
Data Mining II
Time Series Analysis

Heiko Paulheim

3/26/20 Heiko Paulheim 2

Introduction

• So far, we have only looked at data without a time dimension

– or simply ignored the temporal aspect

• Many “classic” DM problems have variants that respect time

– frequent pattern mining → sequential pattern mining

– classification → predicting sequences of nominals

– regression → predicting the continuation of a numeric series

3/26/20 Heiko Paulheim 3

Contents

• Sequential Pattern Mining

– Finding frequent subsequences in set of sequences

– the GSP algorithm

• Trend analysis

– Is a time series moving up or down?

– Simple models and smoothing

– Identifying seasonal effects

• Forecasting

– Predicting future developments from the past

– Autoregressive models and windowing

– Exponential smoothing and its extensions

3/26/20 Heiko Paulheim 4

Sequential Pattern Mining: Application 1

• Web usage mining (navigation analysis)

• Input

– Server logs

• Patterns

– typical sequences of pages

• Usage

– restructuring web sites

3/26/20 Heiko Paulheim 5

Sequential Pattern Mining: Application 2

• Recurring customers

– Typical book store example:

• (Twilight) (New Moon) → (Eclipse)

• Recommendation in online stores

• Allows more fine grained suggestions than frequent pattern mining

• Example:

– mobile phone → charger vs. charger → mobile phone

• are indistinguishable by frequent pattern mining

– customers will select a charger after a mobile phone

• but not the other way around!

• however, Amazon does not respect sequences...

3/26/20 Heiko Paulheim 6

Sequential Pattern Mining: Application 3

• Using texts as a corpus

– looking for common sequences of words

– allows for intelligent suggestions
for autocompletion

3/26/20 Heiko Paulheim 7

Sequential Pattern Mining: Application 4

• Chord progressions in music

– supporting musicians (or even computers) in jam sessions

– supporting producers in writing top 10 hits :-)

http://www.hooktheory.com/blog/i-analyzed-the-chords-of-1300-popular-songs-for-patterns-this-is-what-i-found/

3/26/20 Heiko Paulheim 8

Sequence Data

• Data Model: transactions containing items

Sequence

E1
E2

E1
E3 E2 E3

E4E2

Element
(Transaction)

Event
(Item)

Sequence
Database

Sequence Element (Transaction) Event (Item)

Customer
Data

Purchase history of a given
customer

A set of items bought by
a customer at time t

Books, dairy
products, CDs, etc

Web Server
Logs

Browsing activity of a
particular Web visitor

A collection of files
viewed by a Web visitor
after a single mouse click

Home page, index
page, contact info, etc

Chord
Progressions

Chords played in a song Individual notes hit at a
time

Notes (C, C#, D, ...)

3/26/20 Heiko Paulheim 9

Sequence Data

10 15 20 25 30 35

2
3
5

6
1

1

Timeline

Object A:

Object B:

Object C:

4
5
6

2 7
8
1
2

1
6

1
7
8

Object Timestamp Events
A 10 2, 3, 5
A 20 6, 1
A 23 1
B 11 4, 5, 6
B 17 2
B 21 7, 8, 1, 2
B 28 1, 6
C 14 1, 8, 7

Sequence Database:

3/26/20 Heiko Paulheim 10

Formal Definition of a Sequence

 A sequence is an ordered list of elements (transactions)

s = < e1 e2 e3 … >

 Each element contains a collection of items (events)

ei = {i1, i2, …, ik}

 Each element is attributed to a specific time

 Length of a sequence |s| is given by the number of
elements of the sequence.

 A k-sequence is a sequence that contains k events (items).

