Data Mining II
Ensembles
Introduction

• “Wisdom of the crowds”
 – a single individual cannot know everything
 – but together, a group of individuals knows a lot

• Examples
 – Wikipedia
 – Crowdsourcing
 – Prediction

http://xkcd.com/903/
Introduction

• “SPIEGEL Wahlwette” (election bet) 2013
 - readers of SPIEGEL Online were asked to guess the federal election results
 - average across all participants:
 • only a few percentage points error for final result
 • conservative-liberal coalition cannot continue

https://lh6.googleusercontent.com/-U9DXTTcT-PM/UgsdSzdV3JI/AAAAAAAAFKs/GsRydeldasg/w800-h800/Bildschirmfoto+2013-08-14+um+07.56.01.png
Introduction

- “Who wants to be a Millionaire?”
- Analysis by Franzen and Pointner (2009):
 - “ask the audience” gives a correct majority result in 89% of all cases
 - “telephone expert”: only 54%

Ensembles

• So far, we have addressed a learning problem like this:

  ```python
  classifier = DecisionTreeClassifier(max_depth=5)
  ...
  ```
 ...and hoped for the best

• Ensembles:

 – wisdom of the crowds for learning operators
 – instead of asking a single learner, combine the predictions of different learners
Ensembles

• Prerequisites for ensembles: accuracy and diversity
 – different learning operators can address a problem (accuracy)
 – different learning operators make different mistakes (diversity)

• That means:
 – predictions on a new example may differ
 – if one learner is wrong, others may be right

• Ensemble learning:
 – use various base learners
 – combine their results in a single prediction
Voting

• The most straight forward approach
 – classification: use most-predicted label
 – regression: use average of predictions

• We have already seen this
 – k-nearest neighbors
 – each neighbor can be regarded as an individual classifier
Voting in RapidMiner & SciKit Learn

- **RapidMiner**: Vote operator uses different base learners
- **Python**: `VotingClassifier(
 ("dt", DecisionTreeClassifier()),
 "nb", GaussianNB(),
 "knn", KNeighborsClassifier())`
Performance of Voting

- Accuracy in this example:
 - Naive Bayes: 0.71
 - Ripper: 0.71
 - k-NN: 0.81
- Voting: 0.91
Why does Voting Work?

• Suppose there are 25 base classifiers
 – Each classifier has an accuracy of 0.65, i.e., error rate $\varepsilon = 0.35$
 – Assume classifiers are independent
 • i.e., probability that a classifier makes a mistake does not depend on whether other classifiers made a mistake
 • Note: in practice they are not independent!

• Probability that the ensemble classifier makes a wrong prediction
 – The ensemble makes a wrong prediction if the majority of the classifiers makes a wrong prediction
 – The probability that 13 or more classifiers are wrong is

$$\sum_{i=13}^{25} \binom{25}{i} \varepsilon^i (1 - \varepsilon)^{25-i} \approx 0.06 \ll \varepsilon$$
Why does Voting Work?

- In theory, we can lower the error infinitely just by adding more base learners

\[
\sum_{i=13}^{25} \binom{25}{i} \epsilon^i (1 - \epsilon)^{25-i} \approx 0.06 \ll \epsilon
\]

- But that is hard in practice
 - Why?

- The formula only holds for *independent* base learners
 - It is hard to find many truly independent base learners
 - ...at a decent level of accuracy

- Recap: we need both *accuracy* and *diversity*
Recap: Overfitting and Noise

Likely to overfit the data
Bagging

- Biases in data samples may mislead classifiers
 - overfitting problem
 - model is overfit to single noise points

- If we *had* different samples
 - e.g., data sets collected at different times, in different places, …
 - …and trained a single model on each of those data sets...
 - only one model would overfit to each noise point
 - voting could help address these issues

- But usually, we only have one dataset!
Bagging

• Models may differ when learned on different data samples
• Idea of bagging:
 – create diverse samples by picking examples \textit{with replacement}
 – learn a model on each sample
 – combine models
• Usually, the same base learner is used
• Samples
 – differ in the subset of examples
 – replacement randomly re-weights instances (see later)
Bagging: illustration

Training Data

Data1 → Learner1 → Model1

Data2 → Learner2 → Model2

... → ... → ...

