
Data Mining II
Neural Networks and Deep Learning

Heiko Paulheim

3/10/20 Heiko Paulheim 2

Deep Learning

• A recent hype topic

3/10/20 Heiko Paulheim 3

Deep Learning

• Just the same as artificial neural networks with a new buzzword?

3/10/20 Heiko Paulheim 4

Deep Learning

• Contents of this Lecture

– Recap of neural networks

– The backpropagation algorithm

– Auto Encoders

– Deep Learning

– Network Architectures

– “Anything2Vec”

3/10/20 Heiko Paulheim 5

Revisited Example: Credit Rating

• Consider the following example:

– and try to build a model

– which is as small as possible (recall: Occam's Razor)

Person Employed Owns House Balanced Account Get Credit

Peter Smith yes yes no yes

Julia Miller no yes no no

Stephen Baker yes no yes yes

Mary Fisher no no yes no

Kim Hanson no yes yes yes

John Page yes no no no

3/10/20 Heiko Paulheim 6

Revisited Example: Credit Rating

• Smallest model:

– if at least two of Employed, Owns House, and Balanced Account are
yes
→ Get Credit is yes

• Not nicely expressible in trees and rule sets

– as we know them (attribute-value conditions)
Person Employed Owns House Balanced Account Get Credit

Peter Smith yes yes no yes

Julia Miller no yes no no

Stephen Baker yes no yes yes

Mary Fisher no no yes no

Kim Hanson no yes yes yes

John Page yes no no no

3/10/20 Heiko Paulheim 7

Revisited Example: Credit Rating

• Smallest model:

– if at least two of Employed, Owns House, and Balance Account are yes
→ Get Credit is yes

• As rule set:

Employed=yes and OwnsHouse=yes => yes
Employed=yes and BalanceAccount=yes => yes
OwnsHouse=yes and BalanceAccount=yes => yes
=> no

• General case:

– at least m out of n attributes need to be yes => yes

– this requires rules, i.e.,

– e.g., “5 out of 10 attributes need to be yes”
requires more than 15,000 rules!

(n
m

)
n!

m!⋅(n−m)!

3/10/20 Heiko Paulheim 8

Artificial Neural Networks

• Inspiration

– one of the most powerful super computers in the world

3/10/20 Heiko Paulheim 9

Artificial Neural Networks (ANN)

X1 X2 X3 Y
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 0
0 1 0 0
0 1 1 1
0 0 0 0

X1

X2

X3

Y

Black box

Output

Input

Output Y is 1 if at least two of the three inputs are equal to 1.

3/10/20 Heiko Paulheim 10

Example: Credit Rating

• Smallest model:

– if at least two of Employed, Owns House, and Balance Account are yes
→ Get Credit is yes

• Given that we represent yes and no by 1 and 0, we want

– if(Employed + Owns House + Balance Acount)>1.5
→ Get Credit is yes

3/10/20 Heiko Paulheim 11

Artificial Neural Networks (ANN)

X1 X2 X3 Y
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 0
0 1 0 0
0 1 1 1
0 0 0 0



X1

X2

X3

Y

Black box

0.3

0.3

0.3 t=0.4

Output
node

Input
nodes









otherwise0

 trueis if1
)(where

)04.03.03.03.0(321

z
zI

XXXIY

3/10/20 Heiko Paulheim 12

Artificial Neural Networks (ANN)

• Model is an assembly of
inter-connected nodes
and weighted links

• Output node sums up
each of its input value
according to the weights
of its links

• Compare output node
against some threshold t



X1

X2

X3

Y

Black box

w1

t

Output
node

Input
nodes

w2

w3

)(tXwIY
i

ii  
Perceptron Model

)(tXwsignY
i

ii  

or

3/10/20 Heiko Paulheim 13

General Structure of ANN

Activation
function

g(Si)
Si Oi

I1

I2

I3

wi1

wi2

wi3

Oi

Neuron iInput Output

threshold, t

Input
Layer

Hidden
Layer

Output
Layer

x1 x2 x3 x4 x5

y

Training ANN means learning
the weights of the neurons

3/10/20 Heiko Paulheim 14

Algorithm for Learning ANN

• Initialize the weights (w0, w1, …, wk), e.g., usually randomly

• Adjust the weights in such a way that the output of ANN is consistent
with class labels of training examples

– Objective function:

– Find the weights wi’s that minimize the above objective function

 2),( 
i

iii XwfYE

3/10/20 Heiko Paulheim 15

Backpropagation Algorithm

• Adjust the weights in such a way
that the output of ANN is consistent
with class labels of training examples