3/26/20 Heiko Paulheim 11

Further Examples of Sequences

• Web browsing sequence:

 < {Homepage} {Electronics} {Digital Cameras} {Canon Digital
Camera} {Shopping Cart} {Order Confirmation} {Homepage} >

• Sequence of books checked out at a library:

< {Fellowship of the Ring} {The Two Towers, Return of the King} >

• Sequence of initiating events causing the nuclear accident
at 3-mile Island:

 < {clogged resin} {outlet valve closure} {loss of feedwater}
 {condenser polisher outlet valve shut} {booster pumps stop}
 {main waterpump stops, main turbine stops} {reactor pressure
 increases} >

3/26/20 Heiko Paulheim 12

Formal Definition of a Subsequence

• A sequence <a1 a2 … an> is contained in another sequence
<b1 b2 … bm> (m ≥ n) if there exist integers
i1 < i2 < … < in such that a1  bi1 , a2  bi2, …, an  bin

• The support of a subsequence w is defined as the fraction of data
sequences that contain w

• A sequential pattern is a frequent subsequence
(i.e., a subsequence whose support is ≥ minsup)

Data sequence Subsequence <a> Contain?

< {2,4} {3,5,6} {8} > < {2} {3,5} > Yes

< {1,2} {3,4} > < {1} {2} > No

< {2,4} {2,4} {2,5} > < {2} {4} > Yes

3/26/20 Heiko Paulheim 13

Examples of Sequential Patterns

3/26/20 Heiko Paulheim 14

Examples of Sequential Patterns

3/26/20 Heiko Paulheim 15

Sequential Pattern Mining

• Given:

– a database of sequences

– a user-specified minimum support threshold, minsup

• Task:

– Find all subsequences with support ≥ minsup

• Challenge:

– Very large number of candidate subsequences that need to be checked
against the sequence database

– By applying the Apriori principle, the number of candidates can
be pruned significantly

3/26/20 Heiko Paulheim 16

Determining the Candidate Subsequences

 Given n events: i1, i2, i3, …, in

 Candidate 1-subsequences:
<{i1}>, <{i2}>, <{i3}>, …, <{in}>

 Candidate 2-subsequences:
<{i1, i2}>, <{i1, i3}>, …, <{in-1,in}>, <{i1} {i1}>, <{i1} {i2}>, …, <{in-1} {in}>, <{in} {in}>,
<{i2, i1}>, <{i3, i1}>, …, <{in,in-1}>, <{i2} {i1}>, …, <{in} {in-1}>

 Candidate 3-subsequences:
<{i1, i2 , i3}>, <{i1, i2 , i4}>, …, <{i1, i2} {i1}>, <{i1, i2} {i2}>, …,
<{i1} {i1 , i2}>, <{i1} {i1 , i3}>, …, <{i1} {i1} {i1}>, <{i1} {i1} {i2}>, …

3/26/20 Heiko Paulheim 17

Generalized Sequential Pattern Algorithm (GSP)

 Step 1:
 Make the first pass over the sequence database D to yield all

the 1-element frequent subsequences

 Step 2: Repeat until no new frequent subsequences are found
1. Candidate Generation:

- Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate
sequences that contain k items

2. Candidate Pruning:

- Prune candidate k-sequences that contain infrequent (k-1)-subsequences
(Apriori principle)

3. Support Counting:

- Make a new pass over the sequence database D to find the support for
these candidate sequences

4. Candidate Elimination:

- Eliminate candidate k-sequences whose actual support is less than minsup

3/26/20 Heiko Paulheim 18

GSP Example

• Only one 4-sequence survives the candidate pruning step

• All other 4-sequences are removed because they contain
subsequences that are not part of the set of frequent 3-sequences

< {1} {2} {3} >
< {1} {2 5} >
< {1} {5} {3} >
< {2} {3} {4} >
< {2 5} {3} >
< {3} {4} {5} >
< {5} {3 4} >

< {1} {2} {3} {4} >
< {1} {2 5} {3} >
< {1} {5} {3 4} >
< {2} {3} {4} {5} >
< {2 5} {3 4} >

< {1} {2 5} {3} >

Frequent
3-sequences

Candidate
Generation

Candidate
Pruning

3/26/20 Heiko Paulheim 19

Trend Detection

• Task

– given a time series

– find out what the general trend is
(e.g., rising or falling)

• Possible obstacles

– random effects: ice cream sales have been low this week due to rain

• but what does that tell about next week?

– seasonal effects: sales have risen in December

• but what does that tell about January?

– cyclical effects: less people attend a lecture towards the end of the
semester

• but what does that tell about the next semester?

