
Data Mining II
Optimization & Parameter Tuning

Heiko Paulheim

3/24/20 Heiko Paulheim 3

Why Parameter Tuning?

• What we have seen so far

– many learning algorithms for classification, regression, ...

• Many of those have parameters

– k and distance function for k nearest neighbors

– splitting and pruning options in decision tree learning

– hidden layers in neural networks

– C, gamma, and kernel function for SVMs

– ...

• But what is their effect?

– hard to tell in general

– rules of thumb are rare

3/24/20 Heiko Paulheim 4

Parameter Tuning – a Naive Approach

• You probably know that approach from the exercises

1. run classification/regression algorithm

2. look at the results (e.g., accuracy, RMSE, …)

3. choose different parameter settings, go to 1

● Questions:
● when to stop?
● how to select the next parameter setting to test?

3/24/20 Heiko Paulheim 5

Parameter Tuning – Avoid Overfitting!

• Recap overfitting:

– classifiers may overadapt
to training data

– the same holds for
parameter settings

• Possible danger:

– finding parameters that
work well on the training set

– but not on the test set

• Remedy:

– train / test / validation
split

3/24/20 Heiko Paulheim 6

Parameter Tuning – Avoid Overfitting!

• Parameter option: pruning (yes/no)

3/24/20 Heiko Paulheim 7

Parameter Tuning – Avoid Overfitting!

• Real example: train a local polynomial regression model

– Parameter to tune: find the optimal maximum degree of the polynomial

• Tuning with proper validation: degree = 3

3/24/20 Heiko Paulheim 8

Parameter Tuning – Avoid Overfitting!

• Real example: train a local polynomial regression model

– Parameter to tune: find the optimal maximum degree of the polynomial

• Tuning overfitting: degree = 9

3/24/20 Heiko Paulheim 9

Parameter Tuning: Brute Force

• Try all parameter combinations that exist

• Consider, e.g., a k-NN classifier

– try 30 different distance measures

– try all k from 1 to 1,000

– use weighting or not

→ 60,000 runs of k-NN

→ we need a better strategy than brute force!

3/24/20 Heiko Paulheim 10

Intermezzo: Beyond Parameter Tuning

• Parameter tuning is an optimization problem

• Finding optimal values for N variables

• Properties of the problem:

– the underlying model is unknown

• i.e., we do not know changing a variable will influence the results

– we can tell how good a solution is when we see it

• i.e., by running a classifier with the given parameter set

– but looking at each solution is costly

• e.g., 60,000 runs of k-NN

• Such problems occur quite frequently

3/24/20 Heiko Paulheim 11

Intermezzo: Beyond Parameter Tuning

• Related problem:

– feature subset selection

– cf. Data Mining 2, first lecture

• Given n features, brute force requires 2n evaluations

– for 20 features, that is already one million
→ ten million with cross validation

3/24/20 Heiko Paulheim 12

Intermezzo: Beyond Parameter Tuning

• Knapsack problem

– given a maximum weight you can carry

– and a set of items with different weight and monetary value

– pack those items that maximize the monetary value

• Problem is NP hard

– i.e., deterministic algorithms
require an exponential amount of time

– Note: feature subset selection for N features
requires 2n evaluations

3/24/20 Heiko Paulheim 13

Intermezzo: Beyond Parameter Tuning

• Many optimization problems are NP hard

– Routing problems (Traveling Salesman Problem)

– Integer factorization

hard enough to be used for cryptography

– Resource use optimization

• e.g., minimizing cutoff waste

– Chip design

• minimizing chip sizes

3/24/20 Heiko Paulheim 14

Intermezzo: Beyond Parameter Tuning

http://xkcd.com/287/

3/24/20 Heiko Paulheim 15

Parameter Tuning: Brute Force

• Properties of Brute Force search

– guaranteed to find the best parameter setting

– too slow in most practical cases

• Grid Search

– performs a brute force search

– with equal-width steps on non-discrete numerical attributes
(e.g., 10,20,30,..,100)

• Parameters with a wide range (e.g., 0.0001 to 1,000,000)

– with ten equal-width steps, the first step would be 1,000

– but what if the optimum is around 0.1?