Data m → Learner m → Model m

Model Combiner

Final Model
Bagging: Generating Samples

• Generate new training sets using sampling with replacement (bootstrap samples)

<table>
<thead>
<tr>
<th>Original Data</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bagging (Round 1)</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Bagging (Round 2)</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Bagging (Round 3)</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

- some examples may appear in more than one set
- some examples will appear more than once in a set
- for each set of size \(n \), the probability that a given example appears in it is
 \[
 \Pr(x \in D_i) = 1 - \left(1 - \frac{1}{n}\right)^n \to 0.6322
 \]
- i.e., on average, less than 2/3 of the examples appear in any single bootstrap sample
Bagging in RapidMiner and Python

- Bagging operator uses a base learner
- Number and ratio of samples can be specified

  ```python
  bagging = BaggingClassifier(DecisionTreeClassifier(), 10, 0.5)
  ```
Performance of Bagging

• Accuracy in this example:
 – Ripper alone: 0.71
 – Ripper with bagging (10x0.5): 0.86
Bagging in RapidMiner

• 10 different rule models are learned:

• This ensures *diversity*!
Variant of Bagging: Randomization

- Randomize the learning algorithm instead of the input data
- Some algorithms already have a random component
 - e.g. initial weights in neural net
- Most algorithms can be randomized, e.g., greedy algorithms:
 - Pick from the N best options at random instead of always picking the best options
 - e.g.: test selection in decision trees or rule learning
- Can be combined with bagging
Random Forests

- A variation of bagging with decision trees
- Train a number of individual decision trees
 - each on a random subset of examples
 - only analyze a random subset of attributes for each split
 (Recap: classic DT learners analyze all attributes at each split)
 - usually, the individual trees are left unpruned

```
rf = RandomForestClassifier(n_estimators=10)
```
Paradigm Shift: Many Simple Learners

• So far, we have looked at learners that are as good as possible

• Bagging allows a different approach
 – several simple models instead of a single complex one
 – Analogy: the SPIEGEL poll (mostly no political scientists, nevertheless: accurate results)
 – extreme case: using only decision stumps

• Decision stumps:
 – decision trees with only one node
Bagging with Weighted Voting

• Some learners provide confidence values
 – e.g., decision tree learners
 – e.g., Naive Bayes

• Weighted voting
 – use those confidence values for weighting the votes
 – some models may be rather sure about an example, while others may be indifferent
 – Python: parameter `voting=soft`
 • sums up all confidences for each class and predicts argmax
 • caution: requires `comparable` confidence scores!
Weighted Voting with Decision Stumps

- Weights: confidence values in each leaf

![Decision Tree Diagram]

- High confidence that it is rock (weight = 1.0)
- Lower confidence that it is mine (weight = 0.6)
Intermediate Recap

• What we've seen so far
 – ensembles often perform better than single base learners
 – simple approach: voting, bagging

• More complex approaches coming up
 – Boosting
 – Stacking

• Boosting requires learning with *weighted instances*
 – we'll have a closer look at that problem first
Intermezzo: Learning with Weighted Instances

• So far, we have looked at learning problems where each example is equally important

• Weighted instances
 – assign each instance a weight (*think:* importance)
 – getting a high-weighted instance wrong is more expensive
 – accuracy etc. can be adapted

• Example:
 – data collected from different sources (e.g., sensors)
 – sources are not equally reliable
 • we want to assign more weight to the data from reliable sources
Intermezzo: Learning with Weighted Instances

- Two possible strategies of dealing with weighted instances

- Changing the learning algorithm
 - e.g., decision trees, rule learners: adapt splitting/rule growing heuristics, example on following slides

- Duplicating instances
 - an instance with weight n is copied n times
 - simple method that can be used on all learning algorithms
Recap: Accuracy

- Most frequently used metrics:

\[
\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}
\]

Error Rate = 1 – Accuracy

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class=Yes</td>
<td>Class=Yes</td>
</tr>
<tr>
<td></td>
<td>TP</td>
</tr>
<tr>
<td>Class=No</td>
<td>FP</td>
</tr>
<tr>
<td></td>
<td>TN</td>
</tr>
</tbody>
</table>
Accuracy with Weights