– Objective function:

– Find the weights wi’s that minimize
the above objective function

• This is simple for a single layer
perceptron

• But for a multi-layer network,
Yi is not known

Input
Layer

Hidden
Layer

Output
Layer

x1 x2 x3 x4 x5

y

 2),( 
i

iii XwfYE

3/10/20 Heiko Paulheim 16

Backpropagation Algorithm

• Sketch of the Backpropagation Algorithm:

– Present an example to the ANN

– Compute error at the output layer

– Distribute error to hidden layer according to weights

• i.e., the error is distributed according to the contribution
of the previous neurons to the result

– Adjust weights so that the error is minimized

• Adjustment factor: learning rate

• Use gradient descent

– Repeat until input layer is reached

3/10/20 Heiko Paulheim 17

Backpropagation Algorithm

• Important notions:

– Predictions are pushed forward through the network
(“feed-forward neural network”)

– Errors are pushed backwards through the network
(“backpropagation”)

3/10/20 Heiko Paulheim 18

Backpropagation Algorithm

• Important notions:

– Predictions are pushed forward through the network
(“feed-forward neural network”)

– Errors are pushed backwards through the network
(“backpropagation”)

3/10/20 Heiko Paulheim 19

Backpropagation Algorithm – Gradient Descent

• Output of a neuron: o = g(w1i1...wnin)

• Assume the desired output is y, the error is

o – y = g(w1i1...wnin) – y

• We want to minimize the error, i.e., minimize

g(w1i1...wnin) – y

• We follow the steepest descent of g, i.e.,

– the value where g’ is maximal

Activation
function

g(Si)
Si Oi

I1

I2

I3

wi1

wi2

wi3

Oi

Neuron iInput Output

threshold, t

3/10/20 Heiko Paulheim 20

Backpropagation Algorithm – Gradient Descent

• Hey, wait…

– the value where g’ is maximal

• To find the steepest gradient, we have to differentiate the activation
function

• But I(z) is not differentiable!









otherwise0

 trueis if1
)(where

)04.03.03.03.0(321

z
zI

XXXIY

3/10/20 Heiko Paulheim 21

Alternative Differentiable Activation Functions

• Sigmoid Function (classic ANNs): 1/(1+e^(-x))

• Rectified Linear Unit (ReLU, since 2010s): max(0,x)

3/10/20 Heiko Paulheim 22

Properties of ANNs and Backpropagation

• Non-linear activation function:

– May approximate any arbitrary function, even with one hidden layer

• Convergence:

– Convergence may take time

– Higher learning rate: faster convergence

• Gradient Descent Strategy:

– Danger of ending in local optima

• Use momentum to prevent getting stuck

– Lower learning rate: higher probability of finding global optimum

3/10/20 Heiko Paulheim 23

Learning Rate, Momentum, and Local Minima

• Learning rate: how much do we adapt the weights with each step

– 0: no adaptation, use previous weight

– 1: forget everything we have learned so far, simply use weights that are
best for current example

• Smaller: slow convergence, less overfitting

• Higher: faster convergence, more overfitting

3/10/20 Heiko Paulheim 24

Learning Rate, Momentum, and Local Minima

• Momentum: how much do we adapt the weights

– Small: very small steps

– High: very large steps

• Smaller: better convergence, sticks in local minimum

• Higher: worse convergence, does not get stuck

3/10/20 Heiko Paulheim 25

Dynamic Learning Rates

• Adapting learning rates over time

– Search coarse-grained first, fine-grained later

– e.g., allow bigger jumps in the beginning

• e.g., RMSProp (Hinton, 2014)

– use decay function for learning rate

• e.g., AdaDelta (Zeiler, 2012)

– restrict total update for features
over windows of time

3/10/20 Heiko Paulheim 26

Local Learning Rates

• Observation

– not all parameters change equally often

– e.g., text classification: input neuron weights for infrequent words

• AdaGrad (Duchi et al., 2011)

– maintain list of gradient changes for each parameter

– adapt learning rates locally

• AdaDelta (Zeiler, 2012)

– restrict total updates per parameter

• Bottom line: optimization functions often have a large impact

– Reading recommendation: https://ruder.io/optimizing-gradient-descent/

3/10/20 Heiko Paulheim 27

ANNs vs. SVMs

• ANNs have arbitrary decision boundaries

– and keep the data as it is

• SVMs have linear decision boundaries

– and transform the data first

3/10/20 Heiko Paulheim 28

Recap: Feature Subset Selection & PCA

• Idea: reduce the dimensionality of high dimensional data

• Feature Subset Selection

– Focus on relevant attributes

• PCA

– Create new attributes

• In both cases

– We assume that the data can be described with fewer variables

– Without losing much information

3/10/20 Heiko Paulheim 29

What Happens at the Hidden Layer?

