UNIVERSITÄT MANNHEIM

Heiko Paulheim

Anomaly Detection

- Also known as "Outlier Detection"
- Automatically identify data points that are somehow different from the rest
- Working assumption:
 - There are considerably more "normal" observations than "abnormal" observations (outliers/anomalies) in the data
- Challenges
 - How many outliers are there in the data?
 - What do they look like?
 - Method is unsupervised
 - Validation can be quite challenging (just like for clustering)

Recap: Errors in Data

- Sources
 - malfunctioning sensors
 - errors in manual data processing (e.g., twisted digits)
 - storage/transmission errors
 - encoding problems, misinterpreted file formats
 - bugs in processing code

Image: http://www.flickr.com/photos/16854395@N05/3032208925/

Recap: Errors in Data

- Simple remedy
 - remove data points outside a given interval
 - this requires some domain knowledge
- Advanced remedies
 - automatically find suspicious data points

Filter Examples			
 exa	۶	exa ori	

📴 Parameters 💥 🕕 Context 💥				
🚨 💀 🖻 🗣 🗣 🕶				
🎾 Filter Examples				
condition class	attribute_value_filter			
parameter string	[Temperature>30 && Temperature<100]			
invert filter				

Applications: Data Preprocessing

- Data preprocessing
 - removing erroneous data
 - removing true, but useless deviations
- Example: tracking people down using their GPS data
 - GPS values might be wrong
 - person may be on holidays in Hawaii
 - what would be the result of a kNN classifier?

Applications: Credit Card Fraud Detection

- Data: transactions for one customer
 - €15.10 Amazon
 - €12.30 Deutsche Bahn tickets, Mannheim central station
 - €18.28 Edeka Mannheim
 - \$500.00 Cash withdrawal. Dubai Intl. Airport
 - €48.51 Gas station Heidelberg
 - €21.50 Book store Mannheim
- Goal: identify unusual transactions
 - possible attributes: location, amount, currency, ...

Applications: Hardware Failure Detection

collected data from one 10Gig Ethernet SR interface @ man-da

Thomas Weible: An Optic's Life (2010).

Applications: Stock Monitoring

- Stock market prediction
- Computer trading

http://blogs.reuters.com/reuters-investigates/2010/10/15/flash-crash-fallout/

Errors vs. Natural Outliers

Ozone Depletion History

- In 1985 three researchers (Farman, Gardinar and Shanklin) were puzzled by data gathered by the British Antarctic Survey showing that ozone levels for Antarctica had dropped 10% below normal levels
- Why did the Nimbus 7 satellite, which had instruments aboard for recording ozone levels, not record similarly low ozone concentrations?
- The ozone concentrations recorded by the satellite were so low they were being treated as outliers by a computer program and discarded!

Sources:

http://exploringdata.cqu.edu.au/ozone.html http://www.epa.gov/ozone/science/hole/size.html

Errors, Outliers, Anomalies, Novelties...

- What are we looking for?
 - Wrong data values (errors)
 - Unusual observations (outliers or anomalies)
 - Observations not in line with previous observations (novelties)
- Unsupervised Setting:
 - Data contains both normal and outlier points
 - Task: compute outlier score for each data point
- Supervised setting:
 - Training data is considered normal
 - Train a model to identify outliers in test dataset

Methods for Anomaly Detection

- Graphical
 - Look at data, identify suspicious observations
- Statistic
 - Identify statistical characteristics of the data
 - e.g., mean, standard deviation
 - Find data points which do not follow those characteristics
- Density-based
 - Consider distributions of data
 - Dense regions are considered the "normal" behavior
- Model-based
 - Fit an explicit model to the data
 - Identify points which do not behave according to that model

Anomaly Detection Schemes

- General Steps
 - Build a profile of the "normal" behavior
 - Profile can be patterns or summary statistics for the overall population

 \odot

 \bigcirc

- Use the "normal" profile to detect anomalies
 - Anomalies are observations whose characteristics differ significantly from the normal profile
- Types of anomaly detection schemes
 - Graphical & Statistical-based
 - Distance-based
 - Model-based

 \bigcirc

Graphical Approaches

- Boxplot (1-D), Scatter plot (2-D), Spin plot (3-D)
- Limitations
 - Time consuming
 - Subjective

Convex Hull Method

- Extreme points are assumed to be outliers
- Use convex hull method to detect extreme values

What if the outlier occurs in the middle of the data?

Interpretation: What is an Outlier?

