UNIVERSITÄT MANNHEIM

Data Mining II Anomaly Detection

Heiko Paulheim

Anomaly Detection

- Also known as "Outlier Detection"
- Automatically identify data points that are somehow different from the rest
- Working assumption:
- There are considerably more "normal" observations than "abnormal" observations (outliers/anomalies) in the data
- Challenges
- How many outliers are there in the data?
- What do they look like?
- Method is unsupervised
- Validation can be quite challenging (just like for clustering)

Recap: Errors in Data

- Sources
- malfunctioning sensors
- errors in manual data processing (e.g., twisted digits)
- storage/transmission errors
- encoding problems, misinterpreted file formats
- bugs in processing code
- ...

Recap: Errors in Data

- Simple remedy
- remove data points outside a given interval
- this requires some domain knowledge

- Advanced remedies
- automatically find suspicious data points

目 Parameters $\& \bigcirc$ Context \mathbb{S}	
P Filter Examples	
condition class	attribute_value_filter
parameter string	Temperature >30 \& \& Temperature <100
\square invert filter	

Applications: Data Preprocessing

- Data preprocessing
- removing erroneous data
- removing true, but useless deviations
- Example: tracking people down using their GPS data
- GPS values might be wrong
- person may be on holidays in Hawaii
- what would be the result of a kNN classifier?

Applications: Credit Card Fraud Detection

- Data: transactions for one customer
- €15.10 Amazon
- €12.30 Deutsche Bahn tickets, Mannheim central station
- €18.28 Edeka Mannheim
- \$500.00 Cash withdrawal. Dubai Intl. Airport
- €48.51 Gas station Heidelberg
- €21.50 Book store Mannheim
- Goal: identify unusual transactions
- possible attributes: location, amount, currency, ...

Applications: Hardware Failure Detection

collected data from one 10Gig Ethernet SR interface @ man-da

Thomas Weible: An Optic's Life (2010).

Applications: Stock Monitoring

- Stock market prediction
- Computer trading

The plunge of May 6

Source: Thomson Reuters

http://blogs.reuters.com/reuters-investigates/2010/10/15/flash-crash-fallout/
Heiko Paulheim

Errors vs. Natural Outliers

Ozone Depletion History

- In 1985 three researchers (Farman, Gardinar and Shanklin) were puzzled by data gathered by the British Antarctic Survey showing that ozone levels for Antarctica had dropped 10\% below normal levels
- Why did the Nimbus 7 satellite, which had instruments aboard for recording ozone levels, not record similarly low ozone concentrations?
- The ozone concentrations recorded by the satellite were so low they were being treated as outliers by a computer program and discarded!

Sources:
http://exploringdata.cqu.edu.au/ozone.html http://www.epa.gov/ozone/science/hole/size.html

Errors, Outliers, Anomalies, Novelties...

- What are we looking for?
- Wrong data values (errors)
- Unusual observations (outliers or anomalies)
- Observations not in line with previous observations (novelties)
- Unsupervised Setting:
- Data contains both normal and outlier points
- Task: compute outlier score for each data point
- Supervised setting:
- Training data is considered normal
- Train a model to identify outliers in test dataset

Methods for Anomaly Detection

- Graphical
- Look at data, identify suspicious observations
- Statistic
- Identify statistical characteristics of the data
- e.g., mean, standard deviation
- Find data points which do not follow those characteristics
- Density-based
- Consider distributions of data
- Dense regions are considered the "normal" behavior
- Model-based
- Fit an explicit model to the data
- Identify points which do not behave according to that model

Anomaly Detection Schemes

- General Steps
- Build a profile of the "normal" behavior
- Profile can be patterns or summary statistics for the overall population
- Use the "normal" profile to detect anomalies
- Anomalies are observations whose characteristics differ significantly from the normal profile
- Types of anomaly detection schemes
- Graphical \& Statistical-based
- Distance-based
- Model-based

Graphical Approaches

- Boxplot (1-D), Scatter plot (2-D), Spin plot (3-D)
- Limitations
- Time consuming
- Subjective

Convex Hull Method

- Extreme points are assumed to be outliers
- Use convex hull method to detect extreme values

- What if the outlier occurs in the middle of the data?

