
Data Mining II
Anomaly Detection

Heiko Paulheim



5/11/21 Heiko Paulheim 2 

Anomaly Detection

• Also known as “Outlier Detection”

• Automatically identify data points 
that are somehow different from the rest

• Working assumption:

– There are considerably more “normal” observations than “abnormal” 
observations (outliers/anomalies) in the data

• Challenges

– How many outliers are there in the data?

– What do they look like?

– Method is unsupervised

• Validation can be quite challenging (just like for clustering)
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Recap: Errors in Data

• Sources

– malfunctioning sensors

– errors in manual data processing (e.g., twisted digits)

– storage/transmission errors

– encoding problems, misinterpreted file formats

– bugs in processing code

– ...

Image: http://www.flickr.com/photos/16854395@N05/3032208925/
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Recap: Errors in Data

• Simple remedy

– remove data points outside a given interval

• this requires some domain knowledge

• Advanced remedies

– automatically find 
suspicious data points



5/11/21 Heiko Paulheim 5 

Applications: Data Preprocessing

• Data preprocessing

– removing erroneous data

– removing true, but useless deviations

• Example: tracking people down using their GPS data

– GPS values might be wrong

– person may be on holidays in Hawaii

• what would be the result of a kNN classifier?
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Applications: Credit Card Fraud Detection

• Data: transactions for one customer

– €15.10 Amazon

– €12.30 Deutsche Bahn tickets, Mannheim central station

– €18.28 Edeka Mannheim

– $500.00 Cash withdrawal. Dubai Intl. Airport

– €48.51 Gas station Heidelberg

– €21.50 Book store Mannheim

• Goal: identify unusual transactions

– possible attributes: location, amount, currency, ...
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Applications: Hardware Failure Detection

Thomas Weible: An Optic's Life (2010).
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Applications: Stock Monitoring

• Stock market prediction

• Computer trading

http://blogs.reuters.com/reuters-investigates/2010/10/15/flash-crash-fallout/
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Errors vs. Natural Outliers

Ozone Depletion History
 In 1985 three researchers (Farman, 

Gardinar and Shanklin) were 
puzzled by data gathered by the 
British Antarctic Survey showing that 
ozone levels for Antarctica had 
dropped 10% below normal levels

 Why did the Nimbus 7 satellite, 
which had instruments aboard for 
recording ozone levels, not record 
similarly low ozone concentrations? 

 The ozone concentrations recorded 
by the satellite were so low they 
were being treated as outliers by a 
computer program and discarded! Sources: 

    http://exploringdata.cqu.edu.au/ozone.html  
    http://www.epa.gov/ozone/science/hole/size.html
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Errors, Outliers, Anomalies, Novelties...

• What are we looking for?

– Wrong data values (errors)

– Unusual observations (outliers or anomalies)

– Observations not in line with previous observations (novelties)

• Unsupervised Setting:

– Data contains both normal and outlier points

– Task: compute outlier score for each data point

• Supervised setting:

– Training data is considered normal

– Train a model to identify outliers in test dataset
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Methods for Anomaly Detection

• Graphical

– Look at data, identify suspicious observations

• Statistic

– Identify statistical characteristics of the data

• e.g., mean, standard deviation

– Find data points which do not follow those characteristics

• Density-based

– Consider distributions of data

– Dense regions are considered the “normal” behavior

• Model-based

– Fit an explicit model to the data

– Identify points which do not behave according to that model
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Anomaly Detection Schemes 

 General Steps
– Build a profile of the “normal” behavior

 Profile can be patterns or summary statistics for the overall 
population

– Use the “normal” profile to detect anomalies
 Anomalies are observations whose characteristics

differ significantly from the normal profile

 Types of anomaly detection 
schemes
– Graphical & Statistical-based

– Distance-based

– Model-based
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Graphical Approaches

 Boxplot (1-D), Scatter plot (2-D), Spin plot (3-D)

 Limitations

– Time consuming

– Subjective
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Convex Hull Method

 Extreme points are assumed to be outliers
 Use convex hull method to detect extreme values

 What if the outlier occurs in the middle of the data?
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Interpretation: What is an Outlier?
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Statistical Approaches

