
Data Mining II
Ensembles

Heiko Paulheim

2/24/20 Heiko Paulheim 2

Introduction

• “Wisdom of the crowds”

– a single individual cannot know everything

– but together, a group of individuals knows a lot

• Examples

– Wikipedia

– Crowdsourcing

– Prediction

http://xkcd.com/903/

2/24/20 Heiko Paulheim 3

Introduction

• “SPIEGEL Wahlwette” (election bet) 2013

– readers of SPIEGEL Online were asked to guess
the federal election results

– average across all participants:

• only a few percentage points error for final result

• conservative-liberal coalition cannot continue

https://lh6.googleusercontent.com/-U9DXTTcT-PM/UgsdSzdV3JI/AAAAAAAAFKs/GsRydeldasg/w800-h800/
Bildschirmfoto+2013-08-14+um+07.56.01.png

2/24/20 Heiko Paulheim 4

Introduction

• “Who wants to be a Millionaire?”

• Analysis by Franzen and Pointner (2009):

– “ask the audience” gives a correct majority result in 89% of all cases

– “telephone expert”: only 54%

http://hugapanda.com/wp-content/uploads/2010/05/who-wants-to-be-a-millionaire-2010.jpg

2/24/20 Heiko Paulheim 5

Ensembles

• So far, we have addressed a learning problem like this:

classifier = DecisionTreeClassifier(max_depth=5)

...and hoped for the best

• Ensembles:

– wisdom of the crowds for learning operators

– instead of asking a single learner,
combine the predictions of different learners

2/24/20 Heiko Paulheim 6

Ensembles

• Prerequisites for ensembles: accuracy and diversity

– different learning operators can address a problem (accuracy)

– different learning operators make different mistakes (diversity)

• That means:

– predictions on a new example may differ

– if one learner is wrong, others may be right

• Ensemble learning:

– use various base learners

– combine their results in a single prediction

2/24/20 Heiko Paulheim 7

Voting

• The most straight forward approach

– classification: use most-predicted label

– regression: use average of predictions

• We have already seen this

– k-nearest neighbors

– each neighbor can be regarded
as an individual classifier

x

2/24/20 Heiko Paulheim 8

Voting in RapidMiner & SciKit Learn

• RapidMiner: Vote operator uses different base learners

• Python: VotingClassifier(
 (“dt”,DecisionTreeClassifier(),
 “nb”,GaussianNB(),
 “knn”,KNeighborsClassifier())

2/24/20 Heiko Paulheim 9

Performance of Voting

• Accuracy in this example:

– Naive Bayes: 0.71

– Ripper: 0.71

– k-NN: 0.81

• Voting: 0.91

2/24/20 Heiko Paulheim 10

Why does Voting Work?

• Suppose there are 25 base classifiers

– Each classifier has an accuracy of 0.65, i.e., error rate = 0.35

– Assume classifiers are independent

• i.e., probability that a classifier makes a mistake does not depend
on whether other classifiers made a mistake

• Note: in practice they are not independent!

• Probability that the ensemble classifier makes a wrong prediction

– The ensemble makes a wrong prediction if the majority of the classifiers
makes a wrong prediction

– The probability that 13 or more classifiers are wrong is

∑
i=13

25

(25
i)εi (1−ε)25−i≈0.06≪ε

2/24/20 Heiko Paulheim 11

Why does Voting Work?

• In theory, we can lower the error infinitely

– just by adding more base learners

• But that is hard in practice

– Why?

• The formula only holds for independent base learners

– It is hard to find many truly independent base learners

– ...at a decent level of accuracy

• Recap: we need both accuracy and diversity

∑
i=13

25

25
i i 1−25−i≈0.06≪

2/24/20 Heiko Paulheim 12 12

Recap: Overfitting and Noise

Likely to overfit the data

2/24/20 Heiko Paulheim 13

Bagging

• Biases in data samples may mislead classifiers

– overfitting problem

– model is overfit to single noise points

• If we had different samples

– e.g., data sets collected at different times, in different places, …

– ...and trained a single model on each of those data sets...

– only one model would overfit to each noise point

– voting could help address these issues

• But usually, we only have one dataset!

