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Why Model Validation?

• We have seen so far

– Various metrics (e.g., accuracy, F-measure, RMSE, …)

– Evaluation protocol setups

• Split Validation

• Cross Validation

• Special protocols for time series

• …

• Today

– A closer look at evaluation protocols

– Asking for significance
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Some Observations

• Data Mining Competitions often have a hidden test set

– e.g., Data Mining Cup

– e.g., many tasks on Kaggle

• Ranking on public test set and ranking on hidden test set may differ

• Example on one Kaggle competition:

https://www.kaggle.com/c/restaurant-revenue-prediction/discussion/14026
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Some Observations: DMC 2018

• We had eight teams in Mannheim

• We submitted the results of the best and the third best(!) team

• The third best team(!!!) got among the top 10

– and eventually scored 2nd worldwide

• Meanwhile, the best local team did not get among the top 10
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What is Happening Here?

• We have come across this problem quite a few times

• It’s called overfitting

– Problem: we don’t know the error on the (hidden) test set

https://machinelearningmastery.com/how-to-stop-training-deep-neural-networks-at-the-right-time-using-early-stopping/

according to the 
training dataset, 
this model is the 
best one

but according to 
the test set, we 
should have 
used that one
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Overfitting Revisited

• Typical DMC Setup:

• Possible overfitting scenarios:

– our test partition may have certain characteristics

– the “official” test data has different characteristics than the training data

Training Data Test Data

we often simulate test data
by split or cross validation
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Overfitting Revisited

• Typical Kaggle Setup:

• Possible overfitting scenarios:

– solutions yielding good rankings on public leaderboard are preferred

– models overfit to the public part of the test data

Training Data Test Data

undisclosed part of the test
data used for private leaderboard
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Overfitting Revisited

• Some flavors of overfitting are more subtle than others

• Obvious overfitting:

– use test partition for training

• Less obvious overfitting:

– tune parameters against test partition

– select “best” approach based on test partition

• Even less obvious overfitting

– use test partition in feature construction, for features such as

• avg. sales of product per day

• avg. orders by customer

• computing trends
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Overfitting Revisited

• Typical real world scenario:

• Possible overfitting scenarios:

– Similar to the DMC case, but worse

– We do not even know the data on which we want to predict

Data from the past The future (no data)

we often simulate test data
by split or cross validation
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What Unlabeled Test Data can Tell Us

• If we have test data without labels, we can still look at predictions

– do they look somehow reasonable?

• Task of DMC 2018: predict date of the month in which a product is 
sold out

– Solutions for three best (local) solutions:
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The Overtuning Problem

• In academia

– many fields have their established benchmarks

– achieving outstanding scores on those is required for publication

– interesting novel ideas may score suboptimally

• hence, they are not published

– intensive tuning is required for publication

• hence, available compute power often beats good ideas

• That “leaderboardism” has been criticized recently
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The Overtuning Problem

• In real world projects

– models overfit to past data

– performance on unseen data is often overestimated

• i.e., customers are disappointed

– changing characteristics in data may be problematic

• drift: e.g., predicting battery lifecycles

• events not in training data: e.g., predicting sales for next month

– cold start problem

• some instances in the test set may be unknown before

• e.g., predicting product sales for new products
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Validating and Comparing Models

• When is a model good?

– i.e., is it better than random?

• When is a model really better than another one?

– i.e., is the performance difference by chance or by design?

Some of the following contents are taken
from William W. Cohen’s

Machine Learning Classes

http://www.cs.cmu.edu/~wcohen/



5/25/21 Heiko Paulheim 14 

Confidence Intervals for Models

• Scenario:

– you have learned a model M1 with an error rate of 0.30

– the old model M0 had an error rate of 0.35

(both evaluated on the same test set T)

• Do you think the new model is better?

• What might be suitable indicators?

– size of the test set

– model complexity

– model variance
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Size of the Test Set

• Scenario:

– you have learned a model M1 with an error rate of 0.30

– the old model M0 had an error rate of 0.35

(both evaluated on the same test set S)

• Variant A: |S| = 40

– a single error contributes 0.025 to the error rate

– i.e., M1 got two more example right than M0

• Variant B: |S| = 2,000

– a single error contributes 0.0005 to the error rate

– i.e., M1 got 100 more examples right than M0
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Size of the Test Set

• Scenario:

– you have learned a model M1 with an error rate of 0.30

– the old model M0 had an error rate of 0.35

(both evaluated on the same test set S)

• Intuitively:

– M1 is better if the error is observed on a larger test set S

– The smaller the difference in the error, the larger |S| should be

• Can we formalize our intuitions?
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What is an Error?

