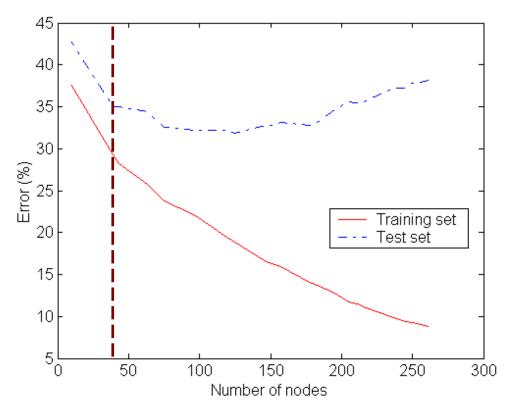
UNIVERSITÄT MANNHEIM

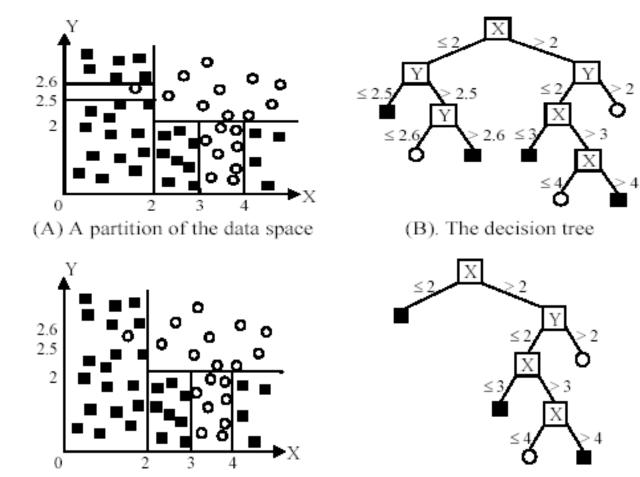
Heiko Paulheim

Why Parameter Tuning?

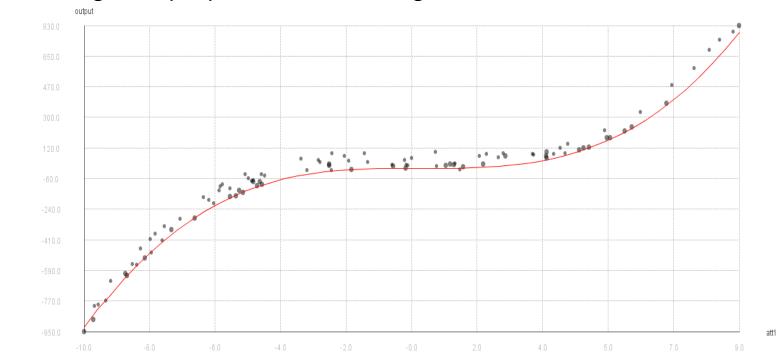
- What we have seen so far
 - many learning algorithms for classification, regression, ...
- Many of those have parameters
 - k and distance function for k nearest neighbors
 - splitting and pruning options in decision tree learning
 - hidden layers in neural networks
 - C, gamma, and kernel function for SVMs


- ...

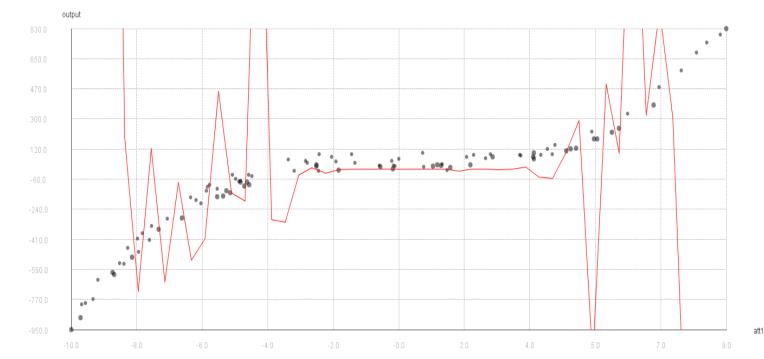
- But what is their effect?
 - hard to tell in general
 - rules of thumb are rare


Parameter Tuning – a Naive Approach

- You probably know that approach from the exercises
 - 1. run classification/regression algorithm
 - 2. look at the results (e.g., accuracy, RMSE, ...)
 - 3. choose different parameter settings, go to 1
- Questions:
 - when to stop?
 - how to select the next parameter setting to test?