– logarithmic steps may perform better

3/24/20 Heiko Paulheim 16

Parameter Tuning: Heuristics

• Properties of Brute Force search

– guaranteed to find the best parameter setting

– too slow in most practical cases

• Needed:

– solutions that take less time/computation

– and often find the best parameter setting

– or find a near-optimal parameter setting

3/24/20 Heiko Paulheim 17

Beyond Brute Force

https://xkcd.com/399/

3/24/20 Heiko Paulheim 18

Parameter Tuning: One After Another

• Given n parameters with m degrees of freedom
– brute force takes mn runs of the base classifier

• Simple tweak:

1. start with default settings

2. try all options for the first parameter

2a. fix best setting for first parameter

3. try all options for the second parameter

3a. fix best setting for second parameter

4. ...

• This reduces the runtime to n*m
– i.e., no longer exponential!

– but we may miss the best solution

3/24/20 Heiko Paulheim 19

Parameter Tuning: Interaction Effects

• Interaction effects make parameter tuning hard

– i.e., changing one parameter may change the optimal settings for
another one

• Example: two parameters p and q, each with values 0,1, and 2

– the table depicts classification accuracy

p=0 p=1 p=2

q=0 0.5 0.4 0.1

q=1 0.4 0.3 0.2

q=2 0.1 0.2 0.7

3/24/20 Heiko Paulheim 20

Parameter Tuning: Interaction Effects

• If we try to optimize one parameter by another (first p, then q)

– we end at p=0,q=0 in six out of nine cases

– on average, we investigate 2.3 solutions

p=0 p=1 p=2

q=0 0.5 0.4 0.1

q=1 0.4 0.3 0.2

q=2 0.1 0.2 0.7

3/24/20 Heiko Paulheim 21

Hill-Climbing Search

• a.k.a. greedy local search

• always search in the direction of the steepest ascend
– "Like climbing Everest in thick fog with amnesia"

3/24/20 Heiko Paulheim 22

Hill-Climbing Search

• Problem: depending on initial state,
one can get stuck in local maxima

3/24/20 Heiko Paulheim 23

Hill Climbing Search

• Given our previous problem

– we end up at the optimum in three out of nine cases

– but the local optimum (p=0,q=0) is reached in six out of nine cases!

– on average, we investigate 2.1 solutions

p=0 p=1 p=2

q=0 0.5 0.4 0.1

q=1 0.4 0.3 0.2

q=2 0.1 0.2 0.7

3/24/20 Heiko Paulheim 24

Variations of Hill Climbing Search

• Stochastic hill climbing

– random selection among the uphill moves

– the selection probability can vary with the steepness of the uphill move

• First-choice hill climbing

– generating successors randomly until a better one is found, then pick
that one

• Random-restart hill climbing

– run hill climbing with different seeds

– tries to avoid getting stuck in local maxima

3/24/20 Heiko Paulheim 25

Local Beam Search

• Keep track of k states rather than just one

• Start with k randomly generated states

• At each iteration, all the successors of all k states are generated

• Select the k best successors from the complete list and repeat

3/24/20 Heiko Paulheim 26

Simulated Annealing

• Escape local maxima by allowing “bad” moves
– Idea: but gradually decrease their size and frequency

• Origin: metallurgical annealing

• Bouncing ball analogy:
– Shaking hard (= high temperature)
– Shaking less (= lower the temperature)

• If T decreases slowly enough, best state is reached

3/24/20 Heiko Paulheim 27

Simulated Annealing

function SIMULATED-ANNEALING(problem, schedule) return a solution state
input: problem, a problem

schedule, a mapping from time to temperature
local variables: current, a node.