• Usually, the hidden layer is
smaller than the input layer

– Input: x1...xn

– Hidden: h1...hm

– n>m

• The output can be predicted
from the values at the hidden layer

• Hence:

– m features should be sufficient
to predict y!

Input
Layer

Hidden
Layer

Output
Layer

x1 x2 x3 x4 x5

y

3/10/20 Heiko Paulheim 30

What Happens at the Hidden Layer?

• We create a more compact
representation of the dataset

– Hidden: h1...hm

– Which still conveys the information
needed to predict y

• Particularly interesting for
sparse datasets

– The resulting representation
is usually dense

• But what if we don’t know y?

Input
Layer

Hidden
Layer

Output
Layer

x1 x2 x3 x4 x5

y

3/10/20 Heiko Paulheim 31

Auto Encoders

• Auto encoders use the same example as input and output

– i.e., they train a model for predicting an example from itself

– using fewer variables

• Similar to PCA

– But PCA provides only a linear transformation

– ANNs can also create non-linear parameter transformations

3/10/20 Heiko Paulheim 32

Denoising Auto Encoders

• Instead of training with the same input and output

– Add random noise to input

– Keep output clean

• Result

– A model that learns to remove noise from an instance

3/10/20 Heiko Paulheim 33

Stacked (Denoising) Auto Encoders

• Stacked Auto Encoders contain several hidden layers

– Hidden layers capture more complex hidden variables
and/or denoising patterns

– They are often trained consecutively:

– First: train an auto encoder with one hidden layer

– Second: train a second one-layer neural net:

• first hidden layer as input

• original as output

(noisy) input hidden 1 output hidden 2 outputhidden 1

3/10/20 Heiko Paulheim 34

Footnote: Auto Encoders for Outlier Detection

• Also known as Replicator Neural Networks

(Hawkins et al., 2002)

• Train an autoencoder

– That captures the patterns in the data

• Encode and decode each data point, measure deviation

– Deviation is a measure for outlier score

3/10/20 Heiko Paulheim 35

From Classifiers to Feature Detectors

Some of the following slides are borrowed from
https://www.macs.hw.ac.uk/~dwcorne/Teaching/

3/10/20 Heiko Paulheim 36

From Classifiers to Feature Detectors

What does a particular neuron do?

3/10/20 Heiko Paulheim 37

What Happens at the Hidden Layer?

…

1

63

 1 5 10 15 20 25 …

high weight

low/zero weight

strong signal for a horizontal line in the
top row, ignoring everywhere else

3/10/20 Heiko Paulheim 38

What Happens at the Hidden Layer?

…

1

63

 1 5 10 15 20 25 …

high weight

low/zero weight

strong signal for a dark area in the top left
corner

3/10/20 Heiko Paulheim 39

Is that enough? What Features do we Need?

Vertical Lines

Horizontal Lines

Circles

3/10/20 Heiko Paulheim 40

Is that enough? What Features do we Need?

• What we have

– Line at the top

– Dark area in the top left corner

– …

• What we want

– Vertical Line

– Horizontal Line

– Circle

• Challenges

– Positional variance

– Color variance

3/10/20 Heiko Paulheim 41

On the Quest for Higher Level Features

etc …detect lines in
specific positions

 v

Higher level detetors
(horizontal line,
RHS vertical line,
upper loop, etc…

etc …

3/10/20 Heiko Paulheim 42

Regularization with Dropout

• ANNs, and in particular Deep ANNs, tend to overfitting

• Example: image classification

• Elephant: five features in the highest level layer

– big object

– grey

– trunk

– tail

– ears

• Possible tendency to overfit:

– expect all five to fire

elephant

?

3/10/20 Heiko Paulheim 43

Regularization with Dropout

• Regularization

– Randomly deactivate hidden neurons when training an example

– E.g., factor α=0.4: deactivate neurons randomly with probability 0.4

• Example:

– big object

– grey

– trunk

– tail

– ears

X

X

elephant

3/10/20 Heiko Paulheim 44

Regularization with Dropout

• Regularization

– Randomly deactivate hidden neurons when training an example

– E.g., factor α=0.4: deactivate neurons randomly with probability 0.4

• Result:

– Learned model is more robust, less overfit

• For classification:

– use all hidden neurons

• Problem: activation levels will be higher!