- Recap overfitting:
 - classifiers may overadapt to training data
 - the same holds for parameter settings
- Possible danger:
 - finding parameters that work well on the training set
 - but not on the test set
- Remedy:
 - train / test / validation split

• Parameter option: pruning (yes/no)


- Real example: train a local polynomial regression model
 - Parameter to tune: find the optimal maximum degree of the polynomial

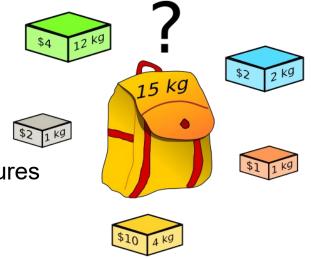
• Tuning with proper validation: degree = 3

4/26/21

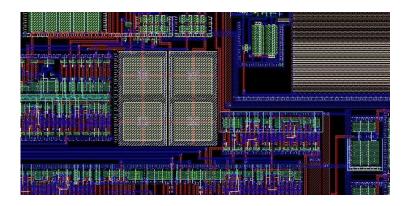
- Real example: train a local polynomial regression model
 - Parameter to tune: find the optimal maximum degree of the polynomial

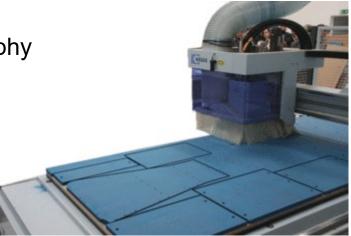
• Tuning overfitting: degree = 9

4/26/21

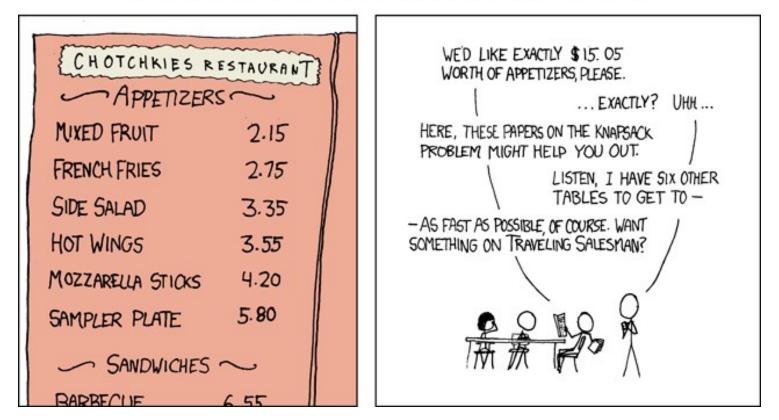

Parameter Tuning: Brute Force

- Try all parameter combinations that exist
- Consider, e.g., a k-NN classifier
 - try 30 different distance measures
 - try all k from 1 to 1,000
 - use weighting or not
 - \rightarrow 60,000 runs of k-NN
 - \rightarrow we need a better strategy than brute force!


- Parameter tuning is an optimization problem
- Finding optimal values for N variables
- Properties of the problem:
 - the underlying model is unknown
 - i.e., we do not know changing a variable will influence the results
 - we can tell how good a solution is when we see it
 - i.e., by running a classifier with the given parameter set
 - but looking at each solution is costly
 - e.g., 60,000 runs of k-NN
- Such problems occur quite frequently


- Related problem:
 - feature subset selection
 - cf. Data Mining 2, first lecture
- Given n features, brute force requires 2ⁿ evaluations
 - for 20 features, that is already one million \rightarrow ten million with cross validation

- Knapsack problem
 - given a maximum weight you can carry
 - and a set of items with different weight and monetary value
 - pack those items that maximize the monetary value
- Problem is NP hard
 - i.e., deterministic algorithms require an exponential amount of time
 - Note: feature subset selection for N features requires 2 evaluations