 next, a node.
T, a “temperature” controlling the probability of downward steps

current  MAKE-NODE(INITIAL-STATE[problem])
for t  1 to ∞ do

T  schedule[t]
if T = 0 then return current
next  a randomly selected successor of current
∆E  VALUE[next] - VALUE[current]
if ∆E > 0 then current  next
else current  next only with probability e∆E /T

3/24/20 Heiko Paulheim 28

Genetic Algorithms

• Inspired by evolution

• Overall idea:

– use a population of individuals (solutions)

– create new individuals by crossover

– introduce random mutations

– from each generation, keep only
the best solutions
(“survival of the fittest”)

• Developed in the 1970s

• John H. Holland:

– Standard Genetic Algorithm (SGA)
Charles Darwin (1809-1882)

3/24/20 Heiko Paulheim 29

Genetic Algorithms

• Basic ingredients:

– individuals: the solutions

• parameter tuning: a parameter setting

– a fitness function

• parameter tuning: performance of a parameter setting
(i.e., run learner with those parameters)

– a crossover method

• parameter tuning: create a new setting from two others

– a mutation method

• parameter tuning: change one parameter

– survivor selection

3/24/20 Heiko Paulheim 30

SGA Reproduction Cycle

1. Select parents for the mating pool

(size of mating pool = population size)

2. Shuffle the mating pool

3. For each consecutive pair apply crossover with probability pc,
otherwise copy parents

4. For each offspring apply mutation
(bit-flip with probability pm independently for each bit)

5. Replace the whole population with the resulting offspring

3/24/20 Heiko Paulheim 31

SGA Operators: 1-point crossover

• Choose a random point on the two parents
• Split parents at this crossover point
• Create children by exchanging tails

• Pc typically in range (0.6, 0.9)

3/24/20 Heiko Paulheim 32

SGA Operators: Mutation

• Alter each gene independently with a probability pm

• pm is called the mutation rate
– Typically between 1/pop_size and 1/ chromosome_length

3/24/20 Heiko Paulheim 33

• Main idea: better individuals get higher chance
– Chances proportional to fitness
– Implementation: roulette wheel technique

» Assign to each individual a part of the
roulette wheel

» Spin the wheel n times to select n
individuals

SGA Operators: Selection

fitness(A) = 3

fitness(B) = 1

fitness(C) = 2

A C

 1/6 = 17%

3/6 = 50%

B

2/6 = 33%

3/24/20 Heiko Paulheim 34

Crossover OR Mutation?

• Decade long debate: which one is better / necessary ...

• Answer (at least, rather wide agreement):
– it depends on the problem, but

– in general, it is good to have both

– both have another role

– mutation-only-EA is possible, crossover-only-EA would not work

3/24/20 Heiko Paulheim 35

● Exploration: Discovering promising areas in the search

space, i.e. gaining information on the problem

● Exploitation: Optimising within a promising area, i.e. using

information
● There is co-operation AND competition between them

● Crossover is explorative, it makes a big jump to an area
somewhere “in between” two (parent) areas

● Mutation is exploitative, it creates random small
diversions, thereby staying near (in the area of) the
parent

Crossover OR Mutation? (cont’d)

3/24/20 Heiko Paulheim 36

Crossover OR Mutation? (cont'd)

• Recall the solution space example from Hill Climbing

– crossover makes big jumps

– mutation makes small steps

solution 1 solution 2

x-over solution

mutation solution

3/24/20 Heiko Paulheim 37

• Only crossover can combine information from two

parents

• Only mutation can introduce new information (alleles)

• To hit the optimum you often need a ‘lucky’ mutation

Crossover OR Mutation? (cont’d)

3/24/20 Heiko Paulheim 38

Genetic Feature Subset Selection

• Feature Subset Selection

– can also be solved by Genetic Programming

• Individuals: feature subsets

• Representation: binary

– 1 = feature is included

– 0 = feature is not included

• Fitness: classification performance

• Crossover: combine selections of two subsets

• Mutation: flip bits

3/24/20 Heiko Paulheim 39

Selecting a Learner

• So far, we have looked at finding good parameters for a learner

– the learner was always fixed

• A similar problem is selecting a learner for the task at hand

• Again, we could go with search

• Another approach is meta learning

3/24/20 Heiko Paulheim 40

Selecting a Learner by Meta Learning

• Meta Learning

– i.e., learning about learning

• Goal: learn how well a learner will perform on a given dataset

– features: dataset characteristics, learning algorithm

– prediction target: accuracy, RMSE, ...