Statistical Approaches

- Assume a parametric model describing the distribution of the data (e.g., normal distribution)
- Apply a statistical test that depends on
 - Data distribution
 - Parameter of distribution (e.g., mean, variance)
 - Number of expected outliers (confidence limit)

Interquartile Range

- Divides data in quartiles
- Definitions:
 - Q1: $x \ge Q1$ holds for 75% of all x
 - Q3: $x \ge Q3$ holds for 25% of all x
 - IQR = Q3-Q1
- Outlier detection:
 - All values outside [median-1.5*IQR ; median+1.5*IQR]
- Example:
 - 0,1,1,3,3,5,7,42 \rightarrow median=3, Q1=1, Q3=7 \rightarrow IQR = 6
 - Allowed interval: [3-1.5*6 ; 3+1.5*6] = [-6 ; 12]
 - Thus, 42 is an outlier

Interquartile Range

Assumes a normal distribution

Interquartile Range

• Visualization in box plot

Median Absolute Deviation (MAD)

• MAD is the median deviation from the median of a sample, i.e.

 $MAD := median_i(X_i - median_j(X_j))$

- MAD can be used for outlier detection
 - all values that are k*MAD away from the median are considered to be outliers
 - e.g., k=3
- Example:
 - 0,1,1,3,5,7,42 \rightarrow median = 3
 - deviations: $3,2,2,0,2,4,39 \rightarrow MAD = 2$
 - allowed interval: [3-3*2; 3+3*2] = [-3;9]
 - therefore, 42 is an outlier

Carl Friedrich Gauss, 1777-1855

Fitting Elliptic Curves

- Multi-dimensional datasets
 - can be seen as following a normal distribution on each dimension
 - the intervals in one-dimensional cases become elliptic curves
- In Python: covariance.EllipticEnvelope

Mahalanobis distances of a contaminated data set:

Limitations of Statistical Approaches

- Most of the tests are for a single attribute (called: *univariate*)
- For high dimensional data, it may be difficult to estimate the true distribution
- In many cases, the data distribution may not be known
 - e.g., IQR Test: assumes Gaussian distribution

- Normal (gaussian) distribution
 - e.g., people's height

http://www.usablestats.com/images/men_women_height_histogram.jpg

- Power law distribution
 - e.g., city population

Batangas 2000 Population, by City/Municipality

http://www.jmc2007compendium.com/V2-ATAPE-P-12.php

- Pareto distribution
 - e.g., wealth

http://www.ncpa.org/pub/st289?pg=3

- Uniform distribution
 - e.g., distribution of web server requests across an hour

Arrival Time of HTTP Requests Within Hour

Observed Estimated

http://www.brighton-webs.co.uk/distributions/uniformc.aspx

Outliers vs. Extreme Values

- So far, we have looked at extreme values only
 - But outliers can occur as non-extremes
 - In that case, methods like IQR fail

Outliers vs. Extreme Values

- IQR on the example below:
 - Q2 (Median) is 0
 - Q1 is -1, Q3 is 1
 - \rightarrow everything outside [-1.5,+1.5] is an outlier
 - \rightarrow there are no outliers in this example

Time for a Short Break

http://xkcd.com/539/

Distance-based Approaches

- Data is represented as a vector of features
- Various approaches
 - Nearest-neighbor based
 - Density based
 - Clustering based
 - Model based

Nearest-Neighbor Based Approach

- Approach:
 - Compute the distance between every pair of data points
 - There are various ways to define outliers:
 - Data points for which there are fewer than p neighboring points within a distance D
 - The top n data points whose distance to the kth nearest neighbor is greatest
 RapidMiner

The top n data points whose average distance to the k nearest neighbors is greatest

Package PyOD

Detect Outlier (Distances)				
number of neighbors	10			
number of outliers	10			
distance function	euclidian distance 🔻			

Density-based: LOF approach

- For each point, compute the density of its local neighborhood
 - if that density is higher than the average density, the point is in a cluster
 - if that density is lower than the average density, the point is an outlier
- Compute local outlier factor (LOF) of a point A
 - ratio of average density of A's neighbors to density of point A
- Outliers are points with large LOF value
 - typical: larger than 1