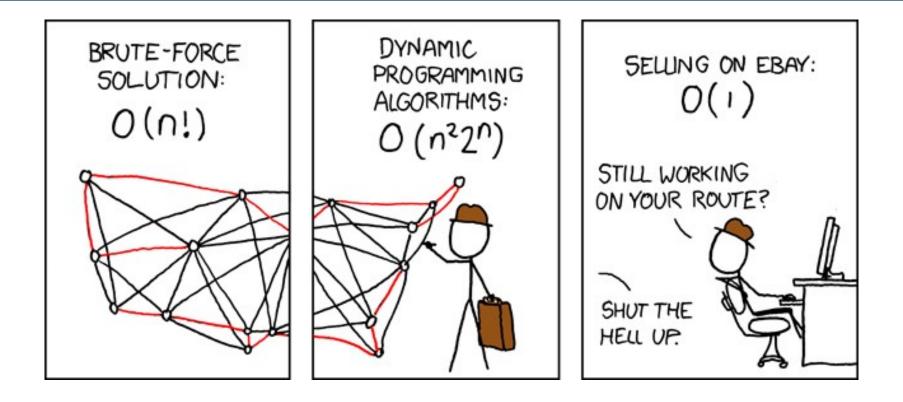


- Many optimization problems are NP hard
 - Routing problems (Traveling Salesman Problem)
 - Integer factorization
 - hard enough to be used for cryptography
 - Resource use optimization
 - e.g., minimizing cutoff waste
 - Chip design
 - minimizing chip sizes

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

http://xkcd.com/287/

4/26/21


Parameter Tuning: Brute Force

- Properties of Brute Force search
 - guaranteed to find the best parameter setting
 - too slow in most practical cases
- Grid Search
 - performs a brute force search
 - with equal-width steps on non-discrete numerical attributes (e.g., 10,20,30,...,100)
- Parameters with a wide range (e.g., 0.0001 to 1,000,000)
 - with ten equal-width steps, the first step would be 1,000
 - but what if the optimum is around 0.1?
 - logarithmic steps may perform better

Parameter Tuning: Heuristics

- Properties of Brute Force search
 - guaranteed to find the best parameter setting
 - too slow in most practical cases
- Needed:
 - solutions that take less time/computation
 - and often find the best parameter setting
 - or find a *near-optimal* parameter setting

Beyond Brute Force

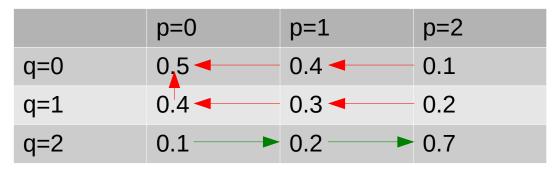
https://xkcd.com/399/

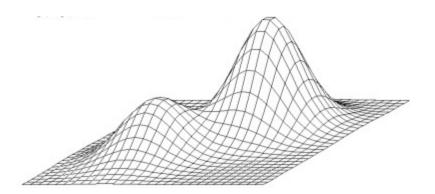
Parameter Tuning: One After Another

- Given n parameters with m degrees of freedom
 - brute force takes mⁿ runs of the base classifier
- Simple tweak:
 - 1. start with default settings
 - 2. try all options for the first parameter
 - 2a. fix best setting for first parameter
 - 3. try all options for the second parameter3a. fix best setting for second parameter

4. ...

- This reduces the runtime to n*m
 - i.e., no longer exponential!
 - but we may miss the best solution

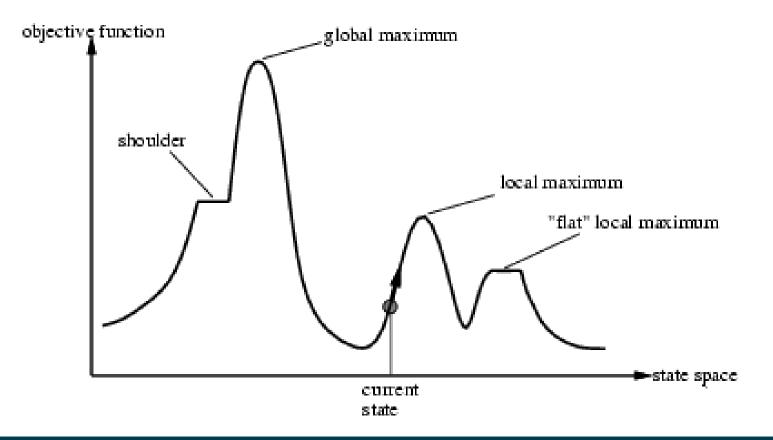

Parameter Tuning: Interaction Effects


- Interaction effects make parameter tuning hard
 - i.e., changing one parameter may change the optimal settings for another one
- Example: two parameters p and q, each with values 0,1, and 2
 - the table depicts classification accuracy

