
Data Mining II
Neural Networks and Deep Learning

Heiko Paulheim



3/13/23 Heiko Paulheim 2 

Deep Learning

• A recent hype topic
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Deep Learning

• Just the same as artificial neural networks with a new buzzword?
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Deep Learning

• Contents of this Lecture

– Recap of neural networks

– The backpropagation algorithm

– Auto Encoders

– Deep Learning

– Network Architectures

– Transfer Learning with Neural Networks
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Revisited Example: Credit Rating

• Consider the following example:

– and try to build a model

– which is as small as possible (recall: Occam's Razor)

Person Employed Owns House Balanced Account Get Credit

Peter Smith yes yes no yes

Julia Miller no yes no no

Stephen Baker yes no yes yes

Mary Fisher no no yes no

Kim Hanson no yes yes yes

John Page yes no no no
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Revisited Example: Credit Rating

• Smallest model:

– if at least two of Employed, Owns House, and Balanced Account are 
yes
→ Get Credit is yes

• Not nicely expressible in trees and rule sets

– as we know them (attribute-value conditions)
Person Employed Owns House Balanced Account Get Credit

Peter Smith yes yes no yes

Julia Miller no yes no no

Stephen Baker yes no yes yes

Mary Fisher no no yes no

Kim Hanson no yes yes yes

John Page yes no no no
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Revisited Example: Credit Rating

• Smallest model:

– if at least two of Employed, Owns House, and Balance Account are yes
→ Get Credit is yes

• As rule set:

Employed=yes and OwnsHouse=yes => yes
Employed=yes and BalanceAccount=yes => yes
OwnsHouse=yes and BalanceAccount=yes => yes
=> no

• General case:

– at least m out of n attributes need to be yes => yes

– this requires      rules, i.e., 

– e.g., “5 out of 20 attributes need to be yes” 
requires more than 15,000 rules!

( n
m

)
n!

m!⋅(n−m)!
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Artificial Neural Networks

• Inspiration

– one of the most powerful super computers in the world
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Artificial Neural Networks (ANN)

X1 X2 X3 Y
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 0
0 1 0 0
0 1 1 1
0 0 0 0

X1

X2

X3

Y

Black box

Output

Input

Output Y is 1 if at least two of the three inputs are equal to 1.
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Example: Credit Rating

• Smallest model:

– if at least two of Employed, Owns House, and Balance Account are yes
→ Get Credit is yes

• Given that we represent yes and no by 1 and 0, we want

– if(Employed + Owns House + Balance Acount)>1.5
→ Get Credit is yes
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Artificial Neural Networks (ANN)

X1 X2 X3 Y
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 0
0 1 0 0
0 1 1 1
0 0 0 0
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Y = I (0 .3 X 1+0 .3 X 2+0 . 3 X 3−0 . 4>0 )

where I ( z )={1 if z  is true
0 otherwise
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Artificial Neural Networks (ANN)

• Model is an assembly of 
inter-connected nodes 
and weighted links

• Output node sums up 
each of its input value 
according to the weights 
of its links

• Compare output node 
against some threshold t
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General Structure of ANN

Activation
function

g(Si )
Si Oi

I1

I2

I3

wi1

wi2

wi3

Oi

Neuron iInput Output

threshold, t

Input
Layer

Hidden
Layer

Output
Layer

x1 x2 x3 x4 x5

y

Training ANN means learning 
the weights of the neurons
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Algorithm for Learning ANN

• Initialize the weights (w0, w1, …, wk), (usually randomly)

• Adjust the weights in such a way that the output of ANN is consistent 
with class labels of training examples

– Objective function:

– Find the weights wi’s that minimize the above objective function

 2),( 
i

iii XwfYE
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Backpropagation Algorithm

• Adjust the weights in such a way 
that the output of ANN is consistent 
with class labels of training examples

– Objective function:

– Find the weights wi’s that minimize 
the above objective function

• This is simple for a single layer 
perceptron

• But for a multi-layer network, 
Yi is not known

Input
Layer

Hidden
Layer

Output
Layer

x1 x2 x3 x4 x5

y

 2),( 
i
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Backpropagation Algorithm