LOF: Illustration

- Using 3 nearest neighbors
- We compute
 - the average density of A
 - the average density of A's neighbors
- If the density of A is lower than the neighbors' density
 - A might be an outlier

http://commons.wikimedia.org/wiki/File:LOF-idea.svg

LOF: Defining Density

- LOF uses a concept called "reachability distance"
- All points within the k-neighborhood have the same k-distance
 - in the example: $d_3(A,B) = d_3(A,C)$
- Reachability distance rd_k(A,B):
 - distance of A,B, lower bound by $d_k(B)$
 - $rd_k(A,B) = max(d_k(B),distance(A,B))$
- In the example:
 - $rd_k(D,A) = d(D,A)$, but
 - $rd_k(C,A) = k$ -distance(A)
- Rationale: all sufficiently close points are regarded as equally close
 - lessens the impact of small variations

https://commons.wikimedia.org/wiki/File:Reachability-distance.svg

LOF: Defining Density

$$avgrd_{k}(A) = \frac{\sum_{\substack{P: k \text{ nearest neighbors of } A}} rd_{k}(A, P)}{|N_{k}(A)|}$$

no. of k nearest neighbors of A, usually =k

- Density is defined as the inverse
 - idea: the larger the avg. reachability distance,
 the sparser the region in which the data point lies
 - local reachability density $Irb_k(A) = 1/avgrd_k(A)$
- Local outlier factor: relation of density of A's neighbors to A's density: $\sum_{k=1}^{n} \frac{lrb_k(P)}{k} \sum_{k=1}^{n} \frac{lrb_k(P)}{k}$

$$LOF_{k}(A) = \frac{\sum_{P:k \text{ nearest neighbors of } A} \overline{lrb_{k}(A)}}{|N_{k}(A)|} = \frac{\sum_{P:k \text{ nearest neighbors of } A} lrb_{k}(P)}{|N_{k}(A)| \cdot lrb_{k}(A)}$$

А

В

Nearest-Neighbor vs. LOF

- With kNN, only p₁ is found as an outlier
 - there are enough near neighbors for p_2 in cluster C_2
- With LOF, both p_1 and p_2 are found as outliers

sklearn.neighbors.LocalOutlierFactor
Recap: DBSCAN

- DBSCAN is a density-based algorithm
 - Density = number of points within a specified radius (Eps)
- Divides data points in three classes:
 - A point is a core point if it has more than a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
 - A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point

Recap: DBSCAN

5/11/21 Heiko Paulheim

Recap: DBSCAN

Original Points

Point types: core, border and noise

Eps = 10, MinPts = 4

5/11/21 Heiko Paulheim

DBSCAN for Outlier Detection

- DBSCAN directly identifies noise points
 - these are outliers not belonging to any cluster
 - in RapidMiner: assigned to cluster 0
 - in scikit-learn: label -1
 - allows for performing outlier detection directly

Clustering-based Outlier Detection

- Basic idea:
 - Cluster the data into groups of different density
 - Choose points in small cluster as candidate outliers
 - Compute the distance between candidate points and non-candidate clusters
 - If candidate points are far from all other non-candidate points, they are outliers

Clustering-based Local Outlier Factor

- Idea: anomalies are data points that are
 - in a very small cluster or
 - far away from other clusters
- CBLOF is run on clustered data
- Assigns a score based on
 - the size of the cluster a data point is in
 - the distance of the data point to the next large cluster

Clustering-based Local Outlier Factor

- General process:
 - first, run a clustering algorithm (of your choice)
 - then, apply CBLOF

Package PyOD

Result: data points with outlier score

Data View O Meta Data View O Plot View O Advanced Charts O Annotations											
ExampleSet (208 examples, 4 special attributes, 60 regular attributes)											
Row No.	cluster	class	id	outlier	attribute_1	attribute_2	attribute_3	attribute_4	attribute_5	attribute_6	attribute_7
1	cluster_0	Rock	1	38.516	0.020	0.037	0.043	0.021	0.095	0.099	0.154
2	cluster_2	Rock	2	65.452	0.045	0.052	0.084	0.069	0.118	0.258	0.216
3	cluster_2	Rock	3	75.490	0.026	0.058	0.110	0.108	0.097	0.228	0.243
4	cluster_0	Rock	4	45.112	0.010	0.017	0.062	0.020	0.020	0.037	0.110
5	cluster_2	Rock	5	68.759	0.076	0.067	0.048	0.039	0.059	0.065	0.121
6	cluster_2	Rock	6	69.133	0.029	0.045	0.028	0.017	0.038	0.099	0.120
7	cluster_2	Rock	7	65.306	0.032	0.096	0.132	0.141	0.167	0.171	0.073
8	cluster_3	Rock	8	48.851	0.052	0.055	0.084	0.032	0.116	0.092	0.103
9	cluster_3	Rock	9	52.493	0.022	0.038	0.048	0.048	0.065	0.059	0.075
10	cluster_3	Rock	10	48.437	0.016	0.017	0.035	0.007	0.019	0.067	0.106
11	cluster_1	Rock	11	68.168	0.004	0.006	0.015	0.034	0.031	0.028	0.040
12	cluster_3	Rock	12	46.765	0.012	0.031	0.017	0.031	0.036	0.010	0.018
13	cluster_2	Rock	13	56.138	0.008	0.009	0.006	0.025	0.034	0.055	0.053
14	cluster_1	Rock	14	69.857	0.009	0.006	0.025	0.049	0.120	0.159	0.139
15	cluster_1	Rock	15	84.639	0.012	0.043	0.060	0.045	0.060	0.036	0.053
16	cluster_0	Rock	16	44.131	0.030	0.062	0.065	0.092	0.162	0.229	0.218
17	cluster_0	Rock	17	33.057	0.035	0.012	0.019	0.047	0.074	0.118	0.168