 Assume a parametric model describing the distribution of the data 
(e.g., normal distribution) 

 Apply a statistical test that depends on 
– Data distribution

– Parameter of distribution (e.g., mean, variance)

– Number of expected outliers (confidence limit)
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Interquartile Range

• Divides data in quartiles

• Definitions:
– Q1: x ≥ Q1 holds for 75% of all x

– Q3: x ≥ Q3 holds for 25% of all x

– IQR = Q3-Q1

• Outlier detection:
– All values outside [median-1.5*IQR ; median+1.5*IQR]

• Example:
– 0,1,1,3,3,5,7,42 → median=3, Q1=1, Q3=7 → IQR = 6

– Allowed interval: [3-1.5*6 ; 3+1.5*6] = [-6 ; 12]

– Thus, 42 is an outlier
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Interquartile Range

• Assumes a normal distribution
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Interquartile Range

• Visualization in box plot

Median

Q3

Q1

Q2+1.5*IQR

Q2-1.5*IQR

IQR

Outliers

Outliers
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Median Absolute Deviation (MAD)

• MAD is the median deviation from the median of a sample, i.e.

• MAD can be used for outlier detection

– all values that are k*MAD away from the median 
are considered to be outliers

– e.g., k=3

• Example:

– 0,1,1,3,5,7,42 → median = 3

– deviations: 3,2,2,0,2,4,39 → MAD = 2

– allowed interval: [3-3*2 ; 3+3*2] = [-3;9]

– therefore, 42 is an outlier

MAD :=mediani(X i−median j (X j))

Carl Friedrich Gauss,
1777-1855
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Fitting Elliptic Curves

• Multi-dimensional datasets

– can be seen as following a normal distribution on each dimension

– the intervals in one-dimensional cases become elliptic curves

• In Python: covariance.EllipticEnvelope 
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Limitations of Statistical Approaches 

• Most of the tests are for a single attribute (called: univariate)

• For high dimensional data, it may be difficult to estimate the true 
distribution

• In many cases, the data distribution may not be known

– e.g., IQR Test: assumes Gaussian distribution
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Examples for Distributions

• Normal (gaussian) distribution

– e.g., people's height

http://www.usablestats.com/images/men_women_height_histogram.jpg
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Examples for Distributions

• Power law distribution

– e.g., city population

http://www.jmc2007compendium.com/V2-ATAPE-P-12.php
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Examples for Distributions

• Pareto distribution

– e.g., wealth

http://www.ncpa.org/pub/st289?pg=3
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Examples for Distributions

• Uniform distribution

– e.g., distribution of web server requests across an hour

http://www.brighton-webs.co.uk/distributions/uniformc.aspx
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Outliers vs. Extreme Values

• So far, we have looked at extreme values only

– But outliers can occur as non-extremes

– In that case, methods like IQR fail

-1.5 -1 -0.5 0 0.5 1 1.5
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Outliers vs. Extreme Values

• IQR on the example below:

– Q2 (Median) is 0

– Q1 is -1, Q3 is 1

→ everything outside [-1.5,+1.5] is an outlier

→ there are no outliers in this example

-1.5 -1 -0.5 0 0.5 1 1.5
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Time for a Short Break

http://xkcd.com/539/
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Distance-based Approaches

 Data is represented as a vector of features

 Various approaches

– Nearest-neighbor based

– Density based

– Clustering based

– Model based
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Nearest-Neighbor Based Approach

 Approach:

– Compute the distance between every pair of data points

– There are various ways to define outliers:

 Data points for which there are fewer than p neighboring points 
within a distance D

 The top n data points whose distance to the kth  nearest neighbor is 
greatest

 The top n data points whose average distance to the k nearest 
neighbors is greatest 

RapidMiner

Package PyODPackage PyOD
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Density-based: LOF approach

 For each point, compute the density of its local 
neighborhood

– if that density is higher than the average density, 
the point is in a cluster

– if that density is lower than the average density, 
the point is an outlier

 Compute local outlier factor (LOF) of a point A

– ratio of average density of A’s neighbors 
to density of point A

 Outliers are points with large LOF value

– typical: larger than 1
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LOF: Illustration