• Definition of accuracy

\[
\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}
\]

• Without weights, TP, FP etc. are *counts* of instances

• With weights, they are *sums of their weights*
 – classic TP, FP etc. are the special case where all weights are 1
Adapting Algorithms: Decision Trees

• Recap: Gini index as splitting criterion

\[GINI(t) = 1 - \sum_j [p(j \mid t)]^2 \]

• The probabilities are obtained by counting examples
 – Again, we can sum up weights instead

• The same works for rule-based classifiers and their heuristics
Adapting Algorithms: Neural Networks

- Neural Networks try to minimize a loss function
- e.g., MAE or MSE
 - Weights can be introduced easily

\[
\text{MAE} = \frac{\sum_{\text{all examples}} |\text{predicted} - \text{actual}|}{N}
\]

\[
\text{MSE} = \frac{\sum_{\text{all examples}} (\text{predicted} - \text{actual})^2}{N}
\]
Adapting Algorithms: k-NN

• Standard approach
 – use average of neighbor predictions

• With weighted instances
 – weighted average
Intermezzo: Learning with Weighted Instances

• Handling imbalanced classification problems

• So far:
 – undersampling
 • removes examples → loss of information
 – oversampling
 • adds examples → larger data (performance!)
 • also: synthetic data points (SMOTE)

• Alternative:
 – lowering instance weights for larger class
 – simplest approach: weight $1/|C|$ for each instance in class C
Back to Ensembles: Boosting

• Idea of boosting
 – train a set of classifiers, one after another
 – later classifiers focus on examples that were misclassified by earlier classifiers
 – weight the predictions of the classifiers with their error

• Realization
 – perform multiple iterations
 • each time using different example weights
 – weight update between iterations
 • *increase* the weight of *incorrectly* classified examples
 • so they become more important in the next iterations
 (misclassification errors for these examples count more heavily)
 – combine results of all iterations
 • weighted by their respective error measures
Illustration of the Weights

- Classifier Weights α_m
 - differences near 0 or 1 are emphasized
- Good classifier
 \rightarrow highly positive weight
- Bad classifier
 \rightarrow highly negative weight
- Classifier with error 0.5
 \rightarrow weight 0
 \rightarrow this is equal to guessing!
Illustration of the Weights

• Example Weights
 – multiplier for correct and incorrect examples
 – depending on error

• Later iterations need to focus on examples that are
 – Incorrectly classified by a good classifier
 – Correctly classified by a bad classifier
Boosting – Algorithm AdaBoost.M1

1. initialize example weights $w_i = 1/N$ \((i = 1..N)\)

2. for $m = 1$ to t // t ... number of iterations

 a) learn a classifier C_m using the current example weights

 b) compute a weighted error estimate

 $$err_m = \frac{\sum w_i \text{of all incorrectly classified } e_i}{\sum_{i=1}^{N} w_i} = 1 \text{ because weights are normalized}$$

 c) if $err_m > 0.5 \rightarrow$ exit loop

 d) compute a classifier weight

 $$\alpha_m = \frac{1}{2} \ln \left(\frac{1 - err_m}{err_m} \right)$$

 e) for all correctly classified examples e_i:

 $$w_i \leftarrow w_i e^{-\alpha_m}$$

 f) for all incorrectly classified examples e_i:

 $$w_i \leftarrow w_i e^{\alpha_m}$$

 g) normalize the weights w_i so that they sum to 1

3. for each test example

 a) try all classifiers C_m

 b) predict the class that receives the highest sum of weights α_m
Boosting – Error Rate Example

• boosting of decision stumps on simulated data

from Hastie, Tibshirani, Friedman: The Elements of Statistical Learning, Springer Verlag 2001
Toy Example

