UNIVERSITÄT MANNHEIM

Occam's Razor Revisited

- Let's rephrase:
 - if you have two models
 - where none is *significantly* better than the other
 - choose the simpler one
- Indicators for simplicity:
 - number of features used
 - number of variables used, e.g.,
 - hidden neurons in an ANN
 - no. of trees in a Random Forest
 - ...

Measuring Model Simplicity

- Idea: the more the models focuses on less features, the simpler
 - Not necessarily: the better

Caveats: identifiers, false predictors, ...

- Good models have both...
 - …low test error
 - ...low complexity

- Example: random forests
- A feature is more important if...
 - ...it is used in many trees
 Rationale:
 - weighted prediction across trees
 - the more trees it is used in, the higher the influence
 - ...it is used to classify many examples Rationale:
 - more predictions are influenced by that attribute
 - i.e., for a single example: higher likelihood of influence
 - ...it leads to a high increase of purity on average Rationale:
 - if the purity is *not* increased, the split is rather a toin coss

- A feature is more important if...
 - ...it is used in many trees
 - First take:

Importance $(F) = \frac{\text{no. of trees containing F}}{\text{no. of trees}}$

- A feature is more important if...
 - ...it is used to classify many examples
 - First take:

Importance $(F) = \frac{\text{no. of examples classified using F}}{\text{no. examples}}$

In this example tree:

Importance(x) = 1.0Importance(y) = 0.6Importance(z) = 0.4

- A feature is more important if...
 - ...it leads to a high increase of purity on average
 - First take:

Importance $(F) = \Delta I(t, t_s)$

- In this example tree:
 - Importance(x) = 0.104
 - Importance(y) = 0.246
 - Importance(z) = 0.109
 - gini(A) = 0
 gini(B) = 0.083
 gini(C) = 0.125
 gini(D) = 0.357
 gini(E) = 0.3
 gini(F) = 0.167
 gini(G) = 0.3

- For example, random forests
- Putting the pieces together:

٠

no. of trees containing F $\sum_{m=1}^{\infty}$ Importance $(F) = \frac{1}{\text{no. of trees}}$ $p(n)\Delta I(s_n,n)$ nodes n in tree m containing F x>5 In this example: B - Importance(x) = $1.0 \times 0.104 = 0.104$ y>3 z<2 Importance(y) = 0.6 * 0.246 = 0.148TrueD False^E True False Importance(z) = 0.4 * 0.109 = 0.044(30,5)(5.20 (10.5 (5.20)

Back to Model Simplicity

- Left hand side:
 - Accuracy on test set: 0.72
- Right hand side:
 - Accuracy on test set: 0.66

Feature importances using MDI

Feature Weights and Model Simplicity

- Idea of feature shuffling:
 - If a feature is relevant, assigning random values to it should make the predictions worse
 - Simulation of random, but realistic values: shuffling a column
- This can be applied to any model

X_A	X_B	x_c	Y
xa1	xb1 🥿	xc1	y1
xa2	🖌 xb2 📐	xc2	y2
xa3	xb3 🥄	хс3	у3
xa4	📐 xb4 🥖	xc4	y3 y4 y5
xa5	🔰 xb5 🖊	xc5	y 5
xa6	x b6	хс6	y 6

https://towardsdatascience.com/feature-importance-with-neural-network-346eb6205743

Back to Model Simplicity

- Left hand side:
 - Accuracy on test set: 0.66
- Right hand side:
 - Accuracy on test set: 0.64

Feature Weights and Model Simplicity

- Let's rephrase:
 - if you have two models
 - where none is *significantly* better than the other
 - choose the simpler one
- Feature weights
 - Can indicate model simplicity (few high weighted features)
- Examples for computation
 - Random Forest, XGBoost: Mean Decrease in Impurity (MDI)
 - General: feature shuffling

LIME Model Explanation

- Idea: in a local area, models are simpler
 - They do not need to account for all the patterns of the data
 - Concentrate on patterns relevant in that area
- Motivation:
 - Try to extract the relevant model for a given data point
 - Hopefully, this is simple enough to interpret

https://c3.ai/glossary/data-science/lime-local-interpretable-model-agnostic-explanations/

LIME Model Explanation

- How to interpret a "black box" (i.e., uninterpretable) model M?
- Local: for a datapoint p
- Basic idea:
 - 1) create artificial datapoints P(p) in vicinity of p
 - 2) score each p' in P with black box model
 - 3) learn interpretable model M'

 \rightarrow values: P, labels: scores of M

4) create prediction for p using M' or analyze M' directly

Complex Non-linear

Simple Linear

https://c3.ai/glossary/data-science/lime-local-interpretable-model-agnostic-explanations/

LIME Model Explanation (example)

- Left hand side:
 - Model score on test set: 0.80
- Right hand side:
 - Model score on test set: 0.74

LIME Models for Non-Tabular Data

- Example: text classification
 - Datapoints P(p) are created by changing single words in training example

https://towardsdatascience.com/fine-grained-sentiment-analysis-in-python-part-2-2a92fdc0160d

LIME Models for Non-Tabular Data

- Example: image classification
 - Datapoints P(p) are created by changing single *pixels* in training example

336 fox squirrel, eastern fox squirrel, Sciurus niger 0.9377041
844 swing 0.001819109
337 marmot 0.00076952425

0

50

100

150

200

https://www.inovex.de/de/blog/lime-machine-learning-interpretability/

Heiko Paulheim

200

250

Model Inspection for Improving Model Quality

- Example: Text Classification
 - Observation: focus on metadata and stop words

https://homes.cs.washington.edu/~marcotcr/blog/lime/

Take Aways

- Model inspection on global level
 - Model complexity
 - Proxy: feature importance
 - Less complex model \rightarrow more likely to generalize
- Model inspection on local level
 - Generating explanations for test instances
 - Do they look plausible?

UNIVERSITÄT MANNHEIM