– Multiply each output with 1/(1+α)

3/10/20 Heiko Paulheim 45

Regularization with Dropout

• For classification:

– use all hidden neurons

• Problem: activation levels will be higher!

– Correction: multiply each output with 1/(1+α)

• Example:

– big object

– grey

– trunk

– tail

– ears

elephant

0.4

0.7

1.0

0.3

0.3

>1.3

without correction: 0.4+0.7+0.3+0.3 = 1.7>1.3



3/10/20 Heiko Paulheim 46

Regularization with Dropout

• For classification:

– use all hidden neurons

• Problem: activation levels will be higher!

– Correction: multiply each output with 1/(1+α)

• Example:

– big object

– grey

– trunk

– tail

– ears

elephant x
0.4

0.7

1.0

0.3

0.3

>1.3

With correction: (5/7)*(0.4+0.7+0.3+0.3) = 1.21<1.3

3/10/20 Heiko Paulheim 47

Regularization with Dropout

• For classification:

– use all hidden neurons

• Problem: activation levels will be higher!

– Correction: multiply each output with 1/(1+α)

• Example:

– big object

– grey

– trunk

– tail

– ears

elephant 
0.4

0.7

1.0

0.3

0.3

>1.3

(5/7)*(0.4+1.0+0.3+0.3) = 1.43>1.3

3/10/20 Heiko Paulheim 48

Architectures: Convolutional Neural Networks

• Special architecture for image processing

• Problem: imagine a 4k resolution picture (3840x2160)

– Treating each pixel as an input: 8M input neurons

– Connecting that to a hidden layer of the same size:
8M² = 64 trillion weights to learn

– This is hardly practical…

• Solution:

– Convolutional neural networks

3/10/20 Heiko Paulheim 49

Architectures: Convolutional Neural Networks

• Two parts:

– Convolution layer

– Pooling layer

• Stacks of those are usually used

3/10/20 Heiko Paulheim 50

Architectures: Convolutional Neural Networks

• Convolution layer

– Each neuron is connected to a small n x n square of the input neurons

– i.e., number of connections is linear, not quadratic

• Use different neurons for detecting different features

– They can share their weights

– (intuition: a horizontal line looks the same everywhere)

3/10/20 Heiko Paulheim 51

Architectures: Convolutional Neural Networks

• Pooling layer (aka as subsampling layer)

– Use only the maximum value of a neighborhood of neurons

– Think: downsizing a picture

– Number of neurons is divided by four with each pooling layer

3/10/20 Heiko Paulheim 52

Architectures: Convolutional Neural Networks

• The big picture

– With each pooling/subsampling step: 4 times less neurons

– After a few layers, we have a decent number of inputs

– Feed those into a fully connected ANN for the actual classification

3/10/20 Heiko Paulheim 53

Architectures: Convolutional Neural Networks

• The 4K picture revisited (3840x2160):

– Treating each pixel as an input: 8M input neurons

– Connecting that to a hidden layer of the same size:
8M² = 64 trillion weights to learn

• Number of connections (weights to be learned) in the first
convolutional layer:

– Assume each hidden neuron is connected to a 16x16 square

– and we learn 256 hidden features (i.e., 256 layers of convolutional
neurons)

– 16x16x256x8M = still 526 billion weights

• But: neurons for the same hidden feature share their weight

– Thus, it’s just 16x16x256 = 65k weights

3/10/20 Heiko Paulheim 54

Architectures: Convolutional Neural Networks

• Nice play around visualization for handwritten number detection

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

3/10/20 Heiko Paulheim 55

Architectures: Convolutional Neural Networks

• In practice, several layers are used

• Picture on the right

– Google’s GoogLeNet (Inception)

– Current state of the art in image classification

• Can be used as a pre-trained network

3/10/20 Heiko Paulheim 56

What does an Artificial Neural Network Learn?

3/10/20 Heiko Paulheim 57

What does an Artificial Neural Network Learn?

3/10/20 Heiko Paulheim 58

What does an Artificial Neural Network Learn?