• Sketch of the Backpropagation Algorithm:

– Present an example to the ANN

– Compute error at the output layer

– Distribute error to hidden layer according to weights

• i.e., the error is distributed according to the contribution
of the previous neurons to the result

– Adjust weights so that the error is minimized

• Adjustment factor: learning rate

• Use gradient descent

– Repeat until input layer is reached
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Training in Batches

• In theory, one could present the examples one after the other

• In practice: use batches

– Neural network gets to see a number of examples (batch)

– All examples in the batch are predicted by the network

– Errors are accumulated

– Weights in the neural network are adapted (backpropagated) 
after predicting all examples in the batch

• Pros: fewer model updates, faster convergence

• Cons: may not find global optimum, 
harder to handle imbalanced datasets
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Backpropagation Algorithm

• Important notions:

– Predictions are pushed forward through the network
(“feed-forward neural network”)

– Errors are pushed backwards through the network
(“backpropagation”)
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Backpropagation Algorithm

• Important notions:

– Predictions are pushed forward through the network
(“feed-forward neural network”)

– Errors are pushed backwards through the network
(“backpropagation”)
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Backpropagation Algorithm – Gradient Descent

• Output of a neuron: o = g(w
1
i
1
...w

n
i
n
)

• Assume the desired output is y, the error is

o – y = g(w
1
i
1
...w

n
i
n
) – y 

• We want to minimize the error, i.e., minimize

g(w
1
i
1
...w

n
i
n
) – y 

• We follow the steepest descent of g, i.e.,

– the value where g’ is maximal

Activation
function
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threshold, t
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Backpropagation Algorithm – Gradient Descent

• Hey, wait…

– the value where g’ is maximal

• To find the steepest gradient, we have to differentiate the activation 
function

• But I(z) is not differentiable!
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Alternative Activation Functions

• Sigmoid Function (classic ANNs): 1/(1+e^(-x))

• Rectified Linear Unit (ReLU, since 2010s): max(0,x)
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Properties of ANNs and Backpropagation

• Non-linear activation function:

– May approximate any arbitrary function, even with one hidden layer

• Convergence:

– Convergence may take time

– Higher learning rate: faster convergence

• Gradient Descent Strategy:

– Danger of ending in local optima

• Use momentum to prevent getting stuck

– Lower learning rate: higher probability of finding global optimum
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Learning Rate, Momentum, and Local Minima

• Learning rate: how much do we adapt the weights with each step

– 0: no adaptation, use previous weight

– 1: forget everything we have learned so far, simply use weights that are 
best for current example

• Smaller: slow convergence, less overfitting

• Higher: faster convergence, more overfitting
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Learning Rate, Momentum, and Local Minima

• Momentum: how much do we change the adaptation of weights

– Small: allow changes in every direction soon

– High: keep changing in the same direction for longer

• Smaller: better convergence, sticks in local minimum

• Higher: worse convergence, does not get stuck
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Dynamic Learning Rates

• Adapting learning rates over time

– Search coarse-grained first, fine-grained later

– e.g., allow bigger jumps in the beginning

• e.g., RMSProp (Hinton, 2014)

– use decay function for learning rate

• e.g., AdaDelta (Zeiler, 2012)

– restrict total update for features
over windows of time
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Local Learning Rates

• Observation

– not all parameters change equally often

– e.g., text classification: input neuron weights for infrequent words

• AdaGrad (Duchi et al., 2011)

– maintain list of gradient changes for each parameter

– adapt learning rates locally

• AdaDelta (Zeiler, 2012)

– restrict total updates per parameter

• Bottom line: optimization functions often have a large impact

– Reading recommendation: https://ruder.io/optimizing-gradient-descent/
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ANNs vs. SVMs

• ANNs have arbitrary decision boundaries

– and keep the data as it is

• SVMs have linear decision boundaries

– and transform the data first
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Recap: Feature Subset Selection & PCA

• Idea: reduce the dimensionality of high dimensional data

• Feature Subset Selection

– Focus on relevant attributes

• PCA

– Create new attributes

• In both cases

– We assume that the data can be described with fewer variables

– Without losing much information
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What Happens at the Hidden Layer?

