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Isolation Forest

* Probability of (1,0.9) ending

in a leaf at height 1 0.9
— pick Att X, pick V>0.98 08 m "
0.7 m N
* 0.5%0.02 _
— 0.01 >
0.5
0.3
(0.74,1)
0.2
0.1
om

3/31/20 Heiko Paulheim




Isolation Forest

* Probability of any other
data point ending 0. 0 L
in a leaf at height 1

|
0.8 m " @ . .
— this is not possible! O

— at least two tests > il _—

are necessary 0.6 =
0.5
0.4
0.3
0.2

0.1

3/31/20 Heiko Paulheim




Isolation Forest
S e

* Observations 1 -
— data points in dense areas °° . _'
need more tests 0 m " L . a"
* i.e., they end up deeper m " g
in the trees 07 e "
— data points far away from s =
the rest have a higher
probability to be isolated  °°
earlier o
* i.e., they end up higher
in the trees 03

0.2

0.1

om
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3/31/20 Heiko Paulheim o7




High-Dimensional Spaces
S

* A large number of attributes may cause problems
— many anomaly detection approaches use distance measures
— those get problematic for very high-dimensional spaces
— meaningless attributes obscure the distances

* Practical hint:
— perform dimensionality reduction first
— i.e., feature subset selection, PCA
— note: anomaly detection is unsupervised

* thus, supervised selection (like forward/backward selection) does
not work
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High-Dimensional Spaces
S

* Recap: attributes may have different scales

— Hence, different attributes may have different contributions to outlier
scores

* Compare the following two datasets:

* Baden-Wirttemberg Baden-Wurttemberg

— population = 10,569,111 — population = 10,569,111

— area = 35,751.65 km? — area = 35,751,650,000 m?
* Bavaria * Bavaria

— population = 12,519,571 — population = 12,519,571

— area = 70,549.44 km? — area = 70,549,440,000 m?
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High-Dimensional Spaces
S

* Baden-Wdirttemberg * Baden-Wdirttemberg
— population = 10,569,111 — population = 10,569,111
— area = 35,751.65 km? — area = 35,751,650,000 m?
* Bavaria * Bavaria
— population = 12,519,571 — population = 12,519,571
— area = 70,549.44 km? — area =70,549,440,000 m?

* In the second set, outliers in the population are unlikely to be
discovered

— Even if we change the population of Bavaria by a factor of 100,
the Euclidean distance does not change much

* Thus, outliers in the population are masked by the area attribute
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High-Dimensional Spaces
S

¢ Solution:
— Normalization!

* Advised: ' ‘X_Ml
— z-Transformation X —70%

— More robust w.r.t. outliers than
simple projection to [0;1]

3/31/20
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Evaluation Measures
S e

* Anomaly Detection is an unsupervised task
* Evaluation: usually on a labeled subsample

 Evaluation Measures:
— F-measure on outliers
— Area under ROC curve
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Evaluation Measures
S e

* Anomaly Detection is an unsupervised task
* Evaluation: usually on a labeled subsample
— Note: no splitting into training and test data!

* Evaluation Measures:
— F-measure on outliers
— Area under ROC curve

Loo

— Plots false positives o prm——
against true positives o

8 055
=

& 050 L]
™

0.30
0.z25
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Evaluation Measures
S e

* Anomaly Detection is an unsupervised task

* Evaluation: usually on a labeled subsample
— Note: no splitting into training and test data!

* Evaluation Measures:
— F-measure on outliers
— Area under ROC curve

— Plots false positives
against true positives

Read CSV Hormalize k-HH Global A...
q fi % aut [ { exa exa [} {] exa xa [ (] exa exa [
) = @ ori ::I l: 11111 { &H i :) (] per roc D
pre :I 11111 | :1 ﬁj:l aue D
a & pre [
per [
=]
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Semi-Supervised Anomaly Detection
e

* All approaches discussed so far are unsupervised
— they run fully automatic
— without human intelligence

* Semi-supervised anomaly detection
— experts manually label some data points as being outliers or not
— anomaly detection becomes similar to a classification task
* the class label being outlier/non-outlier
— Challenges:
* QOutliers are scarce — unbalanced dataset
* Outliers are not a class
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Example: Outlier Detection in DBpedia

URI Wrappl f Open L
Burner \ calais y/ff - Michael Jordan
7 7 | iserve | I__{
%“1 Freebase ’. _-'G'.nue.. o '.1 i,
v — DBpedia —E e
n = “{ J
e
. dbpedia
- DBped
pedia w,/