2/24/20 Heiko Paulheim 14

Bagging

• Models may differ when learned on different data samples

• Idea of bagging:

– create samples by picking examples with replacement

– learn a model on each sample

– combine models

• Usually, the same base learner is used

• Samples

– differ in the subset of examples

– replacement randomly re-weights instances (see later)

2/24/20 Heiko Paulheim 15

Bagging: illustration

Training Data

Data1 Data mData2

Learner1 Learner2 Learner m

Model1 Model2 Model m

Model Combiner

 Final Model

2/24/20 Heiko Paulheim 16

Bagging: Generating Samples

• Generate new training sets using sampling with replacement
(bootstrap samples)

– some examples may appear in more than one set

– some examples will appear more than once in a set

– for each set of size n, the probability that a given example appears in it
is

• i.e., on average, less than 2/3 of the examples appear in any single
bootstrap sample

Original Data 1 2 3 4 5 6 7 8 9 10
Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

Pr x∈Di=1−1−1
n

n

0.6322

2/24/20 Heiko Paulheim 17

Bagging in RapidMiner and Python

• Bagging operator uses a base learner

• Number and ratio of samples can be specified

– bagging = BaggingClassifier(
 DecisionTreeClassifier(),
 10,
 0.5)

2/24/20 Heiko Paulheim 18

Performance of Bagging

• Accuracy in this example:

– Ripper alone: 0.71

– Ripper with bagging (10x0.5): 0.86

2/24/20 Heiko Paulheim 19

Bagging in RapidMiner

• 10 different rule models are learned:

2/24/20 Heiko Paulheim 20

Variant of Bagging: Randomization

• Randomize the learning algorithm instead of the input data

• Some algorithms already have a random component

– e.g. initial weights in neural net

• Most algorithms can be randomized, e.g., greedy algorithms:

– Pick from the N best options at random instead of always picking the
best options

– e.g.: test selection in decision trees or rule learning

• Can be combined with bagging

2/24/20 Heiko Paulheim 21

Random Forests

• A variation of bagging with decision trees

• Train a number of individual decision trees

– each on a random subset of examples

– only analyze a random subset of attributes for each split
(Recap: classic DT learners analyze all attributes at each split)

– usually, the individual trees are left unpruned

rf = RandomForestClassifier(n_estimators=10)

2/24/20 Heiko Paulheim 22

Paradigm Shift: Many Simple Learners

• So far, we have looked at learners that are as good as possible

• Bagging allows a different approach

– several simple models
instead of a single complex one

– Analogy: the SPIEGEL poll
(mostly no political scientists,
nevertheless: accurate results)

– extreme case: using only decision stumps

• Decision stumps:

– decision trees with only one node

2/24/20 Heiko Paulheim 23

Bagging with Weighted Voting

• Some learners provide confidence values

– e.g., decision tree learners

– e.g., Naive Bayes

• Weighted voting

– use those confidence values for weighting the votes

– some models may be rather sure about an example,
while others may be indifferent

– Python: parameter voting=soft

• sums up all confidences for each class and predicts argmax

• caution: requires comparable confidence scores!

2/24/20 Heiko Paulheim 24

Weighted Voting with Decision Stumps

• Weights: confidence values
in each leaf

high confidence
that it is rock
(weight = 1.0)lower confidence

that it is mine
(weight = 0.6)

2/24/20 Heiko Paulheim 25

Intermediate Recap

• What we've seen so far

– ensembles often perform better than single base learners

– simple approach: voting, bagging

• More complex approaches coming up

– Boosting

– Stacking

• Boosting requires learning with weighted instances

– we'll have a closer look at that problem first

2/24/20 Heiko Paulheim 26

Intermezzo: Learning with Weighted Instances

• So far, we have looked at learning problems
where each example is equally important

• Weighted instances

– assign each instance a weight (think: importance)

– getting a high-weighted instance wrong is more expensive

– accuracy etc. can be adapted

• Example:

– data collected from different sources (e.g., sensors)

– sources are not equally reliable

• we want to assign more weight to the data from reliable sources

2/24/20 Heiko Paulheim 27

Intermezzo: Learning with Weighted Instances

• Two possible strategies of dealing with weighted instances

• Changing the learning algorithm

– e.g., decision trees, rule learners: adapt splitting/rule growing heuristics,
example on following slides