• Using 3 nearest neighbors

• We compute

– the average density of A

– the average density of A’s neighbors

• If the density of A is lower 
than the neighbors’ density

– A might be an outlier

http://commons.wikimedia.org/wiki/File:LOF-idea.svg
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LOF: Defining Density

• LOF uses a concept called “reachability distance”

• All points within the k-neighborhood
have the same k-distance

– in the example: d3(A,B) = d3(A,C)

• Reachability distance rdk(A,B):

– distance of A,B, lower bound by dk(B)

– rdk(A,B) = max(dk(B),distance(A,B))

• In the example:

– rdk(D,A) = d(D,A), but

– rdk(C,A) = k-distance(A)

• Rationale: all sufficiently close points are regarded as equally close

– lessens the impact of small variations

https://commons.wikimedia.org/wiki/File:Reachability-distance.svg
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LOF: Defining Density

• Average reachability distance

–

• Density is defined as the inverse

– idea: the larger the avg. reachability distance,
the sparser the region in which the data point lies

– local reachability density lrbk(A) = 1/avgrdk(A)

• Local outlier factor: relation of density of A’s neighbors to A’s 
density:

avgrd k (A)=
∑

P :k nearest neighbors of A

rd k (A ,P)

|N k (A )| no. of k nearest neighbors of A,
usually =k

LOFk (A )=
∑

P : k nearest neighbors of A

lrbk (P)
lrbk (A )

|N k (A )|
=

∑
P : k nearest neighbors of A

lrbk (P)

|N k (A)|⋅lrbk (A)
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Nearest-Neighbor vs. LOF

• With kNN, only p1 is found as an outlier

– there are enough near neighbors for p2 in cluster C2

• With LOF, both p1 and p2 are found as outliers

  p2

   p1



sklearn.neighbors.LocalOutlierFactor
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Recap: DBSCAN

• DBSCAN is a density-based algorithm

– Density = number of points within a specified radius (Eps)

• Divides data points in three classes:

– A point is a core point if it has more than a specified number of 
points (MinPts) within Eps 

• These are points that are at the interior of a cluster

– A border point has fewer than MinPts within Eps, but is in the 
neighborhood of a core point

– A noise point is any point that is not a core point or a border 
point
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Recap: DBSCAN
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Recap: DBSCAN

Original Points Point types: core, 
border and noise

Eps = 10, MinPts = 4
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DBSCAN for Outlier Detection

• DBSCAN directly identifies noise points

– these are outliers not belonging to any cluster

• in RapidMiner: assigned to cluster 0

• in scikit-learn: label -1

– allows for performing outlier detection directly
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Clustering-based Outlier Detection

 Basic idea:

– Cluster the data into groups of different density

– Choose points in small cluster as candidate outliers

– Compute the distance between candidate points and non-candidate 
clusters

– If candidate points are far from all other non-candidate points, 
they are outliers
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Clustering-based Local Outlier Factor

• Idea: anomalies are data points that are

– in a very small cluster or

– far away from other clusters

• CBLOF is run on clustered data

• Assigns a score based on

– the size of the cluster a data point is in

– the distance of the data point to the next large cluster
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Clustering-based Local Outlier Factor

• General process:

– first, run a clustering algorithm (of your choice)

– then, apply CBLOF

• Result: data points with outlier score

Package PyOD
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PCA and Reconstruction Error

• Recap: PCA tries to capture most dominant variations in the data

– those can be seen as the “normal” behavior

• Reconstruct original data point by inversing PCA

– close to original: normally behaving data point

– far from original: unnormally behaving data point
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Model-based Outlier Detection (ALSO)

• Idea: there is a model underlying the data

– Data points deviating from the model are outliers
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Model-based Outlier Detection (ALSO)

• ALSO (Attribute-wise Learning for Scoring Outliers)

– Learn a model for each attribute given all other attributes

– Use model to predict expected value

– Deviation between actual and predicted value → outlier
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Interpretation: What is an Outlier? (recap)
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Model-based Outlier Detection (ALSO)

• For each data point i, compute vector of predictions i'

• Outlier score: Euclidean distance of i and i'