Interpretation: What is an Outlier?

Statistical Approaches

- Assume a parametric model describing the distribution of the data (e.g., normal distribution)
- Apply a statistical test that depends on
- Data distribution
- Parameter of distribution (e.g., mean, variance)
- Number of expected outliers (confidence limit)

Interquartile Range

- Divides data in quartiles
- Definitions:
- Q1: $x \geq$ Q1 holds for 75% of all x
- Q3: $x \geq$ Q3 holds for 25% of all x
- IQR = Q3-Q1
- Outlier detection:
- All values outside [median-1.5*IQR ; median+1.5*IQR]
- Example:
- 0,1,1,3,3,5,7,42 \rightarrow median $=3$, Q1 $=1$, Q3 $=7 \rightarrow$ IQR $=6$
- Allowed interval: [3-1.5*6;3+1.5*6] = [-6; 12]
- Thus, 42 is an outlier

Interquartile Range

- Assumes a normal distribution

Interquartile Range

- Visualization in box plot

Median Absolute Deviation (MAD)

- MAD is the median deviation from the median of a sample, i.e.

$$
M A D:=\text { median }_{i}\left(X_{i}-\operatorname{median}_{j}\left(X_{j}\right)\right)
$$

- MAD can be used for outlier detection
- all values that are k^{*} MAD away from the median are considered to be outliers
- e.g., k=3
- Example:
- 0,1,1,3,5,7,42 \rightarrow median $=3$
- deviations: $3,2,2,0,2,4,39 \rightarrow$ MAD $=2$
- allowed interval: [3-3*2;3+3*2] $=[-3 ; 9]$
- therefore, 42 is an outlier

Fitting Elliptic Curves

- Multi-dimensional datasets
- can be seen as following a normal distribution on each dimension
- the intervals in one-dimensional cases become elliptic curves
- In Python: covariance.EllipticEnvelope

Mahalanobis distances of a contaminated data set:

Limitations of Statistical Approaches

- Most of the tests are for a single attribute (called: univariate)
- For high dimensional data, it may be difficult to estimate the true distribution
- In many cases, the data distribution may not be known
- e.g., IQR Test: assumes Gaussian distribution

Examples for Distributions

- Normal (gaussian) distribution
- e.g., people's height

Examples for Distributions

- Power law distribution
- e.g., city population

Batangas 2000 Population, by City/Municipality

http://www.jmc2007compendium.com/V2-ATAPE-P-12.php

Examples for Distributions

- Pareto distribution
- e.g., wealth

FIGURE I
Wealth Distribution in the United States - 2003
(married households headed by a 60-69 year old)

Source: Authors' calculations from the 2004 Survey of Consumer Finances.
http://www.ncpa.org/pub/st289?pg=3

Examples for Distributions

- Uniform distribution
- e.g., distribution of web server requests across an hour

Arrival Time of HTTP Requests Within Hour

Outliers vs. Extreme Values

- So far, we have looked at extreme values only
- But outliers can occur as non-extremes
- In that case, methods like IQR fail

Outliers vs. Extreme Values

- IQR on the example below:
- Q2 (Median) is 0
- Q1 is -1, Q3 is 1
\rightarrow everything outside $[-1.5,+1.5]$ is an outlier
\rightarrow there are no outliers in this example
\qquad

Time for a Short Break

BUT YOU SPEND TWICE AS MUCH TIME WITH ME AS WITH ANYONE ELSE. I'M A CIEAR OUTUER.

YOUR MATH IS IRREFUTABLE.

FACE IT-I'M YOUR STATISTICALLY SIGNIFICANT OTHER.