• Duplicating instances

– an instance with weight n is copied n times

– simple method that can be used on all learning algorithms

2/24/20 Heiko Paulheim 28

Recap: Accuracy

• Most frequently used metrics:

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes TP FN

Class=No FP TN

FNFPTNTP

TNTP

Accuracy

Accuracy1 RateError

2/24/20 Heiko Paulheim 29

Accuracy with Weights

• Definition of accuracy

• Without weights, TP, FP etc. are counts of instances

• With weights, they are sums of their weights

– classic TP, FP etc. are the special case where all weights are 1

FNFPTNTP

TNTP

Accuracy

2/24/20 Heiko Paulheim 30

Adapting Algorithms: Decision Trees

• Recap: Gini index as splitting criterion

• The probabilities are obtained by counting examples

– Again, we can sum up weights instead

• The same works for rule-based classifiers and their heuristics

j

tjptGINI 2)]|([1)(

2/24/20 Heiko Paulheim 31

Adapting Algorithms: k-NN

• Standard approach

– use average of neighbor predictions

• With weighted instances

– weighted average

x

2/24/20 Heiko Paulheim 32

Intermezzo: Learning with Weighted Instances

• Handling imbalanced classification problems

• So far:

– undersampling

• removes examples → loss of information

– oversampling

• adds examples → larger data (performance!)

• also: synthetic data points (SMOTE)

• Alternative:

– lowering instance weights for larger class

– simplest approach: weight 1/|C| for each instance in class C

2/24/20 Heiko Paulheim 33

Back to Ensembles: Boosting

• Idea of boosting

– train a set of classifiers, one after another

– later classifiers focus on examples that were misclassified by earlier
classifiers

– weight the predictions of the classifiers with their error

• Realization

– perform multiple iterations

• each time using different example weights

– weight update between iterations

• increase the weight of incorrectly classified examples

• so they become more important in the next iterations
(misclassification errors for these examples count more heavily)

– combine results of all iterations

• weighted by their respective error measures

2/24/20 Heiko Paulheim 34

Boosting – Algorithm AdaBoost.M1

1. initialize example weights wi = 1/N (i = 1..N)

2. for m = 1 to t // t ... number of iterations

a) learn a classifier Cm using the current example weights

b) compute a weighted
error estimate

c) if errm>0.5 → exit loop

d) compute a classifier weight

e) for all correctly classified examples ei :

f) for all incorrectly classified examples ei :

g) normalize the weights wi so that they sum to 1

3. for each test example

a) try all classifiers Cm

b) predict the class that receives the highest sum of weights α m

1. initialize example weights wi = 1/N (i = 1..N)

2. for m = 1 to t // t ... number of iterations

a) learn a classifier Cm using the current example weights

b) compute a weighted
error estimate

c) if errm>0.5 → exit loop

d) compute a classifier weight

e) for all correctly classified examples ei :

f) for all incorrectly classified examples ei :

g) normalize the weights wi so that they sum to 1

3. for each test example

a) try all classifiers Cm

b) predict the class that receives the highest sum of weights α m

αm=
1
2

ln(
1−errm

errm

)

w i wi e
−m

wi wi e
m

errm=∑ wi of all incorrectly classified ei

∑i=1

N
wi = 1 because weights

 are normalized

update weights so
that sum of
correctly classified
examples equals
sum of incorrectly
classified examples

2/24/20 Heiko Paulheim 35

Illustration of the Weights

• Classifier Weights am

– differences near 0 or 1
are emphasized

• Good classifier

→ highly positive weight

• Bad classifier

→ highly negative weight

• Classifier with error 0.5

→ weight 0

→ this is equal to guessing!