(taken from Verma & Thrun, Slides to CALD Course CMU 15-781, Machine Learning, Fall 2000)
Round 1

\[h_1 \]

\[D_2 \]

\[\varepsilon_1 = 0.30 \]
\[\alpha_1 = 0.42 \]
Round 2

\[\varepsilon_2 = 0.21 \]
\[\alpha_2 = 0.65 \]
Round 3

\[h_3 \]

\[\varepsilon_3 = 0.14 \]

\[\alpha_3 = 0.92 \]
Final Hypothesis

\[H_{\text{final}} = \text{sign} \left(0.42 + 0.65 + 0.92 \right) \]

\[= \left(\begin{array}{c}
+ \\
+ \\
+ \\
- \\
- \\
- \\
- \\
+ \\
\end{array} \right) \]
Hypothesis Space of Ensembles

• Each learner has a *hypothesis space*
 – e.g., decision stumps: a linear separation of the dataset, parallel to the axes

• The hypothesis space of an ensemble
 – can be larger than that of its base learners

• Example: bagging with decision stumps
 – different stumps \rightarrow different linear separations
 – resulting hypothesis space also allows polygon separations
Boosting in RapidMiner and Python

• Just like voting and bagging

 - \(bdt = \text{AdaBoostClassifier(DecisionTreeClassifier), n_estimators=200} \)
Experimental Results on Ensembles

• Ensembles have been used to improve generalization accuracy on a wide variety of problems
• On average, Boosting provides a larger increase in accuracy than Bagging
 – Boosting on rare occasions can degrade accuracy
 – Bagging more consistently provides a modest improvement
• Boosting is particularly subject to over-fitting when there is significant noise in the training data
 – subsequent learners over-focus on noise points

(Freund & Schapire, 1996; Quinlan, 1996)
Back to Combining Predictions

- **Voting**
 - each ensemble member votes for one of the classes
 - predict the class with the highest number of vote (e.g., bagging)

- **Weighted Voting**
 - make a *weighted* sum of the votes of the ensemble members
 - weights typically depend
 - on the classifier's confidence in its prediction (e.g., the estimated probability of the predicted class)
 - on error estimates of the classifier (e.g., boosting)

- **Stacking**
 - Why not use a classifier for making the final decision?
 - training material are the class labels of the training data and the (cross-validated) predictions of the ensemble members
Stacking

• Basic Idea:
 – learn a function that combines the predictions of the individual classifiers

• Algorithm:
 – train \(n \) different classifiers \(C_1 \ldots C_n \) (the base classifiers)
 – obtain predictions of the classifiers for the training examples
 – form a new data set (the meta data)
 • classes
 – the same as the original dataset
 • attributes
 – one attribute for each base classifier
 – value is the prediction of this classifier on the example
 – train a separate classifier \(M \) (the meta classifier)
Stacking (2)

- Example:

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{11}</td>
<td>t</td>
</tr>
<tr>
<td>x_{21}</td>
<td>f</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>x_{n_e1}</td>
<td>t</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C_1</th>
<th>C_2</th>
<th>$...$</th>
<th>C_{n_c}</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>$...$</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>$...$</td>
<td>t</td>
</tr>
<tr>
<td>$...$</td>
<td>$...$</td>
<td>$...$</td>
<td>$...$</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>$...$</td>
<td>t</td>
</tr>
</tbody>
</table>

- Using a stacked classifier:
 - try each of the classifiers $C_1...C_n$
 - form a feature vector consisting of their predictions
 - submit these feature vectors to the meta classifier M
Stacking and Overfitting

• Consider a dumb base learner D, which works as follows:
 – during training: store each training example
 – during classification: if example is stored, return its class
 otherwise: return a random prediction

• If D is used along with a number of classifiers in stacking, what will the meta classifier look like?
 – D is perfect on the training set
 – so the meta classifier will say: always use D's result
Stacking and Overfitting

• Solution 1: split dataset (e.g., 50/50)
 – use one portion for training the base classifiers
 – use other portion to train meta model

• Solution 2: cross-validate base classifiers
 – train classifier on 90% of training data
 – create features for the remaining 10% on that classifier
 – repeat 10 times

• The second solution is better in most cases
 – uses whole dataset for meta learner
 – uses 90% of the dataset for base learners
Stacking in RapidMiner and Python

- Looks familiar again
 - we need a set of base learners (like for voting)
 - and a learner for the stacking model
- Python: not in scikit-learn, use, e.g., package mlxtend
 - requires setting base classifiers and meta learner as well
Performance of Stacking