3/24/20 Heiko Paulheim 41

Selecting a Learner by Meta Learning

• Used in the Automatic System Construction extension

• regression trained on

– 90 datasets

– 54 features

• Examples for features

– number of instances/attributes

– fraction of nominal/numerical attributes

– min/max/average entropy of attributes

– skewness of classes

– ...

3/24/20 Heiko Paulheim 42

Selecting a Learner by Meta Learning

• Used in the Automatic System Construction extension

3/24/20 Heiko Paulheim 43

...and now for something completely different.

• Recap: search heuristics are good for problems where...

– finding an optimal solution is difficult

– evaluating a solution candidate is easy

– the search space of possible solutions is large

• Possible solution: genetic programming

• We have encountered such problems quite frequently

• Example: learning an optimal decision tree from data

3/24/20 Heiko Paulheim 44

Genetic Decision Tree Learning

• e.g., GAIT (Fu et al., 2003)

– also the source of the pictures on the following slides

• Population: candidate decision trees

– initialization: e.g., trained on small subsets of data

• Create new decision trees by means of

– crossover

– mutation

• Fitness function: e.g., accuracy

3/24/20 Heiko Paulheim 45

Genetic Decision Tree Learning

• Crossover:

3/24/20 Heiko Paulheim 46

Genetic Decision Tree Learning

• Mutation:

3/24/20 Heiko Paulheim 47

Genetic Decision Tree Learning

• Feasibility Check:

3/24/20 Heiko Paulheim 48

Combination of GP with other Learning Methods

• Rule Learning (“Learning Classifier Systems”), since late 70s

– Population: set of rule sets (!)

– Crossover: combining rules from two sets

– Mutation: changing a rule

• Artificial Neural Networks

– Easiest solution: fixed network layout

– The network is then represented as an ordered set (vector) of weights
e.g., [0.8, 0.2, 0.5, 0.1, 0.1, 0.2]

– Crossover and mutation are straight forward

– Variant: AutoMLP

• Searches for best combination
of hidden layers and learning rate

3/24/20 Heiko Paulheim 49

Parameter Optimization vs. Pruning

• Architecture of a neural network can be seen as parameters

– How many hidden layers? Which size?

• Pruning approaches: train large network, then start eliminating
connections

Han et al. (2015): Learning both Weights and Connections for Efficient Neural Network

3/24/20 Heiko Paulheim 50

Wrap-Up

• Parameter tuning is important

– many learning methods work poorly with standard parameters

– often no global optimum, dataset dependent

• Parameter tuning has a large search space

– trying all combinations is infeasible

– interaction effects do not allow for one-by-one tuning

3/24/20 Heiko Paulheim 51

Parameter Tuning: Criticism

• Just let those numbers sink…

– ...think: carbon footprint

– ...think: fair chances?

Strubell et al. (2019): Energy and Policy Considerations for Deep Learning in NLP

3/24/20 Heiko Paulheim 52

Wrap-Up

• Heuristic Methods

– Hill climbing with variations

– Beam search

– Simulated Annealing

– Genetic Programming

• Other uses of genetic programming

– Feature subset selection

– Model fitting

3/24/20 Heiko Paulheim 54

Final Words

• We hope the video lecture worked

– remember: this is an experiment

– let us know if you have any suggestions for improvements

• We’ll try to make the recording available

– this may take a bit

• Take care and stay healthy!

3/24/20 Heiko Paulheim 55

Questions?

Data Mining II
Optimization & Parameter Tuning

Heiko Paulheim

	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 54
	Questions?
	Folie 56