3/26/20 Heiko Paulheim 20

Trend Detection

• Example: Data Analysis at Facebook

http://www.theatlantic.com/technology/archive/2014/02/when-you-fall-in-love-this-is-what-facebook-sees/283865/

3/26/20 Heiko Paulheim 21

Estimation of Trend Curves

 The freehand method
 Fit the curve by looking at the graph

 Costly and barely reliable for large-scale data mining

 The least-squares method
 Find the curve minimizing the sum of the squares of the deviation of

points on the curve from the corresponding data points

 cf. linear regression

 The moving-average method

The time series exhibit a
downward trend pattern.

Predicted value

3/26/20 Heiko Paulheim 22

Example: Average Global Temperature

http://www.bbc.co.uk/schools/gcsebitesize/science/aqa_pre_2011/rocks/fuelsrev6.shtml

3/26/20 Heiko Paulheim 23

Example: German DAX 2013

3/26/20 Heiko Paulheim 24

Linear Trend

• Given a time series that has timestamps and values, i.e.,

– (ti,vi), where ti is a time stamp, and vi is a value at that time stamp

• A linear trend is a linear function

– m*ti + b

• We can find via linear regression, e.g., using the least squares fit

3/26/20 Heiko Paulheim 25

Example: German DAX 2013

3/26/20 Heiko Paulheim 26

A Component Model of Time Series

A time series can consist of four components:

• Long - term trend (Tt)

• Cyclical effect (Ct)

• Seasonal effect (St)

• Random variation (Rt)

Additive Model:

• Series = Tt + Ct + St + Rt

Multiplicative Model:

• Series = Tt x Ct x St x Rt

this is what we
want to find

we need to
eliminate those

we need to
eliminate those

we need to
eliminate those

3/26/20 Heiko Paulheim 27

Seasonal and Cyclical Effects

• Seasonal effects occur regularly each year

– quarters

– months

– …

• Cyclical effects occur regularly over other intervals

– every N years

– in the beginning/end of the month

– on certain weekdays or on weekends

– at certain times of the day

– ...

3/26/20 Heiko Paulheim 28

Identifying Seasonal and Cyclical Effects

• There are methods of identifying and isolating those effects

– given that the periodicity is known

• Python: statsmodels package

from pandas import Series
from matplotlib import pyplot
from statsmodels.tsa.seasonal
 import seasonal_decompose
series = Series.from_csv
 ('data.csv', header=0)
result = seasonal_decompose
 (series, model='multiplicative')
result.plot()
pyplot.show()

3/26/20 Heiko Paulheim 29

Identifying Seasonal and Cyclical Effects

• Variation may occur within a year or another period

• To measure the seasonal effects we compute seasonal indexes

• Seasonal index

– degree of variation of seasons in relation to global average

http://davidsills.blogspot.de/2011/10/seasons.html

3/26/20 Heiko Paulheim 30

Identifying Seasonal and Cyclical Effects

• Algorithm

– Compute the trend ŷt (i.e., linear regression)

– For each time period

• compute the ratio yt/ŷt

– For each season (or other relevant period)

• compute the average of yt/ŷt

• this gives us the average deviation for that season

here, we assume
the multiplicative model

y t
ŷ t

=
T t×S t×R t

T t
=S t×R t

the computed ratios
isolate the seasonal
and random variation
from the overall trend*

*) given that no additional cyclical variation exists

3/26/20 Heiko Paulheim 31

Example for Seasonal Effects

• Calculate the quarterly seasonal indexes for hotel occupancy rate in
order to measure seasonal variation

• Data:

Year Quarter Rate Year Quarter Rate Year Quarter Rate

1996 1 0.561 1998 1 0.594 2000 1 0.665
2 0.702 2 0.738 2 0.835
3 0.8 3 0.729 3 0.873
4 0.568 4 0.6 4 0.67

1997 1 0.575 1999 1 0.622
2 0.738 2 0.708
3 0.868 3 0.806
4 0.605 4 0.632

This example is taken from the course “Regression Analysis”
at University of Umeå, Department of Statistics

3/26/20 Heiko Paulheim 32

Example for Seasonal Effects

• First step: compute trend from the data

– e.g., linear regression

0 5 10 15 20 25

t

R
a
te

ŷ=0 .639368+0 .005246 tTime (t) Rate
1 0.561
2 0.702
3 0.800
4 0.568
5 0.575
6 0.738
7 0.868
8 0.605
 . .
 . .