- Accuracy in this experiment:
 - Naive Bayes: 0.71
 - k-NN: 0.81
 - Ripper: 0.71
- Stacked model: 0.86
Stacking

- Variant: also keep the original attributes
- Predictions of base learners are additional attributes for the stacking predictor
 - allows the identification of “blind spots” of individual base learners

- Variant: stacking with confidence values
 - if learners output confidence values, those can be used by the stacking learner
 - often further improves the results
Multi-Modal Data Revisited

- Last week, we saw the idea of encoders
The Classifier Selection Problem

- Question: decision trees or rule learner – which one is better?
- Two corner cases – recap from Data Mining 1

Accuracy:
- Baseline: 0.5
- Decision Tree: 0.45
- Rule Learner: 0.7

- Voting: 0.65
- Weighted Voting: 0.7
- Stacking: 0.83

Accuracy:
- Baseline: 0.89
- Decision Tree: 1.0
- Rule Learner: 0.89

- Voting: 0.89
- Weighted Voting: 1.0
- Stacking: 1.0
Regression Ensembles

• Most ensemble methods also work for regression
 – voting: use average
 – bagging: use average or weighted average
 – stacking: learn \textit{regression} model as stacking model!
 – boosting: the regression variant is called \textit{additive regression}

• In Python: usually the same class ending in \textit{Regressor} instead of \textit{Classifier}
Additive Regression

• Boosting can be seen as a greedy algorithm for fitting additive models

• Same kind of algorithm for numeric prediction:
 – Build standard regression model
 – Gather residuals, learn model predicting residuals, and repeat
 • Given a prediction \(p(x) \), residual = \((x-p(x))^2\)

• To predict, simply sum up weighted individual predictions from all models
Additive Regression w/ Linear Regression

• What happens if we use Linear Regression inside of Additive Regression?

• The first iteration learns a linear regression model \(\text{lr}_1 \)
 – By minimizing the sum of squared errors

• The second iteration aims at learning a LR \(\text{lr}_2 \) model for
 – \(x' = (x - \text{lr}_1(x))^2 \)
 – Since \((x - \text{lr}_1(x))^2\) is already minimal, \(\text{lr}_2 \) cannot improve upon this
 • Hence, the subsequent linear models will always be a constant 0
Additive Regression w/ Linear Regression

• First regression model:
Additive Regression w/ Linear Regression

- Second (and third, fourth, ...) regression model:
Additive Regression

- Bottom line: additive and linear regression are not a good match
Example 1: One-dimensional, Non-linear

Linear Regression: RMSE = 0.199

Isotonic Regression: RMSE = 0.171

Additive Isotonic Regression: RMSE = 0.073
Example 2: Multidimensional, Non-Linear

- $z = 10x^2 - y^3$

RMSE of...
- Linear Regression: 385
- Isotonic Regression: 293
- Additive Isotonic Regression: 122
XGBoost

• A pretty strong learning algorithm
 – For a while, it was the leading algorithm in top submissions at Kaggle
• Additive Regression w/ Regression Trees
• Regularization
 – Respect size of trees
 – Larger trees: more likely to overfit!
 • Introduce penalty for tree size
 – Overcomes the problem of overfitting in boosting
Intermediate Recap

• Ensemble methods
 – outperform base learners
 – Help minimizing shortcomings of single learners/models
 – simple and complex methods for method combination

• Reasons for performance improvements
 – individual errors of single learners can be “outvoted”
 – more complex hypothesis space
Ensembles for Other Problems

- There are ensembles also for...
- ...clustering (Vega-Pons and Ruiz-Shulcloper, 2011)
 - trying to unify different clusterings
 - using a consensus function mapping different clusterings to each other
- ...outlier detection (Zimek et al., 2014)
 - unifying outlier scores of different approaches
 - requires score normalization and/or rank aggregation
- etc.
Learning with Costs

• Most classifiers aim at reducing the number of errors
 – all errors are regarded as being equally important

• In reality, misclassification costs may differ
• Consider a warning system in an airplane
 – issue a warning if stall is likely to occur
 – based on a classifier using different sensor data
 – wrong warnings may be ignored by the pilot
 – missing warnings may cause the plane to crash