Distance-based Approaches

- Data is represented as a vector of features
- Various approaches
- Nearest-neighbor based
- Density based
- Clustering based
- Model based

Nearest-Neighbor Based Approach

- Approach:
- Compute the distance between every pair of data points
- There are various ways to define outliers:
- Data points for which there are fewer than p neighboring points within a distance D
- The top n data points whose distance to the $\mathrm{k}^{\text {th }}$ nearest neighbor is greatest RapidMiner
The top n data points whose average distance to the k nearest neighbors is greatest

Package PyOD

Density-based: LOF approach

- For each point, compute the density of its local neighborhood
- if that density is higher than the average density, the point is in a cluster
- if that density is lower than the average density, the point is an outlier
- Compute local outlier factor (LOF) of a point A
- ratio of average density of A's neighbors to density of point A
- Outliers are points with large LOF value
- typical: larger than 1

LOF: Illustration

- Using 3 nearest neighbors
- We compute
- the average density of A
- the average density of A's neighbors
- If the density of A is lower than the neighbors' density
- A might be an outlier

LOF: Defining Density

- LOF uses a concept called "reachability distance"
- All points within the k-neighborhood have the same k-distance
- in the example: $d_{3}(A, B)=d_{3}(A, C)$
- Reachability distance $\operatorname{rd}_{k}(A, B)$:
- distance of A, B, lower bound by $d_{k}(B)$
- $\operatorname{rd}_{k}(A, B)=\max \left(d_{k}(B)\right.$,distance $\left.(A, B)\right)$
- In the example:
$-r_{k}(D, A)=d(D, A)$, but
$-\operatorname{rd}_{k}(C, A)=k$-distance (A)
- Rationale: all sufficiently close points are regarded as equally close
- lessens the impact of small variations

LOF: Defining Density

- Average reachability distance

$$
-\quad \operatorname{avgrd}_{k}(A)=\frac{\sum_{p: \text { Rnearesteqeqhorosof } A} r d_{k}(A, P)}{\left|N_{k}(A)\right|}
$$

- Density is defined as the inverse
- idea: the larger the avg. reachability distance, the sparser the region in which the data point lies

- local reachability density $\operatorname{lrb}_{k}(A)=1 / \operatorname{avgrd}_{k}(A)$
- Local outlier factor: relation of density of A's neighbors to A's density:

$$
\left.L O F_{k}(A)=\frac{\sum_{P: k n e a r e s t ~ n e i g h o o r s ~ o f ~}}{} \frac{\operatorname{lrb}_{k}(P)}{\left|N_{k}(A)\right|}=\frac{\sum_{k}(A)}{\mid N_{k}(A) \text { neerest neighors of } A} \right\rvert\, \operatorname{lrb}_{k}(P)
$$

Nearest-Neighbor vs. LOF

- With $k N N$, only p_{1} is found as an outlier
- there are enough near neighbors for p_{2} in cluster C_{2}
- With LOF, both p_{1} and p_{2} are found as outliers

Recap: DBSCAN

- DBSCAN is a density-based algorithm
- Density = number of points within a specified radius (Eps)
- Divides data points in three classes:
- A point is a core point if it has more than a specified number of points (MinPts) within Eps
- These are points that are at the interior of a cluster
- A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
- A noise point is any point that is not a core point or a border point

Recap: DBSCAN

Recap: DBSCAN

Original Points

Point types: core, border and noise

Eps $=10$, MinPts $=4$

DBSCAN for Outlier Detection

- DBSCAN directly identifies noise points
- these are outliers not belonging to any cluster
- in RapidMiner: assigned to cluster 0
- in scikit-learn: label -1
- allows for performing outlier detection directly

Clustering-based Outlier Detection

- Basic idea:
- Cluster the data into groups of different density
- Choose points in small cluster as candidate outliers
- Compute the distance between candidate points and non-candidate clusters
- If candidate points are far from all other non-candidate points, they are outliers

Clustering-based Local Outlier Factor

- Idea: anomalies are data points that are
- in a very small cluster or
- far away from other clusters
- CBLOF is run on clustered data
- Assigns a score based on
- the size of the cluster a data point is in

- the distance of the data point to the next large cluster

Clustering-based Local Outlier Factor

- General process:
- first, run a clustering algorithm (of your choice)
- then, apply CBLOF