• Usually, the hidden layer is
smaller than the input layer

– Input: x1...xn

– Hidden: h1...hm

– n>m

• The output can be predicted
from the values at the hidden layer

• Hence:

– m features should be sufficient
to predict y!

Input
Layer

Hidden
Layer

Output
Layer

x1 x2 x3 x4 x5

y
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What Happens at the Hidden Layer?

• We create a more compact
representation of the dataset

– Hidden: h1...hm

– Which still conveys the information
needed to predict y

• Particularly interesting for 
sparse datasets

– The resulting representation
is usually dense

• But what if we don’t know y?

Input
Layer

Hidden
Layer

Output
Layer

x1 x2 x3 x4 x5

y
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Auto Encoders

• Auto encoders use the same example as input and output

– i.e., they train a model for predicting an example from itself

– using fewer variables

• Similar to PCA

– But PCA provides only a linear transformation

– ANNs can also create non-linear parameter transformations
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Denoising Auto Encoders

• Instead of training with the same input and output

– Add random noise to input

– Keep output clean

• Result

– A model that learns to remove noise from an instance
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Stacked (Denoising) Auto Encoders

• Stacked Auto Encoders contain several hidden layers

– Hidden layers capture more complex hidden variables 
and/or denoising patterns

– They are often trained consecutively:

– First: train an auto encoder with one hidden layer

– Second: train a second one-layer neural net: 

• first hidden layer as input

• original as output

(noisy) input hidden 1 output hidden 2 outputhidden 1
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Footnote: Auto Encoders for Outlier Detection

• Also known as Replicator Neural Networks

(Hawkins et al., 2002)

• Train an autoencoder

– That captures the patterns in the data

• Encode and decode each data point, measure deviation

– Deviation is a measure for outlier score
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From Classifiers to Feature Detectors

Some of the following slides are borrowed from
https://www.macs.hw.ac.uk/~dwcorne/Teaching/
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From Classifiers to Feature Detectors

What does a particular neuron do?
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What Happens at the Hidden Layer?

…

1

63

 1                5                10                 15                20                25  …

high weight

low/zero weight

strong signal for a horizontal line in the 
top row, ignoring everywhere else 
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What Happens at the Hidden Layer?

…

1

63

 1                5                10                 15                20                25  …

high weight

low/zero weight

strong signal for a dark area in the top left
corner 
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Is that enough? What Features do we Need?

Vertical Lines

Horizontal Lines

Circles
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Is that enough? What Features do we Need?

• What we have

– Line at the top

– Dark area in the top left corner

– …

• What we want

– Vertical Line

– Horizontal Line

– Circle

• Challenges

– Positional variance

– Color variance
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On the Quest for Higher Level Features

 
  

 
  

 
  

etc …detect lines in
specific positions

 
  v

 
  

 
  

Higher level detetors
(horizontal line, 
RHS vertical line,
upper loop, etc…

etc …

9
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Memorizing vs. Learning

• The goal of training a neural network is learning 
a generalized model

– should classify unseen examples

• The opposite of generalization is memorization

– Model learns training examples “by heart”

– Lesser performance on unseen examples

– Indicator: performance increase on training set, decrease on test set

https://rstudio-conf-2020.github.io/dl-keras-tf/notebooks/learning-curve-diagnostics.nb.html
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Memorizing vs. Learning

• Hidden layers define the capacity of a neural network

– Roughly: how complex can the patterns be that are stored

• Too low capacity: underfitting

– Patterns that, e.g., separate classes have a certain complexity

– We need enough hidden neuron connections to “store” those patterns

• Too high capacity: overfitting

– Examples can be identified by certain combinations of features

– With enough hidden neuron connections, we can learn those 
combinations instead of generalized patterns
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Regularization with Dropout