• Image recognition networks can be attacked

– changing small pixels barely noticed by humans

Goodfellow et al.: Explaining and Harnessing Adverserial Examples, 2015

3/10/20 Heiko Paulheim 59

Possible Implications

• Face Detection

Sharif et al.: Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art
Face Recognition, 2016

3/10/20 Heiko Paulheim 60

Possible Implications

• Autonomous Driving

Papernot et al.: Practical Black-Box Attacks against Machine Learning, 2017

3/10/20 Heiko Paulheim 61

Turning a Neural Network Upside Down

• Assume you have a neural network trained for image classification

– Reverse application: given label, synthesize image

– Additional constraint (prior): neighboring pixels correlate

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

3/10/20 Heiko Paulheim 62

Turning a Neural Network Upside Down

• Asking for prototype pictures of certain labels

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

3/10/20 Heiko Paulheim 63

Making a Neural Network Daydream

• First step: classify an image

• Second step: amplify (i.e., use pair of input image and predicted
label as additional training example)

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

3/10/20 Heiko Paulheim 64

Making a Neural Network Daydream

• First step: classify an image

• Second step: amplify (i.e., use pair of input image and predicted
label as additional training example)

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

3/10/20 Heiko Paulheim 65

Neural Networks for Arts

• Train a neural network that extracts both artistic as well as content
features

https://arxiv.org/pdf/1508.06576.pdf

3/10/20 Heiko Paulheim 66

Neural Networks for Arts

• Then: generate picture with a given set of contents and style

https://arxiv.org/pdf/1508.06576.pdf

3/10/20 Heiko Paulheim 67

Reusing Pre-trained Networks

• The output of a network can be used as an input
to yet another classifier (neural network or other)

• Think: a multi-label image classifier as an auto-encoder

• Example: predict movie genre from poster

– Using an image classifier trained for object recognition

http://demo.caffe.berkeleyvision.org/

3/10/20 Heiko Paulheim 68

Using ANNs for Time Series Prediction

• Last week, we have learned about time series prediction

– Long term trends

– Seasonal effects

– Random fluctuation

– …

• Scenario: predict the continuation of a time series

– let’s use the last five values as features (3-window)

input hidden 1 output

T-5

T-4

T-3

T-2

T-1

T

3/10/20 Heiko Paulheim 69

Using ANNs for Time Series Prediction

• Assume that this is running continuously

– we will always just use the last five examples

– we cannot detect longer term trends

• Solution

– introduce a memory

– lmplementation: backward loops

input hidden 1 output

T-5

T-4

T-3

T-2

T-1

T

3/10/20 Heiko Paulheim 70

Long Short Term Memory Networks (LSTM)

• Notion of a recursive neural network

– A folded deep neural network

– Note: influence of the past decays over time

• LSTMs are special recursive neural networks

3/10/20 Heiko Paulheim 71

CNNs for Time Series Prediction

• Notion: time series also have typical features

– Think: trends, seasonal variation, ...

Zheng et al.: Time Series Classification Using Multi-Channels Deep Convolutional
Neural Networks, 2014

3/10/20 Heiko Paulheim 72

word2vec

• word2vec is similar to an auto encoder for words

• Training set: a text corpus

• Training task variants:

– Continuous bag of words (CBOW): predict a word from the surrounding
words

– Skip-Gram: predicts surrounding words of a word

Xin Rong: word2vec parameter learning explained

3/10/20 Heiko Paulheim 73

word2vec

• word2vec creates an n-dimensional vector for each word

• Each word becomes a point in a vector space

• Properties:

– Similar words are positioned to each other

– Relations have the same direction

3/10/20 Heiko Paulheim 74

word2vec

• Arithmetics are possible in the vector space

– king – man + woman ≈ queen

• This allows for finding analogies:

– king:man ↔ queen:woman

– knee:leg ↔ elbow:forearm

– Hillary Clinton:democrat ↔ Donald Trump:Republican

3/10/20 Heiko Paulheim 75

word2vec

• Pre-trained models exist

– e.g., on Google News Corpus or Wikipedia

• Can be downloaded and used instantly

3/10/20 Heiko Paulheim 76

From word2vec to anything2vec

• Vector space embeddings have recently become en vogue

– Basically, everything that can be expressed as sequences
can be processed by the word2vec pipeline

• There are vector space embeddings for…

– Graph2vec (social graphs)

– Doc2vec (entire documents)

– RDF2Vec (RDF graphs)

– Chord2Vec (music chords)

– Audio2vec

– Video2vec

– Gene2vec (Amino acid sequences)

– Emoji2vec

– ...

3/10/20 Heiko Paulheim 77

Summary

• Artificial Neural Networks

– Are a powerful learning tool

– Can approximate universal functions / decision boundaries

• Deep neural networks

– ANNs with multiple hidden layers

– Hidden layers learn to identify relevant features

– Many architectural variants exist

• Pre-trained models

– e.g,. for image recognition

– word embeddings

– ...

3/10/20 Heiko Paulheim 78

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Artificial Neural Networks (ANN)
	Folie 10
	Folie 11
	Folie 12
	General Structure of ANN
	Algorithm for learning ANN
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Questions?

