MANNHEIM

Data Mining II
Neural Networks and Deep Learning

o o o T o R o et

‘fm|||1lﬂlttllttlitﬁll T SRR] 1
rYYYYIN \ R e 1 i j

Heiko Paulheim

Deep Learning

-
* Arecent hype topic

Interest over time ¥ O <

_AA oft Mote

3/13/23 Heiko Paulheim

Deep Learning
e

* Just the same as artificial neural networks with a new buzzword?

Interest over time ¥ O <L

3/13/23 Heiko Paulheim

Deep Learning
-

* Contents of this Lecture
— Recap of neural networks
— The backpropagation algorithm
— Auto Encoders
— Deep Learning
— Network Architectures
— Transfer Learning with Neural Networks

3/13/23 Heiko Paulheim

Revisited Example: Credit Rating

* Consider the following example:
— and try to build a model

— which is as small as possible (recall: Occam's Razor)

Person Employed Owns House Balanced Account Get Credit
Peter Smith yes yes no yes

Julia Miller no yes no no
Stephen Baker yes no yes yes

Mary Fisher no no yes no

Kim Hanson no yes yes yes

John Page yes no no no

3/13/23 Heiko Paulheim

Revisited Example: Credit Rating
-

* Smallest model:

— if at least two of Employed, Owns House, and Balanced Account are
yes
— Get Credit is yes

* Not nicely expressible in trees and rule sets
— as we know them (attribute-value conditions)

Person Employed Owns House Balanced Account Get Credit
Peter Smith yes yes no yes

Julia Miller no yes no no
Stephen Baker yes no yes yes

Mary Fisher no no yes no

Kim Hanson no yes yes yes

John Page yes no no no

3/13/23 Heiko Paulheim

Revisited Example: Credit Rating
-

* Smallest model:

— if at least two of Employed, Owns House, and Balance Account are yes
— Get Credit is yes

* As rule set:

Employed=yes and OwnsHouse=yes => yes
Employed=yes and BalanceAccount=yes => yes
OwnsHouse=yes and BalanceAccount=yes => yes
=>no

* General case:
— at least m out of n attributes need to be yes => yes

n!

— this requires (") rules, i.e.

:1 m!-(n—m)!
— e.g., "5 out of 20 attributes need to be yes”
requires more than 15,000 rules!

3/13/23 Heiko Paulheim

Artificial Neural Networks

* Inspiration
— one of the most powerful super computers in the world

3/13/23 Heiko Paulheim 8

Artificial Neural Networks (ANN)
-

X1 X2 X3 Y Input BIaCk bOX
1 0 0 0
X, 4>
1 0 1 1 1
1 1 0 1 Output
1 1 1 1
BERE 0 Xz——> —+» Y
0 1 0 0
0 1 1 1 X 1
olo0]o0]oO 3

Output Y is 1 if at least two of the three inputs are equal to 1.

3/13/23 Heiko Paulheim

Example: Credit Rating
-

* Smallest model:

— if at least two of Employed, Owns House, and Balance Account are yes
— Get Credit is yes

* Given that we represent yes and no by 1 and 0, we want

— if(Employed + Owns House + Balance Acount)>1.5
— Get Credit is yes

3/13/23 Heiko Paulheim

Artificial Neural Networks (ANN)

Input
X, | X | X5 | Y nodes \ Black box _
1100 o0 utpu
1101 1| 1 X1 0.3 " node
1 1110 1 y/
111111
olol|1]o0 Xo- > Y
O/l 1|0]0
o 1| 1] 1 X _ 0.3 _

Y=1(0.3X,+0.3X,+0.3X,-0.4>0)

1 1f z 1s true
here /(z)=
whete (2] {O otherwise

3/13/23 Heiko Paulheim

Artificial Neural Networks (ANN)

* Model is an assembly of ~ '"put

inter-connected nodes nodes N Black box Outout
and weighted links X, \ -~ hods
X, \ > Y
* Qutput node sums up
each of its input value X3
according to the weights ‘
of its links

Perceptron Model

Y=1) wX,—t) or

Y = Sign(z wX,—t)

* Compare output node
against some threshold t

3/13/23 Heiko Paulheim 12

General Structure of ANN

Input
Layer Input Neuron i Output
Activation
function — 0,
Hidden g(S,)
Layer Y Y
Output ¥ Training ANN means learning
Layer the weights of the neurons
\/
y

