Data Mining II
Model Inspection
(Bonus Episode)

Heiko Paulheim
Occam's Razor Revisited

• Let’s rephrase:
 – if you have two models
 – where none is *significantly* better than the other
 – choose the simpler one

• Indicators for simplicity:
 – number of features used
 – number of variables used, e.g.,
 • hidden neurons in an ANN
 • no. of trees in a Random Forest
 • ...

Measuring Model Simplicity

• Idea: the more the models focuses on less features, the simpler
 – Not necessarily: the better

• Good models have both...
 – ...low test error
 – ...low complexity

Caveats: identifiers, false predictors, ...
Measuring Feature Importance

- Example: random forests
- A feature is more important if...
 - ...it is used in many trees
 Rationale:
 - weighted prediction across trees
 - the more trees it is used in, the higher the influence
 - ...it is used to classify many examples
 Rationale:
 - more predictions are influenced by that attribute
 - i.e., for a single example: higher likelihood of influence
 - ...it leads to a high increase of purity on average
 Rationale:
 - if the purity is *not* increased, the split is rather a toin coss
Measuring Feature Importance

- A feature is more important if...
 - ...it is used in many trees
 - First take:

\[
\text{Importance}(F) = \frac{\text{no. of trees containing } F}{\text{no. of trees}}
\]

A

B

C

D

E

F

G

$\begin{array}{ll}
\text{True} & (30,5) \\
\text{False} & (5,20) \\
\end{array}$

$\begin{array}{ll}
\text{True} & (10,5) \\
\text{False} & (5,20) \\
\end{array}$
Measuring Feature Importance

• A feature is more important if…
 – ...it is used to classify many examples
 – First take:

\[
\text{Importance}(F) = \frac{\text{no. of examples classified using } F}{\text{no. examples}}
\]

– In this example tree:
 Importance(x) = 1.0
 Importance(y) = 0.6
 Importance(z) = 0.4
Measuring Feature Importance

- A feature is more important if...
 - ...it leads to a high increase of purity on average
 - First take:
 - In this example tree:
 - Importance(x) = 0.104
 - Importance(y) = 0.246
 - Importance(z) = 0.109

Importance(F) = ΔI(t, ts)

Change of impurity of node and its split nodes

- In this example tree:
 - gini(A) = 0
 - gini(B) = 0.083
 - gini(C) = 0.125
 - gini(D) = 0.357
 - gini(E) = 0.3
 - gini(F) = 0.167
 - gini(G) = 0.3
Measuring Feature Importance

- For example, random forests
- Putting the pieces together:

\[
\text{Importance}(F) = \frac{1}{\text{no. of trees}} \sum_{m=1}^{\text{no. of trees containing } F} \sum_{\text{nodes } n \text{ in tree } m \text{ containing } F} p(n) \Delta I(s_n, n)
\]

- Probability of single example passing this inner node
- Growth in impurity (e.g. Gini, Entropy)
- Grows with no. of trees using F
Measuring Feature Importance

- For example, random forests
- Putting the pieces together:

\[
\text{Importance}(F) = \frac{1}{\text{no. of trees}} \sum_{m=1}^{\text{no. of trees containing } F} \sum_{\text{nodes } n \text{ in tree } m \text{ containing } F} p(n) \Delta I(s_n, n)
\]

- In this example:
 - Importance(x) = 1.0 * 0.104 = 0.104
 - Importance(y) = 0.6 * 0.246 = 0.148
 - Importance(z) = 0.4 * 0.109 = 0.044

A
 \[
 x > 5
 \]
 \[
 y > 3
 \]
 \[
 z < 2
 \]

B
 True (30,5)
 False (5,20)

C
 True (10,5)
 False (5,20)

D
 True (30,5)
 False (5,20)

E
 True (30,5)
 False (5,20)

F
 True (30,5)
 False (5,20)

G
 True (30,5)
 False (5,20)
Back to Model Simplicity

- Left hand side:
 - Accuracy on test set: 0.72
- Right hand side:
 - Accuracy on test set: 0.66

Fewer influential features
Feature Weights and Model Simplicity

• Idea of feature shuffling:
 – If a feature is relevant, assigning random values to it should make the predictions worse
 – Simulation of random, but realistic values: shuffling a column

• This can be applied to *any* model

Back to Model Simplicity

- Left hand side:
 - Accuracy on test set: 0.66
- Right hand side:
 - Accuracy on test set: 0.64

Fewer features with importance >0
Feature Weights and Model Simplicity

• Let’s rephrase:
 – if you have two models
 – where none is significantly better than the other
 – choose the simpler one

• Feature weights
 – Can indicate model simplicity
 (few high weighted features)

• Examples for computation
 – Random Forest, XGBoost: Mean Decrease in Impurity (MDI)
 – General: feature shuffling
LIME Model Explanation

- **Idea:** in a local area, models are simpler
 - They do not need to account for all the patterns of the data
 - Concentrate on patterns relevant in that area

- **Motivation:**
 - Try to extract the relevant model for a given data point
 - Hopefully, this is simple enough to interpret

LIME Model Explanation

• How to interpret a “black box” (i.e., uninterpretable) model M?
• Local: for a datapoint p
• Basic idea:
 1) create artificial datapoints P(p) in vicinity of p
 2) score each p’ in P with black box model
 3) learn interpretable model M’
 → values: P, labels: scores of M
 4) create prediction for p using M’
 or analyze M’ directly

LIME Model Explanation (example)

- **Left hand side:**
 - Model score on test set: 0.80
- **Right hand side:**
 - Model score on test set: 0.74
LIME Models for Non-Tabular Data

• Example: text classification
 – Datapoints P(p) are created by changing single *words*
 in training example

https://towardsdatascience.com/fine-grained-sentiment-analysis-in-python-part-2-2a92fdc0160d
LIME Models for Non-Tabular Data

- Example: image classification
 - Datapoints $P(p)$ are created by changing single *pixels* in training example

336 fox squirrel, eastern fox squirrel, Sciurus niger 0.9377041
844 swing 0.001819109
337 marmot 0.00076952425

https://www.inovex.de/de/blog/lime-machine-learning-interpretability/
Model Inspection for Improving Model Quality

• Example: Text Classification
 – Observation: focus on metadata and stop words

Text with highlighted words
From: johnchad@triton.unm.edu (jchadwic)
Subject: Another request for Darwin Fish
Organization: University of New Mexico, Albuquerque
Lines: 11

NNTP-Posting-Host: triton.unm.edu

Hello Gang,

There have been some notes recently asking where to obtain the DARWIN fish.
This is the same question I have and I have not seen an answer on the net. If anyone has a contact please post on the net or email me.

https://homes.cs.washington.edu/~marcotcr/blog/lime/
Take Aways

- Model inspection on global level
 - Model complexity
 - Proxy: feature importance
 - Less complex model \rightarrow more likely to generalize

- Model inspection on local level
 - Generating explanations for test instances
 - Do they look plausible?
Data Mining II
Model Inspection
(Bonus Episode)