Package PyOD

- Result: data points with outlier score

(-) Data View \bigcirc Meta Data View Plot View Advanced Charts Annotations												
ExampleSet (208 examples, 4 special attributes, 60 regular attributes)												
Row No.	cluster	cla		id	outlier	attribute_1	attribute_2	attribute_3	attribute_4	attribute_5	attribute_6	attribute_7
1	cluster_0	Rock	1		38.516	0.020	0.037	0.043	0.021	0.095	0.099	0.154
2	cluster_2	Rock	2		65.452	0.045	0.052	0.084	0.069	0.118	0.258	0.216
3	cluster_2	Rock	3		75.490	0.026	0.058	0.110	0.108	0.097	0.228	0.243
4	cluster_0	Rock	4		45.112	0.010	0.017	0.062	0.020	0.020	0.037	0.110
5	cluster_2	Rock	5		68.759	0.076	0.067	0.048	0.039	0.059	0.065	0.121
6	cluster_2	Rock	6		69.133	0.029	0.045	0.028	0.017	0.038	0.099	0.120
7	cluster_2	Rock	7		65.306	0.032	0.096	0.132	0.141	0.167	0.171	0.073
8	cluster_3	Rock	8		48.851	0.052	0.055	0.084	0.032	0.116	0.092	0.103
9	cluster_3	Rock	9		52.493	0.022	0.038	0.048	0.048	0.065	0.059	0.075
10	cluster_3	Rock	10		48.437	0.016	0.017	0.035	0.007	0.019	0.067	0.106
11	cluster_1	Rock	11		68.168	0.004	0.006	0.015	0.034	0.031	0.028	0.040
12	cluster_3	Rock	12		46.765	0.012	0.031	0.017	0.031	0.036	0.010	0.018
13	cluster_2	Rock	13		56.138	0.008	0.009	0.006	0.025	0.034	0.055	0.053
14	cluster_1	Rock	14		69.857	0.009	0.006	0.025	0.049	0.120	0.159	0.139
15	cluster_1	Rock	15		84.639	0.012	0.043	0.060	0.045	0.060	0.036	0.053
16	cluster_0	Rock	16		44.131	0.030	0.062	0.065	0.092	0.162	0.229	0.218
17	cluster_0	Rock	17		33.057	0.035	0.012	0.019	0.047	0.074	0.118	0.168

PCA and Reconstruction Error

- Recap: PCA tries to capture most dominant variations in the data
- those can be seen as the "normal" behavior
- Reconstruct original data point by inversing PCA
- close to original: normally behaving data point
- far from original: unnormally behaving data point

Model-based Outlier Detection (ALSO)

- Idea: there is a model underlying the data
- Data points deviating from the model are outliers

Model-based Outlier Detection (ALSO)

- ALSO (Attribute-wise Learning for Scoring Outliers)
- Learn a model for each attribute given all other attributes
- Use model to predict expected value
- Deviation between actual and predicted value \rightarrow outlier

Interpretation: What is an Outlier? (recap)

Model-based Outlier Detection (ALSO)

- For each data point i, compute vector of predictions i^{\prime}
- Outlier score: Euclidean distance of i and i^{\prime}
- in z-transformed space

$$
o_{\text {unweighted }}(i):=\sqrt{\sum_{k=1}^{n}\left(i_{k}-i_{k}^{\prime}\right)^{2}}
$$

- Refinement: assign weights to attributes
- given the strength of the pattern learned
- measure: RRSE
- Rationale:

$$
o(i):=\sqrt{\frac{1}{\sum_{k=1}^{n} w_{k}} \sum_{k=1}^{n} w_{k} \cdot\left(i_{k}-i_{k}^{\prime}\right)^{2}},
$$

- ignores deviations on unpredictable attributes (e.g., database IDs)
- for an outlier, require both a strong pattern and a strong deviation

One-Class Support Vector Machines

- Recap: Support Vector Machines
- Find a maximum margin hyperplane to separate two classes
- Use a transformation of the vector space
- Thus, non-linear boundaries can be found