3/26/20 Heiko Paulheim 33

Example for Seasonal Effects

• Second step: compute ratios yt/ŷt

t yt Ratio
1 .561 .645 .561/.645=.870
2 .702 .650 .702/.650=1.08
3 ………………………………………………….

Rate/Predicted rate

0

0.5

1

1.5

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

No trend is observed, but
seasonality and randomness
still exist.

t

t

ŷ

y

tŷ

=0.639368+0.005245*t

3/26/20 Heiko Paulheim 34

Rate/Predicted rate

0

0.5

1

1.5

1 3 5 7 9 11 13 15 17 19

(.870 + .864 + .865 + .879 + .913)/5 = .878Average ratio for quarter 1:

Average ratio for quarter 2: (1.080+1.100+1.067+.993+1.138)/5 = 1.076

Average ratio for quarter 3: (1.221+1.284+1.046+1.122+1.181)/5 = 1.171

Average ratio for quarter 4: (.860 +.888 + .854 + .874 + .900)/ 5 = .875

• Third step: compute average ratios by season

Rate/Predicted rate

0.870

1.080

1.221

0.860

0.864

1.100

1.284

0.888

0.865

1.067

1.046

0.854

0.879

0.993

1.122

0.874

0.913

1.138

1.181

0.900

Example for Seasonal Effects

3/26/20 Heiko Paulheim 35

Example for Seasonal Effects

• Interpretation of seasonal indexes:

– ratio between the time series' value at a certain season
and the overall seasonal average

• In our problem:

Quarter 2 Quarter 3Quarter 3Quarter 2

Annual average
occupancy (100%)

Quarter 1 Quarter 4 Quarter 1 Quarter 4

87.8%
107.6%

117.1%

87.5%12.2% below the
annual average

7.6% above the
annual average

17.1% above the
annual average

12.5% below the
annual average

3/26/20 Heiko Paulheim 36

Example for Seasonal Effects

• Deseasonalizing time series

– when ignoring seasonal effects, is there still an increase?

Seasonally adjusted time series = Actual time series
Seasonal index

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

Trend on deseasonalized time series: slightly positive

3/26/20 Heiko Paulheim 37

Determining the Periodicity

• There are methods of identifying and isolating those effects

– given that the periodicity is known

• What if we don’t know the periodicity?

3/26/20 Heiko Paulheim 38

Determining the Periodicity

• Assumption: time series is a sum of sine waves

– With different periodicity

– Different representation of the time series

• The frequencies of those sine waves is called spectrum

– Fourier transformation transforms between spectrum and series

– Spectrum gives hints at the frequency of periodic effects

– Details: see textbooks

3/26/20 Heiko Paulheim 39

Determining the Periodicity

• Example: three interfering sine waves with noise added

3/26/20 Heiko Paulheim 40

Determining the Periodicity

• The corresponding spectrum

3/26/20 Heiko Paulheim 41

Dealing with Random Variations

 Moving average of order n

 Key idea:
– upcoming value is the average of the last n

– cf.: nearest neighbors

 Properties:
– Smoothes the data

– Eliminates random movements

– Loses the data at the beginning or end of a series

– Sensitive to outliers (can be reduced by weighted moving average)

3/26/20 Heiko Paulheim 42

Moving Average in RapidMiner and Python

• Python:

– e.g., rolling_mean in pandas

• Alternatives for average:

– median, mode, …

3/26/20 Heiko Paulheim 43

Moving Average and Decomposition

• Often, moving averages are used for the trend

– instead of a linear trend

– less susceptible to outliers

– the remaining computations
stay the same

3/26/20 Heiko Paulheim 44

Dealing with Random Variations

• Exponential Smoothing

– St = αyt + (1-α)St-1

– α is a smoothing factor

– recursive definition

• in practice, start with S0 = y0

• Properties:

– Smoothes the data

– Eliminates random movements

• and even seasonal effects for smaller values of α

– Smoothing values for whole series

– More recent values have higher influence

Python: statsmodels package

3/26/20 Heiko Paulheim 45

Dealing with Random Variations

3/26/20 Heiko Paulheim 46

Recap: Trend Analysis

• Allows to identify general trends (upward, downward)