PCA and Reconstruction Error

- Recap: PCA tries to capture most dominant variations in the data
 - those can be seen as the "normal" behavior
- Reconstruct original data point by inversing PCA
 - close to original: normally behaving data point
 - far from original: unnormally behaving data point

Model-based Outlier Detection (ALSO)

- Idea: there is a model underlying the data
 - Data points deviating from the model are outliers

5/11/21 Heiko Paulheim

Model-based Outlier Detection (ALSO)

- ALSO (Attribute-wise Learning for Scoring Outliers)
 - Learn a model for each attribute given all other attributes
 - Use model to predict expected value
 - Deviation between actual and predicted value \rightarrow outlier

Interpretation: What is an Outlier? (recap)

5/11/21 Heiko Paulheim

Model-based Outlier Detection (ALSO)

- For each data point *i*, compute vector of predictions *i*'
- Outlier score: Euclidean distance of *i* and *i*'
 - in z-transformed space

$$o_{unweighted}(i) := \sqrt{\sum_{k=1}^{n} (i_k - i'_k)^2}$$

- Refinement: assign weights to attributes
 - given the strength of the pattern learned
 - measure: RRSE

$$o(i) := \sqrt{\frac{1}{\sum_{k=1}^{n} w_k} \sum_{k=1}^{n} w_k \cdot (i_k - i'_k)^2},$$

- Rationale:
 - ignores deviations on unpredictable attributes (e.g., database IDs)
 - for an outlier, require *both* a strong pattern *and* a strong deviation

One-Class Support Vector Machines

- Recap: Support Vector Machines
 - Find a maximum margin hyperplane to separate two classes
 - Use a transformation of the vector space
 - Thus, non-linear boundaries can be found

One-Class Support Vector Machines

- One-Class Support Vector Machines
 - Find best hyperplane that separates the origin from the rest of the data
 - Maximize margin
 - Minimize errors
 - Points on the same side as the origin are outliers

- Recap: SVMs require extensive parameter tunining
 - Difficult to automatize for anomaly detection, since we have no training data

- Isolation tree:
 - a decision tree that has only leaves with one example each
- Isolation forests:
 - train a set of random isolation trees
- Idea:
 - path to outliers in a tree is shorter than path to normal points
 - across a set of random trees, average path length is an outlier score

- Training a single isolation tree
 - for each leaf node w/ more than one data point
 - pick an attribute Att and a value V at random
 - create inner node with test Att<V
 - train isolation tree for each subtree
- Output
 - A tree with just one instance per node
 - Usually, an upper limit on height is used

- Probability of (0,0) ending in a leaf at height 1
 - pick Att X, pick V<0.52

- Probability of (0,0) ending in a leaf at height 1
 - pick Att Y, pick V<0.62

- Probability of any other data point ending in a leaf at height 1
 - this is not possible!
 - at least two tests are necessary

- Observations
 - data points in dense areas need more tests
 - i.e., they end up *deeper* in the trees
 - data points far away from the rest have a higher probability to be isolated earlier
 - i.e., they end up *higher* in the trees

- A large number of attributes may cause problems
 - many anomaly detection approaches use distance measures
 - those get problematic for very high-dimensional spaces
 - meaningless attributes obscure the distances
- Practical hint:
 - perform dimensionality reduction first
 - i.e., feature subset selection, PCA
 - note: anomaly detection is unsupervised
 - thus, supervised selection (like forward/backward selection) does not work

- Recap: attributes may have different scales
 - Hence, different attributes may have different contributions to outlier scores
- Compare the following two datasets:
- Baden-Württemberg
 - population = 10,569,111
 - area = 35,751.65 km²
- Bavaria

. . .

•

- population = 12,519,571
- area = 70,549.44 km²

- Baden-Württemberg
 - population = 10,569,111
 - area = 35,751,650,000 m²
- Bavaria
 - population = 12,519,571
 - area = 70,549,440,000 m²

- Baden-Württemberg
 - population = 10,569,111
 - area = 35,751.65 km²
- Bavaria

. . .