One-Class Support Vector Machines

- One-Class Support Vector Machines
- Find best hyperplane that separates the origin from the rest of the data
- Maximize margin
- Minimize errors
- Points on the same side as the origin are outliers

- Recap: SVMs require extensive parameter tunining
- Difficult to automatize for anomaly detection, since we have no training data

Isolation Forests

- Isolation tree:
- a decision tree that has only leaves with one example each
- Isolation forests:
- train a set of random isolation trees
- Idea:
- path to outliers in a tree is shorter than path to normal points
- across a set of random trees, average path length is an outlier score

Isolation Forest

- Training a single isolation tree
- for each leaf node w/ more than one data point
- pick an attribute Att and a value V at random
- create inner node with test $\mathrm{Att}<\mathrm{V}$
- train isolation tree for each subtree
- Output
- A tree with just one instance per node
- Usually, an upper limit on height is used

Isolation Forest

- Probability of $(0,0)$ ending in a leaf at height 1
- pick Att X, pick V<0.52
$X<0.52$
$(0,0)$

Isolation Forest

- Probability of $(0,0)$ ending in a leaf at height 1
- pick Att Y, pick $\mathrm{V}<0.62$

Isolation Forest

- Probability of $(0,0)$ ending in a leaf at height 1 0.5 pick Att X, pick $V<0.52$, or
- $0.5^{*} 0.52+0.5^{*} 0.62$
$\rightarrow 0.57$

Isolation Forest

- Probability of $(0.74,1)$ ending in a leaf at height 1
- pick Att Y , pick $\mathrm{V}>0.91$
- 0.5 * 0.09

$$
\rightarrow 0.045
$$

$$
\mathrm{Y}<0.91
$$

Isolation Forest

- Probability of $(1,0.9)$ ending in a leaf at height 1
- pick Att X, pick $V>0.98$
- 0.5 * 0.02

$$
\rightarrow 0.01
$$

$$
X<0.99
$$

Isolation Forest

- Probability of any other data point ending in a leaf at height 1
- this is not possible!
- at least two tests are necessary

Isolation Forest

- Observations
- data points in dense areas need more tests
- i.e., they end up deeper in the trees
- data points far away from

High-Dimensional Spaces

- A large number of attributes may cause problems
- many anomaly detection approaches use distance measures
- those get problematic for very high-dimensional spaces
- meaningless attributes obscure the distances
- Practical hint:
- perform dimensionality reduction first
- i.e., feature subset selection, PCA
- note: anomaly detection is unsupervised
- thus, supervised selection (like forward/backward selection) does not work

High-Dimensional Spaces

- Recap: attributes may have different scales
- Hence, different attributes may have different contributions to outlier scores
- Compare the following two datasets:
- Baden-Württemberg
- population $=10,569,111$
- area $=35,751.65 \mathrm{~km}^{2}$
- Bavaria
- population $=12,519,571$
- area $=70,549.44 \mathrm{~km}^{2}$
- Baden-Württemberg
- population $=10,569,111$
- area $=35,751,650,000 \mathrm{~m}^{2}$
- Bavaria
- population $=12,519,571$
- area $=70,549,440,000 \mathrm{~m}^{2}$

High-Dimensional Spaces

- Baden-Württemberg
- population $=10,569,111$
- area $=35,751.65 \mathrm{~km}^{2}$
- Bavaria
- population $=12,519,571$
- area $=70,549.44 \mathrm{~km}^{2}$
- Baden-Württemberg
- population $=10,569,111$
- area $=35,751,650,000 \mathrm{~m}^{2}$
- Bavaria
- population $=12,519,571$
- area $=70,549,440,000 \mathrm{~m}^{2}$
- ...
- In the second set, outliers in the population are unlikely to be discovered
- Even if we change the population of Bavaria by a factor of 100 , the Euclidean distance does not change much
- Thus, outliers in the population are masked by the area attribute