(error)

(w
e

ig
h

t)

2/24/20 Heiko Paulheim 36

Illustration of the Weights

• Example Weights

– multiplier for correct and incorrect examples

– depending on error

• Later iterations need to focus
on examples that are

– Incorrectly classified by a
good classifier

– Correctly classified by a
bad classifier

2/24/20 Heiko Paulheim 37

Boosting – Error Rate Example

• boosting of decision stumps on simulated data

from Hastie, Tibshirani, Friedman: The Elements of Statistical Learning, Springer Verlag 2001

2/24/20 Heiko Paulheim 38

Toy Example

(taken from Verma & Thrun, Slides to CALD Course CMU 15-781,
 Machine Learning, Fall 2000)

2/24/20 Heiko Paulheim 39

Round 1

2/24/20 Heiko Paulheim 40

Round 2

2/24/20 Heiko Paulheim 41

Round 3

2/24/20 Heiko Paulheim 42

Final Hypothesis

2/24/20 Heiko Paulheim 43

Hypothesis Space of Ensembles

• Each learner has a hypothesis space

– e.g., decision stumps: a linear separation of the dataset,
parallel to the axes

• The hypothesis space of an ensemble

– can be larger than that of its base learners

• Example: bagging with decision stumps

– different stumps → different linear separations

– resulting hypothesis space also allows polygon separations

2/24/20 Heiko Paulheim 44

Boosting in RapidMiner and Python

• Just like voting and bagging

– bdt = AdaBoostClassifier(
 DecisionTreeClassifier),
 n_estimators=200)

2/24/20 Heiko Paulheim 45

Experimental Results on Ensembles

• Ensembles have been used to improve generalization accuracy
on a wide variety of problems

• On average, Boosting provides a larger increase in accuracy than Bagging

– Boosting on rare occasions can degrade accuracy

– Bagging more consistently provides a modest improvement

• Boosting is particularly subject to over-fitting
when there is significant noise in the training data

– subsequent learners over-focus on noise points

(Freund & Schapire, 1996; Quinlan, 1996)

2/24/20 Heiko Paulheim 46

Back to Combining Predictions

• Voting

– each ensemble member votes for one of the classes

– predict the class with the highest number of vote (e.g., bagging)

• Weighted Voting

– make a weighted sum of the votes of the ensemble members

– weights typically depend

• on the classifier's confidence in its prediction
(e.g., the estimated probability of the predicted class)

• on error estimates of the classifier (e.g., boosting)

• Stacking

– Why not use a classifier for making the final decision?

– training material are the class labels of the training data and the
(cross-validated) predictions of the ensemble members

2/24/20 Heiko Paulheim 47

Stacking

• Basic Idea:

– learn a function that combines the predictions of the individual classifiers

• Algorithm:

– train n different classifiers C1...Cn (the base classifiers)

– obtain predictions of the classifiers for the training examples

– form a new data set (the meta data)

• classes
– the same as the original dataset

• attributes
– one attribute for each base classifier

– value is the prediction of this classifier on the example

– train a separate classifier M (the meta classifier)

2/24/20 Heiko Paulheim 48

Stacking (2)

• Using a stacked
classifier:

– try each of the
classifiers C1...Cn

– form a feature
vector consisting
of their predictions

– submit these
feature vectors
to the meta
classifier M

• Example:

2/24/20 Heiko Paulheim 49

Stacking and Overfitting

• Consider a dumb base learner D, which works as follows:

– during training: store each training example

– during classification: if example is stored, return its class

otherwise: return a random prediction

• If D is used along with a number of classifiers in stacking,
what will the meta classifier look like?

– D is perfect on the training set

– so the meta classifier will say: always use D's result

Implementation in
RapidMiner :-(

do you know that
classifier?

2/24/20 Heiko Paulheim 50

Stacking and Overfitting

• Solution 1: split dataset (e.g., 50/50)

– use one portion for training the base classifiers

– use other portion to train meta model

• Solution 2: cross-validate base classifiers

– train classifier on 90% of training data

– create features for the remaining 10% on that classifier

– repeat 10 times

• The second solution is better in most cases

– uses whole dataset for meta learner

– uses 90% of the dataset for base learners

2/24/20 Heiko Paulheim 51

Stacking in RapidMiner and Python

• Looks familiar again

– we need a set of base learners (like for voting)

– and a learner for the stacking model

• Python: not in scikit-learn, use, e.g., package mlxtend

– requires setting base classifiers and meta learner as well

2/24/20 Heiko Paulheim 52

Performance of Stacking

• Accuracy in this experiment:

– Naive Bayes: 0.71

– k-NN: 0.81

– Ripper: 0.71

• Stacked model: 0.86

2/24/20 Heiko Paulheim 53

Stacking

• Variant: also keep the original attributes

• Predictions of base learners are additional attributes
for the stacking predictor

– allows the identification of “blind spots” of individual base learners

• Variant: stacking with confidence values

– if learners output confidence values,
those can be used by the stacking learner

– often further improves the results

2/24/20 Heiko Paulheim 54

The Classifier Selection Problem

• Question: decision trees or rule learner – which one is better?