3/13/23 Heiko Paulheim

Algorithm for Learning ANN
-

« Initialize the weights (w,, w,, ..., w,), (usually randomly)

* Adjust the weights in such a way that the output of ANN is consistent
with class labels of training examples

— Objective function: F = Z[Y — f(W-aX')]z

— Find the weights w,'s that minimize the above objective function

3/13/23 Heiko Paulheim

Backpropagation Algorithm

* Adjust the weights in such a way - T
that the output of ANN is consistent

with class labels of training examples 'nPut
Layer

— Objective function:)
E= Y- f(w.X)]

— Find the weights w.’'s that minimize Hidden
the above objective function Layer

* This is simple for a single layer

perceptron
* But for a multi-layer network, Output x
Yi is not known Layer

<<

3/13/23 Heiko Paulheim

Backpropagation Algorithm

« Sketch of the Backpropagation Algorithm:
— Present an example to the ANN
— Compute error at the output layer
— Distribute error to hidden layer according to weights

* i.e., the error is distributed according to the contribution
of the previous neurons to the result

— Adjust weights so that the error is minimized
* Adjustment factor: learning rate
* Use gradient descent

— Repeat until input layer is reached

3/13/23 Heiko Paulheim

Training in Batches
-

* In theory, one could present the examples one after the other

* In practice: use batches
— Neural network gets to see a number of examples (batch)
— All examples in the batch are predicted by the network
— Errors are accumulated

— Weights in the neural network are adapted (backpropagated)
after predicting all examples in the batch

* Pros: fewer model updates, faster convergence

* Cons: may not find global optimum,
harder to handle imbalanced datasets

3/13/23 Heiko Paulheim

Backpropagation Algorithm

* Important notions:

— Predictions are pushed forward through the network
(“feed-forward neural network™)

— Errors are pushed backwards through the network
(“backpropagation”)

@ O A
Input x Q — Q N output y
Q A~ O

i

3/13/23 Heiko Paulheim

Backpropagation Algorithm

* Important notions:

— Predictions are pushed forward through the network
(“feed-forward neural network™)

— Errors are pushed backwards through the network
(“backpropagation”)

d Y il #1)
r}.,.,.‘:f:-Jl o=y (error term of the output layer)

Ecorﬁpute gradient) 53 =g~y
autput y == target y

O

(2) = (w27 £(3) dg(z?)
5@ = (w@) & ‘=

(error term of the hidden layer)

Input x

V> <\

QO &

10 Oé

3/13/23 Heiko Paulheim

Backpropagation Algorithm — Gradient Descent

« Output of a neuron: o = g(w.i,..w.i)
* Assume the desired output is y, the error is
O—y=9g(W,i..wi)=—y
* We want to minimize the error, i.e., minimize
gw,i,..wi)-y
* We follow the steepest descent of g, i.e.,
— the value where g’ is maximal Input Neuron i Output

Activation
function

g(s,)

threshold, t

3/13/23 Heiko Paulheim

Backpropagation Algorithm — Gradient Descent
-

* Hey, walit...
— the value where g’ is maximal

* To find the steepest gradient, we have to differentiate the activation
function
Y =1(0.3X, +0.3X, +0.3X, —0.4 > 0)

1 1f z1strue

where / =
(2) {O otherwise

* But I(z) is not differentiable!

0.4

3/13/23 Heiko Paulheim

Alternative Activation Functions

e
* Sigmoid Function (classic ANNs): 1/(1+e”(-x))

1.0} o

"

—4 _a

* Rectified Linear Unit (ReLU, since 2010s): max(0,x)

4

3/13/23 Heiko Paulheim

Properties of ANNs and Backpropagation
e

* Non-linear activation function:
— May approximate any arbitrary function, even with one hidden layer

* Convergence:

— Convergence may take time
— Higher learning rate: faster convergence /
* Gradient Descent Strategy: \ &V

— Danger of ending in local optima
* Use momentum to prevent getting stuck
— Lower learning rate: higher probability of finding global optimum

3/13/23 Heiko Paulheim

Learning Rate, Momentum, and Local Minima
-

* Learning rate: how much do we adapt the weights with each step
— 0: no adaptation, use previous weight

— 1: forget everything we have learned so far, simply use weights that are
best for current example

* Smaller: slow convergence, less overfitting
* Higher: faster convergence, more overfitting

1(80,0)

3/13/23 Heiko Paulheim

Learning Rate, Momentum, and Local Minima
-

* Momentum: how much do we change the adaptation of weights
— Small: allow changes in every direction soon
— High: keep changing in the same direction for longer