• ANNs, and in particular Deep ANNs, tend to overfitting

• Example: image classification

• Elephant: five features in the highest level layer

– big object

– grey

– trunk

– tail

– ears

• Possible tendency to overfit:

– expect all five to fire

elephant

?
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Regularization with Dropout

• Regularization

– Randomly deactivate hidden neurons when training an example

– E.g., factor α=0.4: deactivate neurons randomly with probability 0.4

• Example:

– big object

– grey

– trunk

– tail

– ears

X

X

elephant
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Regularization with Dropout

• Regularization

– Randomly deactivate hidden neurons when training an example

– E.g., factor α=0.4: deactivate neurons randomly with probability 0.4

• Result:

– Learned model is more robust, less overfit

• For classification:

– use all hidden neurons

• Problem: activation levels will be higher!

– Multiply each output with 1/(1+α)
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Regularization with Dropout

• For classification:

– use all hidden neurons

• Problem: activation levels will be higher!

– Correction: multiply each output with 1/(1+α)

• Example:

– big object

– grey

– trunk

– tail

– ears

elephant

0.4

0.7

1.0

0.3

0.3

>1.3

without correction: 0.4+0.7+0.3+0.3 = 1.7>1.3
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Regularization with Dropout

• For classification:

– use all hidden neurons

• Problem: activation levels will be higher!

– Correction: multiply each output with 1/(1+α)

• Example:

– big object

– grey

– trunk

– tail

– ears

elephant x
0.4

0.7

1.0

0.3

0.3

>1.3

With correction: (5/7)*(0.4+0.7+0.3+0.3) = 1.21<1.3
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Regularization with Dropout

• For classification:

– use all hidden neurons

• Problem: activation levels will be higher!

– Correction: multiply each output with 1/(1+α)

• Example:

– big object

– grey

– trunk

– tail

– ears

elephant 
0.4

0.7

1.0

0.3

0.3

>1.3

(5/7)*(0.4+1.0+0.3+0.3) = 1.43>1.3
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Architectures: Convolutional Neural Networks

• Special architecture for image processing

• Problem: imagine a 4k resolution picture (3840x2160)

– Treating each pixel as an input: 8M input neurons

– Connecting that to a hidden layer of the same size: 
8M² = 64 trillion weights to learn

– This is hardly practical…

• Solution:

– Convolutional neural networks
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Architectures: Convolutional Neural Networks

• Two parts:

– Convolution layer

– Pooling layer

• Stacks of those are usually used
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Architectures: Convolutional Neural Networks

• Convolution layer

– Each neuron is connected to a small n x n square of the input neurons

– i.e., number of connections is linear, not quadratic

• Use different neurons for detecting different features

– They can share their weights

– (intuition: a horizontal line looks the same everywhere)
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Architectures: Convolutional Neural Networks

• Pooling layer (aka subsampling layer)

– Use only the maximum value of a neighborhood of neurons

– Think: downsizing a picture

– Number of neurons is divided by four with each pooling layer



3/13/23 Heiko Paulheim 55 

Architectures: Convolutional Neural Networks

• The big picture

– With each pooling/subsampling step: 4 times less neurons

– After a few layers, we have a decent number of inputs

– Feed those into a fully connected ANN for the actual classification



3/13/23 Heiko Paulheim 56 

Architectures: Convolutional Neural Networks

• The 4K picture revisited (3840x2160):

– Treating each pixel as an input: 8M input neurons

– Connecting that to a hidden layer of the same size: 
8M² = 64 trillion weights to learn

• Number of connections (weights to be learned) in the first 
convolutional layer:

– Assume each hidden neuron is connected to a 16x16 square

– and we learn 256 hidden features (i.e., 256 layers of convolutional 
neurons)

– 16x16x256x8M = still 526 billion weights

• But: neurons for the same hidden feature share their weight

– Thus, it’s just 16x16x256 = 65k weights
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Architectures: Convolutional Neural Networks

• Nice play around visualization for handwritten number detection

http://scs.ryerson.ca/~aharley/vis/conv/flat.html
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Architectures: Convolutional Neural Networks

• In practice, several layers are used

• Picture on the right

– Google’s GoogLeNet (Inception)

– Current state of the art in image classification

• Can be used as a pre-trained network



3/13/23 Heiko Paulheim 59 

What does an Artificial Neural Network Learn?
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What does an Artificial Neural Network Learn?
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What does an Artificial Neural Network Learn?