• Ultimately, we want to minimize the error on unseen data (D)

– but we cannot measure it directly

• As a proxy, we use a sample S

– in the best case: error
S
 = error

D
 ↔ |error

S
 – error

D
| = 0

– or, more precisely: E[|errorS – errorD|] = 0 for each S

• In many cases, our models are overly optimistic

– i.e., error
D
 > error

S

Training Data (T) Test Data (D)

our “test data” split (S)
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What is an Error?

• In many cases, our models are overly optimistic

– i.e., error
D
 > error

S

• Most often, the model has overfit to S

• Possible reasons:

– S is a subset of training data (drastic)

– S has been used in feature engineering and/or parameter tuning

– we have trained and tuned three models only on T,
and pick the one which is best on S

Training Data (T) Test Data (D)

our “test data” split (S)
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What is an Error?

• Ultimately, we want to minimize the error on unseen data (D)

– but we cannot measure it directly

• As a proxy, we use a sample S

– unbiased model: E[|error
D
 – error

S
|] = 0 for each S

• Even for an unbiased model, there is usually some variance given S

– i.e. E[(error
S
 – E[error

S
])²] > 0

– intuitively: we measure (slightly) different errors on different S

Training Data (T) Test Data (D)

our “test data” split (S)
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Back to our Example

• Scenario:

– you have learned a model M1 with an error rate of 0.30

– the old model M0 had an error rate of 0.35

(both evaluated on the same test set T)

• Old question: 

– is M1 better than M0?

• New question: 

– how likely is it the error of M1 is lower just by chance?

• either: due to bias in M1, or due to variance
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Back to our Example

• New question: 

– how likely is it the error of M1 is lower just by chance?

• either: due to bias in M1, or due to variance

• Consider this a random process:

– M1 makes an error on example x

– Let us assume it actually has an error rate of 0.3

• i.e., M1 follows a binomial with its maximum at 0.3

• Test:

– what is the probability of actually observing 0.3 or 0.35 as error rates?
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Binomial Distribution for M1

• We can easily construct those binomial distributions given n and p

probability of observing 
an error of 0.35 (14/40): 0.104

probability of observing 
an error of 0.3 (12/40): 0.137
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From the Binomial to Confidence Intervals

• New question:

– what values are we likely to observe? (e.g., with a probability of 95%)

– i.e., we look at the symmetric interval around the mean that covers 95%

\
lower bound: 7 upper bound: 17
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From the Binomial to Confidence Intervals

• With a probability of 95%, we observe 7 to 17 errors

– corresponds to [0.175 ; 0.425] as a confidence interval

• All observations in that interval are considered likely

– i.e., an observed error rate of 0.35 
might also correspond to an actual error rate of 0.3

• Back to our example

– on a test sample of |S|=40, we cannot say whether M1 or M0 is better
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Simplified Calculation (z Test)

• The central limit theorem states that

– a binomial distribution can be approximated 
by a Gaussian normal distribution

• with μ = np, 

– for sufficiently large n

• rule of thumb: sufficiently large equals n>30

n=16 n=32 n=64

σ =√ p(1−p)n
p in our case: error
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Simplified Calculation (z Test)

• The central limit theorem states that

– a binomial distribution can be approximated 
by a Gaussian normal distribution

– Gaussian distributions are simple to compute
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Simplified Confidence Intervals

• Given that we have |S|=n, and an observed error
S

– With p% probability, error
D
 is in [error

S
 – y, error

S
 + y]

– With y= 

• Given our example

– error
S
 = 0.30, n=40

→ with 95% probability, errorD is in [0.158, 0.442]

zN⋅√ errorS(1−error S)n
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Working with Confidence Intervals

• Given that we have |S|=n, and an observed error
S

– With p% probability, error
D
 is in [error

S
 – y, error

S
 + y]

– With y= 

• Recap: we had two scenarios, |S| = 40 and |S| = 2000

– Interval for n=40: error
D
 is in [0.158, 0.442]

– Interval for n=2000: error
D
 is in [0.280, 0.320]

• So, for |S|=2000, the probability that error
D
 is lower than 0.35

is >95%

zN⋅√ errorS(1−error S)n

Observation: the interval shrinks 
with growing n
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Working with Confidence Intervals

• Comparing M0 and M1

• For |S|=2000, the confidence intervals do not overlap

– i.e., with 95% probability, M1 is better than M0

– but we cannot make such a statement for |S|=40

M0 M1
0
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Occam's Razor Revisited

• Named after William of Ockham (1287-1347)

• A fundamental principle of science

– if you have two theories

– that explain a phenomenon equally well

– choose the simpler one

• Example:

– phenomenon: the street is wet

– theory 1: it has rained

– theory 2: a beer truck has had an accident, and beer has spilled. 
The truck has been towed, and magpies picked the glass pieces,
so only the beer remains
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Occam's Razor Revisited

• Let’s rephrase:

– if you have two models

– where none is significantly better than the other

– choose the simpler one

• Indicators for simplicity:

– number of features used

– number of variables used, e.g.,

• hidden neurons in an ANN

• no. of trees in a Random Forest

• …
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Model Variance

• What happens if you repeat an experiment...