* Smaller: better convergence, sticks in local minimum
* Higher: worse convergence, does not get stuck

1(80,0)

3/13/23 Heiko Paulheim

Dynamic Learning Rates

* Adapting learning rates over time
— Search coarse-grained first, fine-grained later
— e.g., allow bigger jumps in the beginning

ol MMIST ru]uILilam_.rer NEu.raI Metwork +I-::|r|:up-:|uL
* e.g., RMSProp (Hinton, 2014) |\ — AdaGrad
'*.‘. 8 — RMSProp

_ ; : ; — 5SGDNesterov
use decay function for learning rate rdaDels

* e.g., AdaDelta (Zeiler, 2012)

— restrict total update for features
over windows of time

tralming cost

1|-|"a - FEELIE] Pramey ramey Pramrramnry e

0 a0 100 130 200
iterations ower entire dataset

3/13/23 Heiko Paulheim

Local Learning Rates
e

* Observation

— not all parameters change equally often

— e.g., text classification: input neuron weights for infrequent words
* AdaGrad (Duchi et al., 2011)

— maintain list of gradient changes for each parameter

— adapt learning rates locally
* AdaDelta (Zeiler, 2012)

— restrict total updates per parameter

* Bottom line: optimization functions often have a large impact
— Reading recommendation: https://ruder.io/optimizing-gradient-descent/

3/13/23 Heiko Paulheim

ANNs vs. SVMs

* ANNSs have arbitrary decision boundaries
— and keep the data as it is

* SVMs have linear decision boundaries
— and transform the data first

3/13/23 Heiko Paulheim

Recap: Feature Subset Selection & PCA
e

* |dea: reduce the dimensionality of high dimensional data

* Feature Subset Selection

— Focus on relevant attributes
- PCA

— Create new attributes

* |n both cases
— We assume that the data can be described with fewer variables
— Without losing much information

3/13/23 Heiko Paulheim

What Happens at the Hidden Layer?

* Usually, the hidden layer is
smaller than the input layer

I t
— Input: X1...Xn Lr;i)/:r
— Hidden: h1...hn
— Nn>m
) Hidd
* The output can be predicted I_Iayee:
from the values at the hidden layer
* Hence:
— m features should be sufficient (I)_:tpeurt x
to predict y! 4

<<

3/13/23 Heiko Paulheim

What Happens at the Hidden Layer?

* We create a more compact
representation of the dataset

, _ Input
— Hidden: h1...hn Layer
— Which still conveys the information
needed to predict y
* Particularly interesting for ']'_'gg::
sparse datasets
— The resulting representation
is usually dense
Output ‘
 But what if we don’t know y? Layer

<<

3/13/23 Heiko Paulheim

Auto Encoders

* Auto encoders use the same example as input and output
— i.e., they train a model for predicting an example from itself

— using fewer variables

 Similar to PCA

— But PCA provides only a linear transformation

— ANNSs can also create non-linear parameter transformations

output -

hidden

input

3/13/23 Heiko Paulheim

Tdecode

Tencode

Denoising Auto Encoders
e

* |Instead of training with the same input and output
— Add random noise to input
— Keep output clean

* Result
— A model that learns to remove noise from an instance

output -

Tdecode
hidden -

Tencode
input

3/13/23 Heiko Paulheim

Stacked (Denoising) Auto Encoders

« Stacked Auto Encoders contain several hidden layers

— Hidden layers capture more complex hidden variables
and/or denoising patterns

— They are often trained consecutively:
— First: train an auto encoder with one hidden layer
— Second: train a second one-layer neural net:

* first hidden layer as input

* original as output

N

o ‘\\ ’,/ ‘\\ ’,/ ‘\\ ’,/ ‘\\ ’,/ N
. A A A A&

(noisy) ihput hidden 1 output hidden 1 hidden 2 output

3/13/23 Heiko Paulheim

Foothote: Auto Encoders for Outlier Detection
e

* Also known as Replicator Neural Networks
(Hawkins et al., 2002)

* Train an autoencoder
— That captures the patterns in the data

* Encode and decode each data point, measure deviation
— Deviation is a measure for outlier score

output

Tdecode
hidden

Tencode
input

3/13/23 Heiko Paulheim

From Classifiers to Feature Detectors

Cg i %%:’; g é’,g% g Some of the following slides are borrowed from
O1234SL7¥X9 https://www.macs.hw.ac.uk/~dwcorne/Teaching/
Qla-3Y5¢e)57

By WA

0 23U86/7%9

Figure 1.2: Examples of handuritten digits from U.S. Input layer Hidden layer Output layer

N

—t\\"
NS R)

</ V' ~
T NXS

.