	p=0	p=1	p=2
q=0	0.5	0.4	0.1
q=1	0.4	0.3	0.2
q=2	0.1	0.2	0.7

Parameter Tuning: Interaction Effects

- If we try to optimize one parameter by another (first p, then q)
 - we end at p=0,q=0 in six out of nine cases
 - on average, we investigate 2.3 solutions



Hill-Climbing Search

- a.k.a. greedy local search
- · always search in the direction of the steepest ascend
 - "Like climbing Everest in thick fog with amnesia"

Hill-Climbing Search

 Problem: depending on initial state, one can get stuck in local maxima

Hill Climbing Search

- Given our previous problem
 - we end up at the optimum in three out of nine cases
 - but the local optimum (p=0,q=0) is reached in six out of nine cases!
 - on average, we investigate 2.1 solutions

	р=0	p=1	p=2
q=0	0,5	0.4	0.1
q=1	04	0.3	0,2
q=2	0.1	0.2	0.7

Variations of Hill Climbing Search

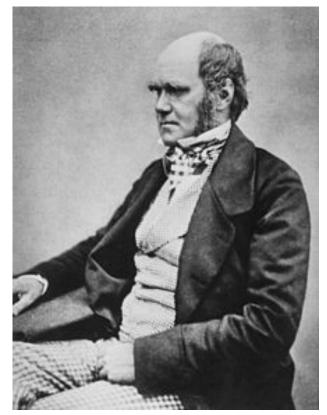
- Stochastic hill climbing
 - random selection among the uphill moves
 - the selection probability can vary with the steepness of the uphill move
- First-choice hill climbing
 - generating successors randomly until a better one is found, then pick that one
- Random-restart hill climbing
 - run hill climbing with different seeds
 - tries to avoid getting stuck in local maxima

Local Beam Search

- Keep track of k states rather than just one
- Start with k randomly generated states
- At each iteration, all the successors of all k states are generated
- Select the k best successors from the complete list and repeat

Simulated Annealing

- Escape local maxima by allowing "bad" moves
 - Idea: but gradually decrease their size and frequency
- Origin: metallurgical annealing
- Bouncing ball analogy:
 - Shaking hard (= high temperature)
 - Shaking less (= lower the temperature)
- If T decreases slowly enough, best state is reached



Simulated Annealing

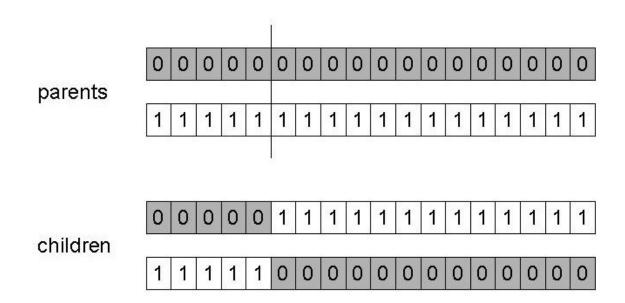
```
function SIMULATED-ANNEALING(problem, schedule) return a solution state
input: problem, a problem
       schedule, a mapping from time to temperature
local variables: current, a node.
                    next, a node.
                   T, a "temperature" controlling the probability of downward steps
current \leftarrow MAKE-NODE(INITIAL-STATE[problem])
for t \leftarrow 1 to \infty do
       T \leftarrow schedule[t]
       if T = 0 then return current
       next \leftarrow a randomly selected successor of current
       \Delta E \leftarrow VALUE[next] - VALUE[current]
       if \Lambda E > 0 then current \leftarrow next
       else current \leftarrow next only with probability e^{\Delta E/T}
```