• Overall approach:

– eliminate all other components so that only the trend remains

• Method for factoring out seasonal variations

– and compute deseasonalized time series

• Methods for eliminating with random variations (smoothing)

– moving average

– exponential smoothing

3/26/20 Heiko Paulheim 47

Time Series Prediction: Definition

http://xkcd.com/1245/

3/26/20 Heiko Paulheim 48

From Moving Averages to
Autoregressive Models

• Recap moving average for smoothing

– each value is replaced by the average of its surrounding ones

• Moving average for prediction

– predict the average of the last n values

– yt = 1/n * (yt-1 + … yt-n)

• Here: weights are uniform

– advanced: weights are learned from the data

– yt = d1yt-1 + d2yt-2 + … dnyt-n + b + et

– just like linear regression learning

– this is called an autoregressive model

• i.e., regression trained on the time series itself

3/26/20 Heiko Paulheim 49

Autoregressive Models in RapidMiner / Python

• RapidMiner: only with a twist

– generate windowed representation for learning first

– learn linear model on top

from statsmodels.tsa.ar_model import AR

lagged values/
lag variables

3/26/20 Heiko Paulheim 50

Autoregressive Models

3/26/20 Heiko Paulheim 51

Autoregressive Models

• First observation:

– we have learned a linear model using the lag values

– but the prediction itself is not linear!

• Second observation:

– periodicities are learned well

• Why?

– e.g., given that we have a strong weekly trend

– we will learn a high weight for dt-7

– multiple periodicities can also be learned

• e.g., time series with weekly and monthly component

3/26/20 Heiko Paulheim 52

Extension of AR models

• ARMA

– Fits an AR model

– Fits a second model to estimate the errors made by the AR model

– yt = d1yt-1 + d2yt-2 + … dpyt-p + b + g1et-1 + … + gqeq-1

• ARIMA

– Tries to predict a differenced model

• i.e., the relative change of a time series instead of the absolute
value

– ARIMA models come with three parameters:

• p: number of terms in the AR part

• q: number of terms in the MA part

• d: number of times the time series is differenced

3/26/20 Heiko Paulheim 53

Lag Variables for Nominal Prediction

Date Weather

1.1. Sunny

2.1. Cloudy

3.1. Cloudy

4.1. Rainy

5.1. Cloudy

6.1. Sunny

7.1. Sunny

8.1. Sunny

9.1. Rainy

Date Weather-3 Weather-2 Weather-1 Weather

1.1. ? ? ? Sunny

2.1. ? ? Sunny Cloudy

3.1. ? Sunny Cloudy Cloudy

4.1. Sunny Cloudy Cloudy Rainy

5.1. Cloudy Cloudy Rainy Cloudy

6.1. Cloudy Rainy Cloudy Sunny

7.1. Rainy Cloudy Sunny Sunny

8.1. Cloudy Sunny Sunny Sunny

9.1. Sunny Sunny Sunny Rainy

3/26/20 Heiko Paulheim 54

Lag Variables in Multivariate Series

• Also possible for multi-variate data

3/26/20 Heiko Paulheim 55

Predicting with Exponential Smoothing

• Recap exponential smoothing

– St = αyt + (1-α)St-1

• We can also understand St as a prediction of yt+1

• i.e., we predict the average of the last value and the last prediction

• By recursion, we can use exponential smoothing
for prediction

– i.e., predict one step into the future

• then use this prediction as input to the next step

– works OK for short forecasting windows

– at some point, the predictions usually diverge

3/26/20 Heiko Paulheim 56

Predicting with Exponential Smoothing

The green line
has some “delay”

3/26/20 Heiko Paulheim 57

Double Exponential Smoothing

• Smaller values for a:
– more cancellation of random noise, but

– exponential smoothing takes longer to adapt to trend

• With a trend, the smoothed time series will rise/fall over time

– St = αyt + (1-α)(St-1+bt-1)

– bt = b(St-St-1)+(1-b)bt-1

• Explanation:

– St – St-1 describes the change of the estimate

– b is the exponentially smoothed time series of those changes

• S is called level smoothing, b is called trend smoothing

Estimated trend

3/26/20 Heiko Paulheim 58

Double Exponential Smoothing: Example

single

double

3/26/20 Heiko Paulheim 59

Triple Exponential Smoothing

• Double exponential smoothing

– Uses level and trend, but no seasonality

• Triple exponential smoothing (also known as Holt Winters Method)

– Introduces seasonal component

– St = α(yt-ct-L) + (1-α)(St-1+bt-1)

– bt = b(St-St-1)+(1-b)bt-1

– ct = g(yt-St) + (1-g)ct-L

Most recent value
and its trend component

L is the cycle length
of the seasonality

3/26/20 Heiko Paulheim 60

Triple Exponential Smoothing

• Cycle length L

– counted in number of observations

• Examples:

– weekly cycles, one observation = one day: 7

– yearly cycles, one observation = one month: 12

– hourly cycles, one observation = one second: 3600

3/26/20 Heiko Paulheim 61

Triple Exponential Smoothing

3/26/20 Heiko Paulheim 62

Holt Winters in RapidMiner and Python

• Parameters:

– a, b, g

– period length

• Python implemention:

– can also estimate parameters

– as to fit the given data best

• Both implementations:

– have additive and multiplicative variant

– multiplicative often works better
from statsmodels.tsa.holtwinters
import ExponentialSmoothing

3/26/20 Heiko Paulheim 63

Selecting an Exponential Smoothing Model

• Taken from Alan Wan, Forecasting Methods for Business

No trend or

seasonal

pattern?

Single

Exponential

Smoothing

Method

Holt’s Trend

Corrected

Exponential

Smoothing

Method

Holt-Winters

Methods

Use Other

Methods

Linear trend

and no seasonal

pattern?

Both trend

and seasonal

pattern?

N N N

Y Y Y

3/26/20 Heiko Paulheim 64

Missing Values in Series Data

• Remedies in non-series data:

– replace with average, median, most frequent

– Imputation (e.g., k-NN)

– replace with most frequent

– …

• What happens if we apply those to time series?

3/26/20 Heiko Paulheim 65

Missing Values in Series Data

• Original time series

– with missing values inserted

3/26/20 Heiko Paulheim 66

Missing Values in Series Data

• Replace with average

3/26/20 Heiko Paulheim 67

Missing Values in Series Data

• Alternatives

– Linear interpolation

– Replace with previous

– Replace with next

– K-NN imputation

• Essentially: this is the average of previous and next

3/26/20 Heiko Paulheim 68

Missing Values in Series Data

• Linear interpolation plotted

3/26/20 Heiko Paulheim 69

Evaluating Time Series Prediction

• So far, our gold standard has been 10-fold cross validation

– Divide data into 10 equal shares

– Random sampling:

• Each data point is randomly assigned to a fold

3/26/20 Heiko Paulheim 70

Evaluating Time Series Prediction

• Using Cross Validation?

1 11 21 31 41 51 61 71 81 91 10
1
11
1
12
1
13
1
14
1
15
1
16
1
17
1
18
1
19
1
20
1
21
1
22
1
23
1
24
1
25
1

7000

7500

8000

8500

9000

9500

10000

3/26/20 Heiko Paulheim 71

Evaluating Time Series Prediction

• Variant 1

– Use hold out set at the end of the training data

– E.g., train on 2000-2015, evaluate on 2016

• Variant 2:

– Sliding window evaluation

– E.g., train on one year, evaluate on consecutive year

3/26/20 Heiko Paulheim 72

Wrap-up

• Time series data is data sequentially collected at different times

• Analysis methods discussed in this lecture

– frequent pattern mining

– trend analysis

– different prediction methods

3/26/20 Heiko Paulheim 73

1

3/26/20 Heiko Paulheim 74

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	1. What are Sequential Patterns?
	Sequence Data
	Formal Definition of a Sequence
	Further Examples of Sequences
	Formal Definition of a Subsequence
	Folie 13
	Folie 14
	2. Sequential Pattern Mining
	Determining the Candidate Subsequences
	Generalized Sequential Pattern Algorithm (GSP)
	GSP Example
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Questions?