— extracts data from infoboxes in Wikipedia

— based on crowd-sourced mappings to an ontology

* Example o
Wikipedia page on Michael Jordan Mo,

Born February 17, 1963 (age 51)
Brooklyn, Mew York

American

dbpedia:Michael Jordan
dbpedia-owl:height -« e T
"1.981200"""*xsd:double . Career informaion

High school Emsley A Laney

+ (Wilmingfen, North Carolina)
College [ogh Cagalina (1981-—1984)
NBA draft 1984 / Round: 1/ Pick: 3rd

overall
Selected by the Chicago Bulls

Dominik Wienand, Heiko Paulheim: e o

Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014
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Example: Outlier Detection in DBpedia
e

* DBpedia is based on heuristic extraction
* Several things can go wrong

— wrong data in Wikipedia

— unexpected number/date formats

— errors in the extraction code

* Can we use anomaly detection to remedy the problem?

Dominik Wienand, Heiko Paulheim:
Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014
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Example: Outlier Detection in DBpedia

-
* Challenge

— Wikipedia is made for humans, not machines

— Input format in Wikipedia is not constrained

* The following are all valid representations of the same height value
(and perfectly understandable by humans)

6

1
6
6

ft 6 1in,6ft 6in,6'6"'',6'6”, 676" 7, ...

.98m, 1, 98m, Im 98, 1m 98cm, 198cm, 198 cm, ...

ft 6 in (198 cm), 6ft 6in (1.98m),06'6"'' (1.98 m), ...

ft © in[l]’ 6 ft 6 1n [citation needed]’

Dominik Wienand, Heiko Paulheim:
Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014

3/31/20

Heiko Paulheim




Example: Outlier Detection in DBpedia
e

* Preprocessing: split data for different types

— height is used for persons or buildings

— population is used for villages, cities, countries, and continents
* Separate into single distributions

— makes anomaly detection better

* Result
— errors are identified at ~90% precision
— systematic errors in the extraction code can be found

Dominik Wienand, Heiko Paulheim:
Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014
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Example: Outlier Detection in DBpedia
e

* Footprint of a systematic error

6000

http://dbpedia.org/ontology/

TennisPlayer

5000 http://dbpedia.org/ontology/
Boxer

I http://dbpedia.org/ontology/
SoccerManager

W http://dbpedia.org/ontology/

3000 BasketballPlayer

W http://dbpedia.org/ontology/
RughyPlayer

4000

< n 3 0O L0 0 = =

2000 W http://dbpedia.org/ontology/
IceHockeyPlayer

AmericanFootballPlayer
| : ia.
1000 A http://dbpedia.org/ontology/
( ] III II B http://dbpedia.org/ontology/
0 —*rrrr Ly| - PRRRRRARTNRRLARY. . |I|I| AR o SoccerPlayer
o
—l

1.76
1.82
1.88
1.94
2.06
2.12
2.18
2.24

2.3

height in m

Dominik Wienand, Heiko Paulheim:
Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014
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Example: Outlier Detection in DBpedia

* Typical error sources Semaphore
Adelaide, South Australia

— unit conversions gone wrong
(e.g., imperial/metric)

— misinterpretation of numbers

* e.g., village Semaphore in Australia
— population: 28,322,006
(all of Australia: 23,379,555!)
— a clear outlier among villages

Semsaphore Beach

Population: 2832 2006 Census |1
Established: 1849
Postcode: 5019
Location: 14 km (9 mi) from CBD
LGA: City of Port Adelaide

Enfield
Statelterritory Lee
electorate(s):
Dominik Wienand, Heiko Paulheim: Federal Division(s): Port Adelaide

Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014
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Errors vs. Natural Outliers
S e

 Hard task for a machine

Pauline Musters

i

* e.g., an adult person 58cm high
* e.g.,a7.4m high vehicle

A
r.'I-usters I'-IEHT to an average man

Born February 26, 1876

Os=zendrecht, Netherlands
Died March 1, 1895 (aged 19)

Mew ork City
Cause of Combination of pneumonia and
death meningitis

Known for Shortest verified woman ever

Height 23 inches (58 cm})

Dominik Wienand, Heiko Paulheim:
Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014
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Wrap-up
e

* Anomaly Detection is useful for
— data preprocessing and cleansing
— finding suspect data (e.g., network intrusion, credit card fraud)

* Methods
— visual/manual
— statistics based
— density based
— model based
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Questions?

o

&
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