Out,,

3/13/23 Heiko Paulheim

From Classifiers to Feature Detectors

Cg i %%:’; g gg% g What does a particular neuron do?
OI1234S567%7
Ql23Y2@)67
0| A5¢S5&61%¥7
0 1 13UD6/7% 79

postal envelopes.

Out,,

.

3/13/23 Heiko Paulheim

What Happens at the Hidden Layer?

1 5 10 15 20 25

high weight

low/zero weight

strong signal for a horizontal line in the
top row, ignoring everywhere else

3/13/23 Heiko Paulheim

What Happens at the Hidden Layer?

1 5 10 15 20 25 ...

high weight

low/zero weight

strong signal for a dark area in the top left
corner

63

3/13/23 Heiko Paulheim

Is that enough? What Features do we Need?

Figure 1.2: Eramples of handwritten digils from U8,

postal envelopes.

3/13/23 Heiko Paulheim

Is that enough? What Features do we Need?

. CIlDI¥5L7%9
Wha?cwehave D 1239307% 9
— Line at the top O1234SL7%¥Y

_ - Qla3Y5€)57
Dark area in the top left corner 01 2A24ELT%5

- 0| L3US6/%9

* What we want
— Vertical Line
— Horizontal Line

— Circle

* Challenges
— Positional variance

— Color variance

3/13/23 Heiko Paulheim

On the Quest for Higher Level Features

5 10 15 20 25 ...

1
HlE BN BN BEE BN BN

detect lines in
specific positions

Higher level detetors
(horizontal line,

RHS vertical line,
upper loop, etc...

3/13/23 Heiko Paulheim

Memorizing vs. Learning
-

* The goal of training a neural network is learning
a generalized model

— should classify unseen examples

* The opposite of generalization is memorization
— Model learns training examples “by heart”
— Lesser performance on unseen examples
— Indicator: performance increase on training set, decrease on test set

Example of learning curve showing an overfit model with too large
of a capacity and leamning rate.

——————

https://rstudio-conf—2020.github.io/dI-kerasipicf/notebooksllearning-curve-diagnostics.nb.html

3/13/23 Heiko Paulheim 43

Memorizing vs. Learning
-

* Hidden layers define the capacity of a neural network

— Roughly: how complex can the patterns be that are stored
* Too low capacity: underfitting

— Patterns that, e.g., separate classes have a certain complexity

— We need enough hidden neuron connections to “store” those patterns
* Too high capacity: overfitting

— Examples can be identified by certain combinations of features

— With enough hidden neuron connections, we can learn those |
combinations instead of generalized patterns =

3/13/23 Heiko Paulheim

Regularization with Dropout

* ANNSs, and in particular Deep ANNSs, tend to overfitting
* Example: image classification

* Elephant: five features in the highest level layer
— big object
— grey
— trunk elephant
— tail
— ears

* Possible tendency to overfit:

— expect all five to fire

3/13/23 Heiko Paulheim

Regularization with Dropout
-

* Regularization
— Randomly deactivate hidden neurons when training an example
— E.g., factor a=0.4: deactivate neurons randomly with probability 0.4

* Example:

— big object
— grey N
— ftrunk) elephant

— tail

— ears %

3/13/23 Heiko Paulheim

Regularization with Dropout
-

* Regularization

— Randomly deactivate hidden neurons when training an example

— E.g., factor a=0.4: deactivate neurons randomly with probability 0.4
* Result:

— Learned model is more robust, less overfit

* For classification:
— use all hidden neurons

* Problem: activation levels will be higher!
— Multiply each output with 1/(1+a)

3/13/23 Heiko Paulheim

Regularization with Dropout

* For classification:
— use all hidden neurons
* Problem: activation levels will be higher!
— Correction: multiply each output with 1/(1+a)

* Example: without correction: 0.4+0.7+0.3+0.3 = 1.7>1.3
— big object
— grey
— trunk elephant

— tail

— ears

3/13/23 Heiko Paulheim

Regularization with Dropout

* For classification:
— use all hidden neurons
* Problem: activation levels will be higher!
— Correction: multiply each output with 1/(1+a)