Genetic Algorithms

- Inspired by evolution
- Overall idea:
 - use a population of individuals (solutions)
 - create new individuals by crossover
 - introduce random mutations
 - from each generation, keep only the best solutions ("survival of the fittest")
- Developed in the 1970s
- John H. Holland:
 - Standard Genetic Algorithm (SGA)

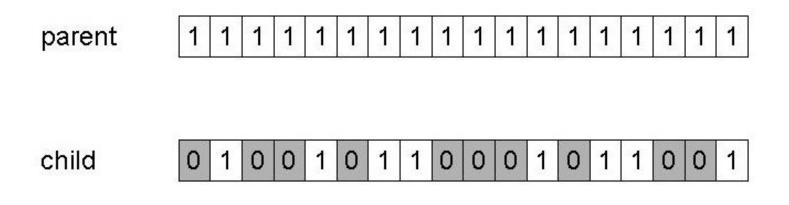
Charles Darwin (1809-1882)

Genetic Algorithms

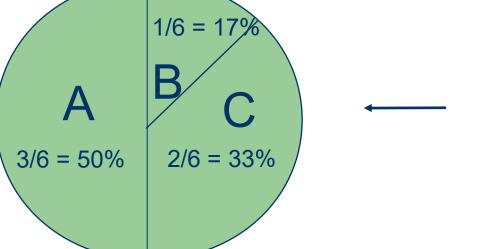

- Basic ingredients:
 - individuals: the solutions
 - parameter tuning: a parameter setting
 - a fitness function
 - parameter tuning: performance of a parameter setting (i.e., run learner with those parameters)
 - a crossover method
 - parameter tuning: create a new setting from two others
 - a mutation method
 - parameter tuning: change one parameter
 - survivor selection

SGA Reproduction Cycle

- Select parents for the mating pool (size of mating pool = population size)
- 2. Shuffle the mating pool
- 3. For each consecutive pair apply crossover with probability p_c , otherwise copy parents
- 4. For each offspring apply mutation (bit-flip with probability p_m independently for each bit)
- 5. Replace the whole population with the resulting offspring


SGA Operators: 1-point crossover

- Choose a random point on the two parents
- Split parents at this crossover point
- Create children by exchanging tails
- P_c typically in range (0.6, 0.9)


SGA Operators: Mutation

- Alter each gene independently with a probability p_m
- *p_m* is called the mutation rate
 - Typically between 1/pop_size and 1/ chromosome_length

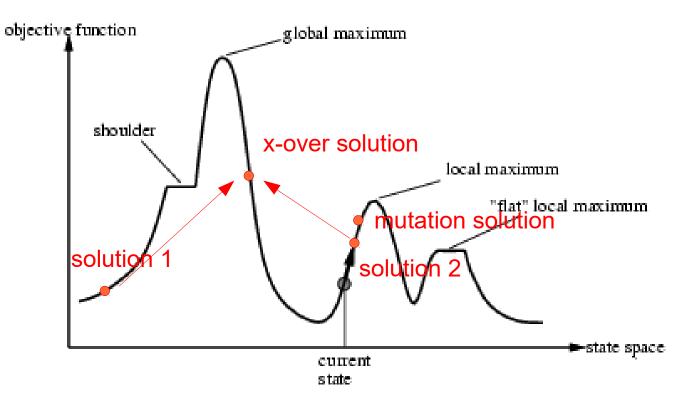
SGA Operators: Selection

- Main idea: better individuals get higher chance
 - Chances proportional to fitness
 - Implementation: roulette wheel technique
 - » Assign to each individual a part of the roulette wheel
 - » Spin the wheel n times to select n individuals

- fitness(A) = 3
- fitness(B) = 1

fitness(C) = 2

Crossover OR Mutation?