٠

- population = 12,519,571
- area = 70,549.44 km²

- Baden-Württemberg
 - population = 10,569,111
 - area = 35,751,650,000 m²
- Bavaria

. . .

- population = 12,519,571
- area = 70,549,440,000 m²

- In the second set, outliers in the population are unlikely to be discovered
 - Even if we change the population of Bavaria by a factor of 100, the Euclidean distance does not change much
- Thus, outliers in the population are *masked* by the area attribute

- Solution:
 - Normalization!
- Advised:
 - z-Transformation
 - More robust w.r.t. outliers than simple projection to [0;1]

Evaluation Measures

- Anomaly Detection is an *unsupervised* task
- Evaluation: usually on a labeled subsample
- Evaluation Measures:
 - F-measure on outliers
 - Area under ROC curve

Evaluation Measures

- Anomaly Detection is an *unsupervised* task
- Evaluation: usually on a labeled subsample
 - Note: no splitting into training and test data!
- Evaluation Measures:
 - F-measure on outliers
 - Area under ROC curve
 - Plots false positives against true positives

Evaluation Measures

- Anomaly Detection is an *unsupervised* task
- Evaluation: usually on a labeled subsample
 - Note: no splitting into training and test data!
- Evaluation Measures:
 - F-measure on outliers
 - Area under ROC curve
 - Plots false positives against true positives

Semi-Supervised Anomaly Detection

- All approaches discussed so far are unsupervised
 - they run fully automatic
 - without human intelligence
- Semi-supervised anomaly detection
 - experts manually label some data points as being outliers or not
 - \rightarrow anomaly detection becomes similar to a classification task
 - the class label being outlier/non-outlier
 - Challenges:
 - Outliers are scarce \rightarrow unbalanced dataset
 - Outliers are not a class

- DBpedia
 - extracts data from infoboxes in Wikipedia
 - based on crowd-sourced mappings to an ontology
- Example
 - Wikipedia page on Michael Jordan

Dominik Wienand, Heiko Paulheim: Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014 Michael Jordan

Michael Jordan in 2006

No. 23, 45, 12^[a] Shooting guard

1984-2003

Pro playing career

- DBpedia is based on heuristic extraction
- Several things can go wrong
 - wrong data in Wikipedia
 - unexpected number/date formats
 - errors in the extraction code

- ...

• Can we use anomaly detection to remedy the problem?

Dominik Wienand, Heiko Paulheim: Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014

Challenge

- ...

- Wikipedia is made for humans, not machines
- Input format in Wikipedia is not constrained
- The following are all valid representations of the same height value (and perfectly understandable by humans)
 - 6 ft 6 in, 6ft 6in, 6'6'', 6'6", 6´6´´,...
 - 1.98m, 1, 98m, 1m 98, 1m 98cm, 198cm, 198 cm, ...
 - 6 ft 6 in (198 cm), 6ft 6in (1.98m), 6'6'' (1.98 m),...
 - 6 ft 6 in^[1], 6 ft 6 in ^[citation needed], ...

Dominik Wienand, Heiko Paulheim: Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014

5/11/21 Heiko Paulheim

- Preprocessing: split data for different types
 - height is used for persons or buildings
 - population is used for villages, cities, countries, and continents

- ...

- Separate into single distributions
 - makes anomaly detection better
- Result
 - errors are identified at ~90% precision
 - systematic errors in the extraction code can be found

Dominik Wienand, Heiko Paulheim: Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014

• Footprint of a systematic error

Dominik Wienand, Heiko Paulheim: Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014

5/11/21 Heiko Paulheim
Example: Outlier Detection in DBpedia

- Typical error sources
 - unit conversions gone wrong (e.g., imperial/metric)
 - misinterpretation of numbers
- e.g., village Semaphore in Australia
 - population: 28,322,006(all of Australia: 23,379,555!)
 - a clear outlier among villages

Dominik Wienand, Heiko Paulheim: Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014

Errors vs. Natural Outliers

- Hard task for a machine
- e.g., an adult person 58cm high
- e.g., a 7.4m high vehicle

Dominik Wienand, Heiko Paulheim: Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014

Pauline Musters

Musters next to an average man

Born	February 26, 1876
	Ossendrecht, Netherlands
Died	March 1, 1895 (aged 19)
	New York City
Cause of death	Combination of pneumonia and meningitis
Known for	Shortest verified woman ever
Height	23 inches (58 cm)

5/11/21 Heiko Paulheim

Wrap-up

- Anomaly Detection is useful for
 - data preprocessing and cleansing
 - finding suspect data (e.g., network intrusion, credit card fraud)
- Methods
 - visual/manual
 - statistics based
 - density based
 - model based

Questions?