High-Dimensional Spaces

- Solution:
- Normalization!
- Advised:
- z-Transformation

$$
x^{\prime}=\frac{|x-\mu|}{\sigma}
$$

- More robust w.r.t. outliers than simple projection to $[0 ; 1]$

Evaluation Measures

- Anomaly Detection is an unsupervised task
- Evaluation: usually on a labeled subsample
- Evaluation Measures:
- F-measure on outliers
- Area under ROC curve

Evaluation Measures

- Anomaly Detection is an unsupervised task
- Evaluation: usually on a labeled subsample
- Note: no splitting into training and test data!
- Evaluation Measures:
- F-measure on outliers
- Area under ROC curve
- Plots false positives against true positives

Evaluation Measures

- Anomaly Detection is an unsupervised task
- Evaluation: usually on a labeled subsample
- Note: no splitting into training and test data!
- Evaluation Measures:
- F-measure on outliers
- Area under ROC curve
- Plots false positives against true positives

Semi-Supervised Anomaly Detection

- All approaches discussed so far are unsupervised
- they run fully automatic
- without human intelligence
- Semi-supervised anomaly detection
- experts manually label some data points as being outliers or not
\rightarrow anomaly detection becomes similar to a classification task
- the class label being outlier/non-outlier
- Challenges:
- Outliers are scarce \rightarrow unbalanced dataset
- Outliers are not a class

Example: Outlier Detection in DBpedia

- DBpedia

- extracts data from infoboxes in Wikipedia
- based on crowd-sourced mappings to an ontology
- Example
- Wikipedia page on Michael Jordan

$$
\begin{aligned}
& \text { dbpedia:Michael_Jordan } \\
& \text { dbpedia-owl:height } \\
& \text { "1.981200"^^xsd:double . }
\end{aligned}
$$

Example: Outlier Detection in DBpedia

- DBpedia is based on heuristic extraction
- Several things can go wrong
- wrong data in Wikipedia
- unexpected number/date formats
- errors in the extraction code
- ...
- Can we use anomaly detection to remedy the problem?

Example: Outlier Detection in DBpedia

- Challenge
- Wikipedia is made for humans, not machines
- Input format in Wikipedia is not constrained
- The following are all valid representations of the same height value (and perfectly understandable by humans)
- 6 ft 6 in, 6 ft 6in, $6^{\prime} 6^{\prime \prime}, 6^{\prime} 6^{\prime \prime}, 6^{\prime} 6^{\prime \prime}, \ldots$
- $1.98 \mathrm{~m}, 1,98 \mathrm{~m}, 1 \mathrm{~m} 98,1 \mathrm{~m} 98 \mathrm{~cm}, 198 \mathrm{~cm}, 198 \mathrm{~cm}, \ldots$
- $6 \mathrm{ft} 6 \mathrm{in}(198 \mathrm{~cm}), 6 \mathrm{ft}$ 6in (1.98m), 6'6'' (1.98 m),...
- 6 ft 6 in ${ }^{[1]}, 6 \mathrm{ft} 6$ in ${ }^{\text {[citation needed] }, \ldots}$
- ...

Example: Outlier Detection in DBpedia

- Preprocessing: split data for different types
- height is used for persons or buildings
- population is used for villages, cities, countries, and continents
- Separate into single distributions
- makes anomaly detection better
- Result
- errors are identified at $\sim 90 \%$ precision
- systematic errors in the extraction code can be found

Example: Outlier Detection in DBpedia

- Footprint of a systematic error

Dominik Wienand, Heiko Paulheim:
Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014

Example: Outlier Detection in DBpedia

- Typical error sources
- unit conversions gone wrong (e.g., imperial/metric)
- misinterpretation of numbers
- e.g., village Semaphore in Australia
- population: 28,322,006
(all of Australia: 23,379,555!)
- a clear outlier among villages

Errors vs. Natural Outliers

- Hard task for a machine
- e.g., an adult person 58 cm high
- e.g., a 7.4 m high vehicle

Dominik Wienand, Heiko Paulheim:
Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014

Wrap-up

- Anomaly Detection is useful for
- data preprocessing and cleansing
- finding suspect data (e.g., network intrusion, credit card fraud)
- Methods
- visual/manual
- statistics based
- density based
- model based

$$
8
$$