- Decade long debate: which one is better / necessary ...
- Answer (at least, rather wide agreement):
 - it depends on the problem, but
 - in general, it is good to have both
 - both have another role
 - mutation-only-EA is possible, crossover-only-EA would not work

Crossover OR Mutation? (cont'd)

- Exploration: Discovering promising areas in the search space, i.e. gaining information on the problem
- Exploitation: Optimising within a promising area, i.e. using information
- There is co-operation AND competition between them
 - Crossover is explorative, it makes a *big* jump to an area somewhere "in between" two (parent) areas
 - Mutation is exploitative, it creates random *small* diversions, thereby staying near (in the area of) the parent

Crossover OR Mutation? (cont'd)

- Recall the solution space example from Hill Climbing
 - crossover makes big jumps
 - mutation makes small steps

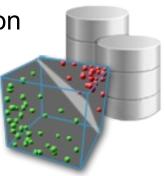
Crossover OR Mutation? (cont'd)

- Only crossover can combine information from two parents
- Only mutation can introduce new information (alleles)
- To hit the optimum you often need a 'lucky' mutation

Genetic Feature Subset Selection

- Feature Subset Selection
 - can also be solved by Genetic Programming
- Individuals: feature subsets
- Representation: binary
 - 1 = feature is included
 - 0 = feature is not included
- Fitness: classification performance
- Crossover: combine selections of two subsets
- Mutation: flip bits

Selecting a Learner


- So far, we have looked at finding good parameters for a learner
 - the learner was always fixed
- A similar problem is *selecting* a learner for the task at hand
- Again, we could go with search
- Another approach is *meta learning*

Selecting a Learner by Meta Learning

- Meta Learning
 - i.e., *learning about learning*
- Goal: learn how well a learner will perform on a given dataset
 - features: dataset characteristics, learning algorithm
 - prediction target: accuracy, RMSE, ...

Selecting a Learner by Meta Learning

- Used in the Automatic System Construction extension
- regression trained on
 - 90 datasets
 - 54 features
- Examples for features
 - number of instances/attributes
 - fraction of nominal/numerical attributes
 - min/max/average entropy of attributes
 - skewness of classes
 - ...

Selecting a Learner by Meta Learning

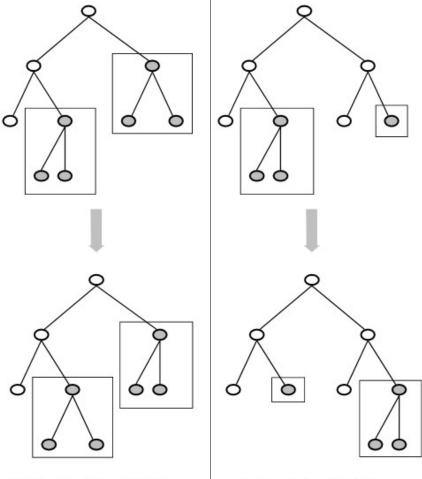
• Used in the Automatic System Construction extension

Classifier	Dradictad Acouracy	Boot Maga Caused Fre	Evoluate
Classifier	Predicted Accuracy	Root Mean Squared Err	Evaluate
Rule Induction	0.845	0.070	<u> </u>
Neural Net	0.814	0.091	
SVM	0.807	0.092	
Decision Tree	0.788	0.088	
k-NN	0.772	0.103	
Vaive Bayes	0.713	0.143	

...and now for something completely different.

- Recap: search heuristics are good for problems where...
 - finding an optimal solution is difficult
 - evaluating a solution candidate is easy
 - the search space of possible solutions is large
- Possible solution: genetic programming
- We have encountered such problems quite frequently
- Example: learning an optimal decision tree from data

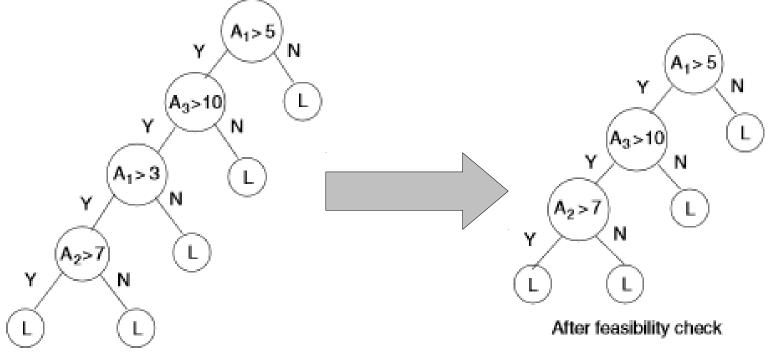
- e.g., GAIT (Fu et al., 2003)
 - also the source of the pictures on the following slides
- Population: candidate decision trees
 - initialization: e.g., trained on small subsets of data
- Create new decision trees by means of
 - crossover
 - mutation
- Fitness function: e.g., accuracy