– ...on a different test set?

– ...on a different training set?

– ...with a different random seed?

• Some methods may have higher variance than others

– if your result was good, was just luck?

– what is your actual estimate for the future?

• Typically, we need more than one experiment!
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Model Variance

• Scenario:

– you have learned a model M1 with an error rate of 0.30

– the old model M0 had an error rate of 0.35

(this time: in 10-fold cross validation)

• Variant A:

– M0: 

– M1
A
:

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Ø
0.37 0.28 0.38 0.40 0.27 0.42 0.26 0.39 0.41 0.29 0.35

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Ø
0.28 0.30 0.31 0.32 0.25 0.32 0.27 0.32 0.33 0.30 0.30
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Model Variance

• Scenario:

– you have learned a model M1 with an error rate of 0.30

– the old model M0 had an error rate of 0.35

(this time: in 10-fold cross validation)

• Variant B:

– M0: 

– M1
B
:

lucky 
shots
lucky 
shots

lucky 
shots
total 
fails

lucky 
shots

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Ø
0.17 0.29 0.18 0.53 0.28 0.49 0.27 0.29 0.19 0.31 0.30

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Ø
0.37 0.28 0.38 0.40 0.27 0.42 0.26 0.39 0.41 0.29 0.35
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Model Variance

• M0:

• M1
A
:

• M1
B
:

• Some observations:

– Standard deviations (M0: 0.06, M1A: 0.03, M1B: 0.12)

– Pairwise competition:

• M1
A
 outperforms M0 in 7/10 cases

• but: M0 also outperforms M1B in 6/10 cases!

– Worst case of M1
A
 is below that of M0, but worst case of M1

B
 is above

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Ø
0.37 0.28 0.38 0.40 0.27 0.42 0.26 0.39 0.41 0.29 0.35

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Ø
0.28 0.30 0.31 0.32 0.25 0.32 0.27 0.32 0.33 0.30 0.30

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Ø
0.17 0.29 0.18 0.53 0.28 0.49 0.27 0.29 0.19 0.31 0.30
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Model Variance

• Why is model variance important?

– recap: confidence intervals

– risk vs. gain (use case!)

– often, training data differs

• even if you use cross or split validation during development

• you might still train a model on the entire training data later
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General Comparison of Methods

• Practice: finding a good method for a given problem

• Research: finding a good method for a class of problems

https://xkcd.com/664/
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General Comparison of Methods

• Practice: finding a good method for a given problem

• Research: finding a good method for a class of problems

• Typical research paper:

– Method M is better than state of the art S on a problem class P

– Evaluation: show results of M on a subset of P

– Claim that M is significantly better than S

let’s look
closer



5/25/21 Heiko Paulheim 39 

General Comparison of Methods

• De facto gold standard paper: Demšar, 2006

– almost 10k citations on Google scholar

– one of the most cited papers in JMLR in general
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Example

• New Method M vs. State of the Art Method S

– Tested on 12 different problems

– Depicted: error rate

• Observations:

– error rate alone might not be telling

– problems are not directly comparable

Problem M S
1 0.09 0.11
2 0.71 0.72
3 0.77 0.69
4 0.21 0.44
5 0.37 0.37
6 0.85 0.92
7 0.62 0.65
8 0.58 0.55
9 0.79 0.89

10 0.12 0.16
11 0.09 0.15
12 0.19 0.24

Avg. 0.45 0.49

simpler problem

harder problem
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Example

• Observation:

– 9 times: M outperforms S

– 2 times: S outperforms M

– 1 tie

• Just looking at those outcomes

– Null hypothesis: M and S are equally good

• i.e., probability of M outperforming S is 0.5

– What is the likelihood of M outperforming S in 9 or more out of 11 
cases?

• analogy: what is the likelihood of 9 or more heads in 11 coin tosses?

→ known as sign test

Problem M S
1 0.09 0.11
2 0.71 0.72
3 0.77 0.69
4 0.21 0.44
5 0.37 0.37
6 0.85 0.92
7 0.62 0.65
8 0.58 0.55
9 0.79 0.89

10 0.12 0.16
11 0.09 0.15
12 0.19 0.24

Avg. 0.45 0.49

tie is removed
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Example

• We’ve already seen something similar

– what is the likelihood of that outcome
(9/11 wins for M) by chance?

– let’s look at confidence intervals

• M wins: 

• S wins: 

• Looks safe, but...