• Two corner cases – recap from Data Mining 1

Accuracy:
● Baseline: 0.45
● Decision Tree: 0.45
● Rule Learner: 0.7

Accuracy:
● Baseline: 0.89
● Decision Tree: 1.0
● Rule Learner: 0.89

● Voting: 0.65
● Weighted Voting: 0.7
● Stacking: 0.83

● Voting: 0.89
● Weighted Voting: 1.0
● Stacking: 1.0

2/24/20 Heiko Paulheim 55

Regression Ensembles

• Most ensemble methods also work for regression

– voting: use average

– bagging: use average or weighted average

– stacking: learn regression model as stacking model!

– boosting: the regression variant is called additive regression

• In Python: usually the same class ending in Regressor instead of
Classifier

2/24/20 Heiko Paulheim 56

Additive Regression

• Boosting can be seen as a greedy algorithm for fitting additive
models

• Same kind of algorithm for numeric prediction:

– Build standard regression model

– Gather residuals, learn model predicting residuals, and repeat

• Given a prediction p(x), residual = (x-p(x))²

• To predict, simply sum up weighted individual predictions from all
models

2/24/20 Heiko Paulheim 57

Additive Regression w/ Linear Regression

• What happens if we use Linear Regression
inside of Additive Regression?

• The first iteration learns a linear regression model lr1

– By minimizing the sum of squared errors

• The second iteration aims at learning a LR lr2 model for

– x' = (x-lr1(x))²

– Since (x-lr1(x))² is already minimal, lr2 cannot improve upon this

• Hence, the subsequent linear models
will always be a constant 0

2/24/20 Heiko Paulheim 58

Additive Regression w/ Linear Regression

• First regression model:

y

x

2/24/20 Heiko Paulheim 59

Additive Regression w/ Linear Regression

• Second (and third, fourth, ...) regression model:

y

x

2/24/20 Heiko Paulheim 60

Additive Regression

• Bottom line: additive and linear regression are not a good match

2/24/20 Heiko Paulheim 61

Example 1: One-dimensional, Non-linear

Linear Regression: RMSE = 0.199

Isotonic Regression: RMSE = 0.171 Additive Isotonic Regression:
RMSE = 0.073

2/24/20 Heiko Paulheim 62

Example 2: Multidimensional, Non-Linear

• z = 10x² – y³

RMSE of...
...Linear Regression: 385
...Isotonic Regression: 293
...Additive Isotonic Regression: 122

2/24/20 Heiko Paulheim 63

XGBoost

• Currently wins most Kaggle competitions etc.

• Additive Regression w/ Regression Trees

• Regularization

– Respect size of trees

– Larger trees: more likely to overfit!

• Introduce penalty for tree size

– Overcomes the problem of overfitting in boosting

2/24/20 Heiko Paulheim 64

Intermediate Recap

• Ensemble methods

– outperform base learners

– Help minimizing shortcomings of single learners/models

– simple and complex methods for method combination

• Reasons for performance improvements

– individual errors of single learners can be “outvoted”

– more complex hypothesis space

2/24/20 Heiko Paulheim 65

Ensembles for Other Problems

• There are ensembles also for...

• ...clustering (Vega-Pons and Ruiz-Shulkloper, 2011)

– trying to unify different clusterings

– using a consensus function mapping different clusterings to each other

• ...outlier detection (Zimek et al., 2014)

– unifying outlier scores of different approaches

– requires score normalization and/or rank aggregation

• etc.