Heiko Paulheim

Crossover:

4/26/21

• Mutation:

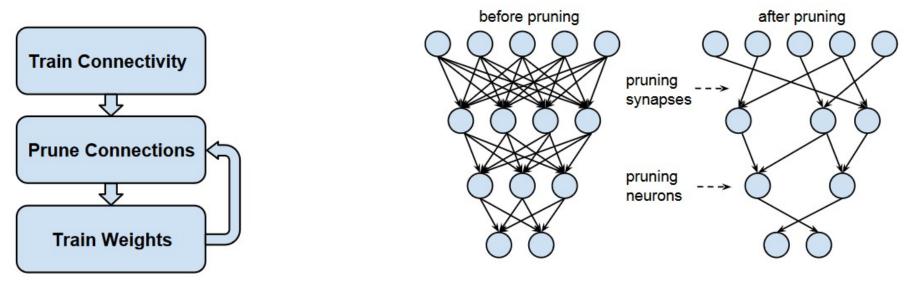


Subtree-to-subtree Mutation

Subtree-to-leaf Mutation

4/26/21 Heiko Paulheim

• Feasibility Check:


Before feasibility check

Combination of GP with other Learning Methods

- Rule Learning ("Learning Classifier Systems"), since late 70s
 - Population: set of rule sets (!)
 - Crossover: combining rules from two sets
 - Mutation: changing a rule
- Artificial Neural Networks
 - Easiest solution: fixed network layout
 - The network is then represented as an ordered set (vector) of weights e.g., [0.8, 0.2, 0.5, 0.1, 0.1, 0.2]
 - Crossover and mutation are straight forward
 - Variant: AutoMLP
 - Searches for best combination of hidden layers and learning rate

Parameter Optimization vs. Pruning

- Architecture of a neural network can be seen as parameters
 - How many hidden layers? Which size?
- Pruning approaches: train large network, then start eliminating connections

Han et al. (2015): Learning both Weights and Connections for Efficient Neural Network

4/26/21 Heiko Paulheim

Wrap-Up

- Parameter tuning is important
 - many learning methods work poorly with standard parameters
 - often no global optimum, dataset dependent
- Parameter tuning has a large search space
 - trying all combinations is infeasible
 - interaction effects do not allow for one-by-one tuning

Wrap-Up

- Heuristic Methods
 - Hill climbing with variations
 - Beam search
 - Simulated Annealing
 - Genetic Programming
- Other uses of genetic programming
 - Feature subset selection
 - Model fitting

Parameter Tuning: Criticism

- Just let those numbers sink...
 - ...think: carbon footprint
 - ...think: fair chances?

Consumption	CO2e (lbs)					
Air travel, 1 passenger, NY↔SF	1984					
Human life, avg, 1 year	11,023					
American life, avg, 1 year	36,156					
Car, avg incl. fuel, 1 lifetime	126,000					
Training one model (GPU)						
NLP pipeline (parsing, SRL)	39					
w/ tuning & experimentation	78,468					
Transformer (big)	192					
w/ neural architecture search	626,155					

Table 1: Estimated CO₂ emissions from training common NLP models, compared to familiar consumption.¹

		Estimated cost (USD)		
Models	Hours	Cloud compute	Electricity	
1	120	\$52-\$175	\$5	
24	2880	\$1238-\$4205	\$118	
4789	239,942	\$103k-\$350k	\$9870	

Table 4: Estimated cost in terms of cloud compute and electricity for training: (1) a single model (2) a single tune and (3) all models trained during R&D.

Strubell et al. (2019): Energy and Policy Considerations for Deep Learning in NLP

4/26/21 Heiko Paulheim

Questions?

UNIVERSITÄT MANNHEIM

Heiko Paulheim