Problem M S
1 0.09 0.11
2 0.71 0.72
3 0.77 0.69
4 0.21 0.44
5 0.37 0.37
6 0.85 0.92
7 0.62 0.65
8 0.58 0.55
9 0.79 0.89

10 0.12 0.16
11 0.09 0.15
12 0.19 0.24

Avg. 0.45 0.49

9
11

±1.96√ 911⋅(1− 9
11

)

11
→[0.59 ,1.05 ]

2
11

±1.96√ 211⋅(1− 2
11

)

11
→[−0.05 ,0.41]

n<30!
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Example

• Observation:

– 9 times: M outperforms S

– 2 times: S outperforms M

– 1 tie

• Just looking at those outcomes

– Null hypothesis: M and S are equally good

• i.e., probability of M outperforming S is 0.5

– What is the likelihood of M outperforming S in 9 or more out of 11 
cases?

• analogy: what is the likelihood of 9 or more heads in 11 coin tosses?

– Here: 0.03

→ i.e., with a probability >0.95, this is not an outcome by chance
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Sign Test

• Observation:

– 9 times: M outperforms S

– 2 times: S outperforms M

– 1 tie

• Sign test looks at those outcomes as binary experiments

– null hypothesis: M is not better than S, i.e., M outperforming S is as 
likely as M not outperforming S

Problem M S
1 0.09 0.11
2 0.71 0.72
3 0.77 0.69
4 0.21 0.44
5 0.37 0.37
6 0.85 0.92
7 0.62 0.65
8 0.58 0.55
9 0.79 0.89

10 0.12 0.16
11 0.09 0.15
12 0.19 0.24

Avg. 0.45 0.49
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Sign Test – Variants

• Some variations:

– We used N = wins + losses (standard sign test)

some use: N= wins + losses + ties

• With that variant, we would not 
conclude significance at p<0.05

Problem M S
1 0.09 0.11
2 0.71 0.72
3 0.77 0.69
4 0.21 0.44
5 0.37 0.37
6 0.85 0.92
7 0.62 0.65
8 0.58 0.55
9 0.79 0.89

10 0.12 0.16
11 0.09 0.15
12 0.19 0.24

Avg. 0.45 0.49



5/25/21 Heiko Paulheim 46 

Sign Test – Variants

• Observation: some wins/losses 
are rather marginal

• Stricter variant:

– perform significance test for each dataset
(as shown earlier today)

– regard only significant wins/losses

• In our example:

– Let’s assume the results on problem 1,3,4,6,7,9,10,11,12 are significant

Problem M S
1 0.09 0.11
2 0.71 0.72
3 0.77 0.69
4 0.21 0.44
5 0.37 0.37
6 0.85 0.92
7 0.62 0.65
8 0.58 0.55
9 0.79 0.89

10 0.12 0.16
11 0.09 0.15
12 0.19 0.24

Avg. 0.45 0.49
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Wilcoxon Signed-Rank Test

• Observation: some wins/losses 
are rather marginal

• Wilcoxon Signed-Rank Test

– takes margins into account

• Approach:

– rank results by absolute difference

– sum up ranks for positive and negative outcomes

• best case: all outcomes positive → sum of negative ranks = 0

• still good case: all negative outcomes are marginal
→ sum of negative ranks is low

Problem M S
1 0.09 0.11
2 0.71 0.72
3 0.77 0.69
4 0.21 0.44
5 0.37 0.37
6 0.85 0.92
7 0.62 0.65
8 0.58 0.55
9 0.79 0.89

10 0.12 0.16
11 0.09 0.15
12 0.19 0.24

Avg. 0.45 0.49
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Wilcoxon Signed-Rank Test

• Computation:

– sum up R+ and R-

– ties are ignored

– equal ranks are averaged

• R+=62.5, R-=14.5
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Wilcoxon Signed-Rank Test

• Computation: rank results

– sum up R- and R+

– ties are ignored

– equal ranks are averaged

• R- = 14.5, R+ = 62.5

• We use the one-tailed test

– because we want to test
if M is better than S

• 14.5 < 17

→ the results are significant
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Tests for Comparing Approaches

• Summary

– Simple z test only reliable for many datasets (>30)

– Sign test does not distinguish large and small margins

– Wilcoxon signed-rank test

• works also for small samples (e.g., half a dozen datasets)

• considers large and small margins
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Ablation Studies

• Often, data mining pipelines are complex

– different preprocessing approaches

– adding external data

– computing extra features

– …

• Each of those steps may be

– left out

– replaced by a simpler baseline

• This is called an ablation study, i.e.,

– does that change bear a significant advantage?

– recap: Occam’s razor!
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Take Aways

• Results in Data Mining are often reduced to a single number

– e.g., accuracy, error rate, F1, RMSE

– result differences are often marginal

• Problem of unseen data

– we can only guess/approximate the true performance on unseen data

– makes it hard to select between approaches

• Helpful tools

– confidence intervals

– significance tests

– Occam’s Razor
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Questions?
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