2/24/20 Heiko Paulheim 66

Learning with Costs

• Most classifiers aim at reducing the number of errors

– all errors are regarded as being equally important

• In reality, misclassification costs may differ

• Consider a warning system in an airplane

– issue a warning if stall is likely to occur

– based on a classifier using different sensor data

– wrong warnings may be ignored by the pilot

– missing warnings may cause the plane to crash

• Here, we have different costs for

– actual: true, predicted: false → very expensive

– actual: false, predicted true → not so expensive

http://i.telegraph.co.uk/multimedia/archive/01419/plane_1419831c.jpg

2/24/20 Heiko Paulheim 67

The MetaCost Algorithm

• Form multiple bootstrap replicates of the training set

– Learn a classifier on each training set

– i.e., perform bagging
• Estimate each class’s probability for each example

– by the fraction of votes that it receives from the ensemble
• Use conditional risk equation to relabel each training example

– with the estimated optimal class
• Reapply the classifier to the relabeled training set

2/24/20 Heiko Paulheim 68

MetaCost

• Conditional risk R(i|x) is the expected cost of predicting that x
belongs to class i
– R(i|x) = ∑P(j|x)C(i, j)

– C(i,j) are the classification costs
(classify an example of class j as class i)

– P(j|x) are obtained by running the bagged classifiers

• The goal of MetaCost procedure is: to relabel the training examples
with their “optimal” classes

– i.e., those with lowest risk

• Then, re-run the classifier to build a final model

– the resulting classifier will be defensive,
i.e., make low-risk predictions

– in the end, the costs are minimized

2/24/20 Heiko Paulheim 69

MetaCost

• Pilot stall alarm example

– x1: stall, P(stall|x1) = 0.8

– x2: no, P(no|x2) = 0.9

• Risk values:

– R(stall|x1) = P(stall|x1)*C(stall,stall) + P(no|x1)*C(stall,no) = 0.2*1 = 0.2

– R(no|x1) = P(stall|x1)*C(no,stall) + P(no|x1)*C(no,no) = 0.8*10 = 8

– R(stall|x2) = P(stall|x2)*C(stall,stall) + P(no|x2)*C(stall,no) = 0.9*1 = 0.9

– R(no|x2) = P(stall|x2)*C(no,stall) + P(no|x2)*C(no,no) = 0.1*10 = 1

• Since 0.9<1

– x2 is relabeled to “stall”

http://i.telegraph.co.uk/multimedia/archive/01419/plane_1419831c.jpg

predicted

stall no stall

stall 0 10

no stall 1 0ac
tu

al

8/10 classifiers
are correct

=0

2/24/20 Heiko Paulheim 70

MetaCost vs. Balancing

• Recap balancing:

– in an unbalanced dataset, there is a bias towards the larger class

– balancing the dataset helps building more meaningful models

• MetaCost:

– incidentally unbalance the dataset,
labeling more instances with the “cheap” class

– make the learner have a bias towards the “cheap” class

• i.e., expensive mis-classifications are avoided

– in the end, the overall cost is reduced

• In the example:

– there will be more false alarms (stall warning, but actually no stall)

– the risk of not issuing a warning is reduced

2/24/20 Heiko Paulheim 71

MetaCost in RapidMiner

• Hint: use the performance (cost) operator for evaluation

2/24/20 Heiko Paulheim 72

MetaCost in RapidMiner

• Experiment: set misclassification cost
Rock → Mine = 2; Mine → Rock = 1

• Non-cost sensitive decision tree:

– misclassification cost = 0.33

• MetaCost with decision tree:

– misclassification cost = 0.24

2/24/20 Heiko Paulheim 73

Another Example for Cost-Sensitive Prediction

• Predicting ordinal attributes

– e.g., very low, low, medium, high, very high

• Typical cost matrix:

predicted

very low low medium high very high

very low 0 1 2 4 8

low 1 0 1 2 4

medium 2 1 0 1 2

high 4 2 1 0 1

very high 8 4 2 1 0ac
tu

al

2/24/20 Heiko Paulheim 74

Wrap-up

• Ensemble methods in general

– build a strong model from several weak ones

• Ingredients

– base learners

– a combination method

• Variants

– Voting

– Bagging (based on sampling)

– Boosting (based on reweighting instances)

– Stacking (use learner for combination)

• Also used for cost-sensitive predictions (MetaCost)

2/24/20 Heiko Paulheim 75

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Why does it work?
	Folie 11
	Example of Overfitting
	Folie 13
	Folie 14
	Folie 15
	Bagging
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Boosting Algorithm
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Experimental Results on Ensembles (Freund & Schapire, 1996; Quinlan, 1996)
	Combining Ensembles
	Stacking
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	MetaCost procedure
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Questions?