– in z-transformed space

• Refinement: assign weights to attributes

– given the strength of the pattern learned

– measure: RRSE

• Rationale:

– ignores deviations on unpredictable attributes (e.g., database IDs)

– for an outlier, require both a strong pattern and a strong deviation
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One-Class Support Vector Machines

• Recap: Support Vector Machines

– Find a maximum margin hyperplane to separate two classes

– Use a transformation of the vector space

• Thus, non-linear boundaries can be found

B1

B2

b11

b12

b21

b22

margin
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One-Class Support Vector Machines

• One-Class Support Vector Machines
– Find best hyperplane that separates the origin from the rest of the data

• Maximize margin

• Minimize errors

– Points on the same side as the origin are outliers

• Recap: SVMs require extensive parameter tunining
– Difficult to automatize for anomaly detection, 

since we have no training data
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Isolation Forests

• Isolation tree:

– a decision tree that has only leaves with one example each

• Isolation forests:

– train a set of random isolation trees

• Idea:

– path to outliers in a tree is shorter than path to normal points

– across a set of random trees, average path length is an outlier score
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Isolation Forest

• Training a single isolation tree

– for each leaf node w/ more than one data point

• pick an attribute Att and a value V at random

• create inner node with test Att<V
– train isolation tree for each subtree

• Output

– A tree with just one instance per node

– Usually, an upper limit on height is used
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Isolation Forest

• Probability of (0,0) ending
in a leaf at height 1

– pick Att X, pick V<0.52

X<0.52

(0,0) ...
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Isolation Forest

• Probability of (0,0) ending
in a leaf at height 1

– pick Att Y, pick V<0.62

Y<0.62

(0,0) ...
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Isolation Forest

• Probability of (0,0) ending
in a leaf at height 1

– pick Att X, pick V<0.52, or

– pick Att Y, pick V<0.62

• 0.5*0.52 + 0.5*0.62

→ 0.57

0.5

0.5

0.52

0.62
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Isolation Forest

• Probability of (0.74,1) ending
in a leaf at height 1

– pick Att Y, pick V>0.91

• 0.5 * 0.09

→ 0.045

Y<0.91

...
(0.74,1)
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Isolation Forest

• Probability of (1,0.9) ending
in a leaf at height 1

– pick Att X, pick V>0.98

• 0.5 * 0.02

→ 0.01

X<0.99

...
(0.74,1)
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Isolation Forest

• Probability of any other
data point ending
in a leaf at height 1

– this is not possible!

– at least two tests 
are necessary
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Isolation Forest

• Observations

– data points in dense areas
need more tests

• i.e., they end up deeper
in the trees

– data points far away from
the rest have a higher
probability to be isolated
earlier

• i.e., they end up higher
in the trees
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High-Dimensional Spaces

• A large number of attributes may cause problems

– many anomaly detection approaches use distance measures

– those get problematic for very high-dimensional spaces

– meaningless attributes obscure the distances

• Practical hint:

– perform dimensionality reduction first

– i.e., feature subset selection, PCA

– note: anomaly detection is unsupervised

• thus, supervised selection (like forward/backward selection) does 
not work
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High-Dimensional Spaces

• Baden-Württemberg
– population = 10,569,111

– area = 35,751.65 km²

• Bavaria

– population = 12,519,571

– area = 70,549.44 km²

• ...

• Baden-Württemberg
– population = 10,569,111

– area = 35,751,650,000 m²

• Bavaria

– population = 12,519,571

– area = 70,549,440,000 m²

• ...

• Recap: attributes may have different scales

– Hence, different attributes may have different contributions to outlier 
scores

• Compare the following two datasets:
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High-Dimensional Spaces

• Baden-Württemberg
– population = 10,569,111

– area = 35,751.65 km²

• Bavaria

– population = 12,519,571

– area = 70,549.44 km²

• ...

• Baden-Württemberg
– population = 10,569,111

– area = 35,751,650,000 m²

• Bavaria

– population = 12,519,571

– area = 70,549,440,000 m²

• ...

• In the second set, outliers in the population are unlikely to be 
discovered

– Even if we change the population of Bavaria by a factor of 100,
the Euclidean distance does not change much

• Thus, outliers in the population are masked by the area attribute
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High-Dimensional Spaces

• Solution:

– Normalization!