• Here, we have different costs for
 – actual: true, predicted: false → very expensive
 – actual: false, predicted true → not so expensive

http://i.telegraph.co.uk/multimedia/archive/01419/plane_1419831c.jpg
The MetaCost Algorithm

• Form multiple bootstrap replicates of the training set
 – Learn a classifier on each training set
 – i.e., perform bagging
• Estimate each class’s probability for each example
 – by the fraction of votes that it receives from the ensemble
• Use conditional risk equation to relabel each training example
 – with the estimated optimal class
• Reapply the classifier to the relabeled training set
MetaCost

- Conditional risk $R(i|x)$ is the expected cost of predicting that x belongs to class i
 - $R(i|x) = \sum P(j|x)C(i, j)$
 - $C(i, j)$ are the misclassification costs
 (classify an example of class j as class i)
 - $P(j|x)$ are obtained by running the bagged classifiers
- The goal of MetaCost procedure is: to relabel the training examples with their “optimal” classes
 - i.e., those with lowest risk
- Then, re-run the classifier to build a final model
 - the resulting classifier will be defensive, i.e., make low-risk predictions
 - in the end, the costs are minimized
MetaCost

- Pilot alarm alarm example
 - \(x_1 \): alarm, \(P(alarm|x_1) = 0.8 \)
 - \(x_2 \): no, \(P(no|x_2) = 0.9 \)

- Risk values:
 - \(R(alarm|x_1) = P(alarm|x_1) \times C(alarm, alarm) + P(no|x_1) \times C(alarm, no) = 0.2 \times 1 = 0.2 \)
 - \(R(no|x_1) = P(alarm|x_1) \times C(no, alarm) + P(no|x_1) \times C(no, no) = 0.8 \times 10 = 8 \)
 - \(R(alarm|x_2) = P(alarm|x_2) \times C(alarm, alarm) + P(no|x_2) \times C(alarm, no) = 0.9 \times 1 = 0.9 \)
 - \(R(no|x_2) = P(alarm|x_2) \times C(no, alarm) + P(no|x_2) \times C(no, no) = 0.1 \times 10 = 1 \)

- Since \(0.9 < 1 \)
 - \(x_2 \) is relabeled to “alarm”

<table>
<thead>
<tr>
<th>actual</th>
<th>predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarm</td>
<td>0</td>
</tr>
<tr>
<td>no alarm</td>
<td>1</td>
</tr>
</tbody>
</table>

8/10 classifiers are correct

http://i.telegraph.co.uk/multimedia/archive/01419/plane_1419831c.jpg
MetaCost vs. Balancing

• Recap balancing:
 – in an unbalanced dataset, there is a bias towards the larger class
 – balancing the dataset helps building more meaningful models

• MetaCost:
 – incidentally unbalance the dataset,
 labeling more instances with the “cheap” class
 – make the learner have a bias towards the “cheap” class
 • i.e., expensive mis-classifications are avoided
 – in the end, the overall cost is reduced

• In the example:
 – there will be more false alarms (stall warning, but actually no stall)
 – the risk of not issuing a warning is reduced
MetaCost Example

- Hint: use the performance (cost) operator for evaluation
MetaCost Example

• Experiment: set misclassification cost
 Rock → Mine = 2; Mine → Rock = 1

• Non-cost sensitive decision tree:
 – misclassification cost = 0.33

• MetaCost with decision tree:
 – misclassification cost = 0.24
Another Example for Cost-Sensitive Prediction

- Predicting *ordinal* attributes
 - e.g., very low, low, medium, high, very high

- Typical cost matrix:

<table>
<thead>
<tr>
<th></th>
<th>very low</th>
<th>low</th>
<th>medium</th>
<th>high</th>
<th>very high</th>
</tr>
</thead>
<tbody>
<tr>
<td>very low</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>low</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>medium</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>high</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>very high</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Wrap-up

• Ensemble methods in general
 – build a strong model from several weak ones

• Ingredients
 – base learners
 – a combination method

• Variants
 – Voting
 – Bagging (based on sampling)
 – Boosting (based on reweighting instances)
 – Stacking (use learner for combination)

• Also used for cost-sensitive predictions (MetaCost)
Questions?