• Image recognition networks can be attacked

– changing small pixels barely noticed by humans

Goodfellow et al.: Explaining and Harnessing Adverserial Examples, 2015
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Possible Implications

• Face Detection

Sharif et al.: Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art 
Face Recognition, 2016
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Possible Implications

• Autonomous Driving

Papernot et al.: Practical Black-Box Attacks against Machine Learning, 2017
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Using ANNs for Time Series Prediction

• Last week, we have learned about time series prediction

– Long term trends

– Seasonal effects

– Random fluctuation

– …

• Scenario: predict the continuation of a time series

– let’s use the last five values as features (3-window)

input hidden 1 output

T-5

T-4

T-3

T-2

T-1

T
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Using ANNs for Time Series Prediction

• Assume that this is running continuously

– we will always just use the last five examples

– we cannot detect longer term trends

• Solution

– introduce a memory

– lmplementation: backward loops

input hidden 1 output

T-5

T-4

T-3

T-2

T-1

T
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Long Short Term Memory Networks (LSTM)

• Notion of a recurrent neural network

– A folded deep neural network

– Note: influence of the past decays over time

• LSTMs are special recurrent neural networks
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CNNs for Time Series Prediction

• Notion: time series also have typical features

– Think: trends, seasonal variation, ...

Zheng et al.: Time Series Classification Using Multi-Channels Deep Convolutional 
Neural Networks, 2014
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word2vec

• word2vec is similar to an auto encoder for words

• Training set: a text corpus

• Training task variants:

– Continuous bag of words (CBOW): predict a word from the surrounding 
words

– Skip-Gram: predicts surrounding words of a word

Xin Rong: word2vec parameter learning explained
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word2vec

• word2vec creates an n-dimensional vector for each word

• Each word becomes a point in a vector space

• Properties:

– Similar words are positioned to each other

– Relations have the same direction
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word2vec

• Arithmetics are possible in the vector space

– king – man + woman ≈ queen

• This allows for finding analogies:

– king:man ↔ queen:woman

– knee:leg ↔ elbow:forearm

– Hillary Clinton:democrat ↔ Donald Trump:Republican
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word2vec

• Pre-trained models exist

– e.g., on Google News Corpus or Wikipedia

• Can be downloaded and used instantly
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BERT

• Learns a representation of words in context

– Unlike word2vec: one fixed representation per word

– Larger training corpus required
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Reusing Pre-trained Networks

• The output of a network can be used as an input 
to yet another classifier (neural network or other)

• Think: a multi-label image classifier as an auto-encoder

• Example: predict movie genre from poster

– Using an image classifier trained for object recognition

http://demo.caffe.berkeleyvision.org/
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Reusing Pre-trained Networks

• In many cases, the last or second-to last layer are reused

• Fine-tuning on a task at hand often leads to advantages

– i.e., use the trained network, add a new classification layer, 
and present examples

– Referred to as “transfer learning”
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Transfer Learning with Pretrained Networks

• Pre-trained neural networks can be (re)used for other tasks

– They can also be retrained, using the pre-training as initialization

– Sometimes, different layers are frozen

• Rationale:

– There are already some valuable information learned

X
new output



3/13/23 Heiko Paulheim 77 

Summary

• Artificial Neural Networks

– Powerful learning tool, approximates arbitrary functions or boundaries

– Lots of hyperparameters: learning rate, batch size, drop out, ...

• Deep neural networks

– ANNs with multiple hidden layers

– Hidden layers learn to identify relevant features

– Many architectural variants exist

• Pre-trained models

– e.g,. for image recognition

– word embeddings

– ...
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Questions?