• Advised:

– z-Transformation

– More robust w.r.t. outliers than
simple projection to [0;1]

x '=
|x−μ|

σ
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Evaluation Measures

• Anomaly Detection is an unsupervised task

• Evaluation: usually on a labeled subsample

• Evaluation Measures:

– F-measure on outliers

– Area under ROC curve
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Evaluation Measures

• Anomaly Detection is an unsupervised task

• Evaluation: usually on a labeled subsample

– Note: no splitting into training and test data!

• Evaluation Measures:

– F-measure on outliers

– Area under ROC curve

– Plots false positives
against true positives
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Evaluation Measures

• Anomaly Detection is an unsupervised task

• Evaluation: usually on a labeled subsample

– Note: no splitting into training and test data!

• Evaluation Measures:

– F-measure on outliers

– Area under ROC curve

– Plots false positives
against true positives
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Semi-Supervised Anomaly Detection

• All approaches discussed so far are unsupervised

– they run fully automatic

– without human intelligence

• Semi-supervised anomaly detection

– experts manually label some data points as being outliers or not

→ anomaly detection becomes similar to a classification task

• the class label being outlier/non-outlier

– Challenges:

• Outliers are scarce → unbalanced dataset

• Outliers are not a class



5/11/21 Heiko Paulheim 68 

Example: Outlier Detection in DBpedia

• DBpedia

– extracts data from infoboxes in Wikipedia

– based on crowd-sourced mappings to an ontology

• Example

– Wikipedia page on Michael Jordan

dbpedia:Michael_Jordan 
  dbpedia-owl:height 
  "1.981200"^^xsd:double .

Dominik Wienand, Heiko Paulheim: 
Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014
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Example: Outlier Detection in DBpedia

• DBpedia is based on heuristic extraction

• Several things can go wrong

– wrong data in Wikipedia

– unexpected number/date formats

– errors in the extraction code

– …

• Can we use anomaly detection to remedy the problem?

Dominik Wienand, Heiko Paulheim: 
Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014
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Example: Outlier Detection in DBpedia

• Challenge

– Wikipedia is made for humans, not machines

– Input format in Wikipedia is not constrained

• The following are all valid representations of the same height value
(and perfectly understandable by humans)

– 6 ft 6 in, 6ft 6in, 6'6'', 6'6”, 6´6´´, …

– 1.98m, 1,98m, 1m 98, 1m 98cm, 198cm, 198 cm, …

– 6 ft 6 in (198 cm), 6ft 6in (1.98m), 6'6'' (1.98 m), …

– 6 ft 6 in[1], 6 ft 6 in [citation needed], …

– ...

Dominik Wienand, Heiko Paulheim: 
Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014
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Example: Outlier Detection in DBpedia

• Preprocessing: split data for different types

– height is used for persons or buildings

– population is used for villages, cities, countries, and continents

– …

• Separate into single distributions

– makes anomaly detection better

• Result

– errors are identified at ~90% precision

– systematic errors in the extraction code can be found

Dominik Wienand, Heiko Paulheim: 
Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014
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Example: Outlier Detection in DBpedia

• Footprint of a systematic error

Dominik Wienand, Heiko Paulheim: 
Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014
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Example: Outlier Detection in DBpedia

• Typical error sources

– unit conversions gone wrong
(e.g., imperial/metric)

– misinterpretation of numbers

• e.g., village Semaphore in Australia

– population: 28,322,006

(all of Australia: 23,379,555!)

– a clear outlier among villages

Dominik Wienand, Heiko Paulheim: 
Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014
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Errors vs. Natural Outliers

• Hard task for a machine

• e.g., an adult person 58cm high

• e.g., a 7.4m high vehicle

Dominik Wienand, Heiko Paulheim: 
Detecting Incorrect Numerical Data in DBpedia. In: ESWC 2014
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Wrap-up

• Anomaly Detection is useful for

– data preprocessing and cleansing

– finding suspect data (e.g., network intrusion, credit card fraud)

• Methods

– visual/manual

– statistics based

– density based

– model based
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Questions?
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