* Example: With correction: (5/7)*(0.4+0.7+0.3+0.3) = 1.21<1.3
— big object
— grey
— trunk elephant

— tail

— ears

3/13/23 Heiko Paulheim

Regularization with Dropout

* For classification:
— use all hidden neurons
* Problem: activation levels will be higher!
— Correction: multiply each output with 1/(1+a)

* Example: (5/7)*(0.4+1.0+0.3+0.3) = 1.43>1.3
— big object

— grey

— trunk elephant

v

— tail

— ears

3/13/23 Heiko Paulheim

Architectures: Convolutional Neural Networks
e

* Special architecture for image processing

* Problem: imagine a 4k resolution picture (3840x2160)
— Treating each pixel as an input: 8M input neurons

— Connecting that to a hidden layer of the same size:
8M? = 64 trillion weights to learn

— This is hardly practical...

 Solution:
— Convolutional neural networks

3/13/23 Heiko Paulheim

Architectures: Convolutional Neural Networks
e

* Two parts:
— Convolution layer
— Pooling layer

* Stacks of those are usually used

3/13/23 Heiko Paulheim

Architectures: Convolutional Neural Networks

* Convolution layer
— Each neuron is connected to a small n x n square of the input neurons
— i.e., number of connections is linear, not quadratic
* Use different neurons for detecting different features
— They can share their weights
— (intuition: a horizontal line looks the same everywhere)

7
IE

- —=00000

X

3/13/23 Heiko Paulheim

Architectures: Convolutional Neural Networks
e

* Pooling layer (aka subsampling layer)
— Use only the maximum value of a neighborhood of neurons
— Think: downsizing a picture
— Number of neurons is divided by four with each pooling layer

Single depth slice
1 0 2 3

4 6 6 8
3 1 1 0 3 4
1 2 2 4

W

Y

3/13/23 Heiko Paulheim

Architectures: Convolutional Neural Networks

* The big picture
— With each pooling/subsampling step: 4 times less neurons
— After a few layers, we have a decent number of inputs
— Feed those into a fully connected ANN for the actual classification

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

3/13/23 Heiko Paulheim 55

Architectures: Convolutional Neural Networks

* The 4K picture revisited (3840x2160):
— Treating each pixel as an input: 8M input neurons

— Connecting that to a hidden layer of the same size:
8M? = 64 trillion weights to learn

* Number of connections (weights to be learned) in the first
convolutional layer:

— Assume each hidden neuron is connected to a 16x16 square

— and we learn 256 hidden features (i.e., 256 layers of convolutional
neurons)

— 16x16x256x8M = still 526 billion weights

* But: neurons for the same hidden feature share their weight
— Thus, it's just 16x16x256 = 65k weights

3/13/23 Heiko Paulheim

Architectures: Convolutional Neural Networks

* Nice play around visualization for handwritten number detection

Draw your number here

Vd

Downsampled drawing:
First guess:
Second guess:

Show
[Convolution layer 1 Show
Downsampling layer 1 Show
Convolution layer 2 Show
Downsampling layer 2 Show
Fully-connected layer 1 Show
Fully-connected layer 2 Show

Output layer Show

http://scs.ryerson.ca/~aharley/vis/conv/flat.ntml

3/13/23 Heiko Paulheim 57
LTRSS

Architectures: Convolutional Neural Networks

* In practice, several layers are used

* Picture on the right
— Google’s GooglLeNet (Inception)
— Current state of the art in image classification

* Can be used as a pre-trained network

3/13/23 Heiko Paulheim

What does an Artificial Neural Network Learn?

@"EmEY L

3/13/23 Heiko Paulheim

What does an Artificial Neural Network Learn?

3/13/23 Heiko Paulheim

What does an Artificial Neural Network Learn?
e

* Image recognition networks can be attacked
— changing small pixels barely noticed by humans

P VLS5 T YA
g4 é’é#‘ '9.,'?'{_,.--‘-“:‘:;ﬁ-&‘-;».,m-d Y
e S s 9"»"—%}_' Y

i ' I e ‘%_J"'tﬁuh"' AR
2 Lod A A o

. s 1. Fori s EORER.
- Gl R “‘%?& SR A

.‘.f{t.v i .‘}Eﬁ' i I

P prar i 3 i "
" * A i y

ey T
T)

+.007 x =
. T +
’ SVal 020 ign(v,J(60,2.4)
“panda” “nematode” “gibbon”
37.1% confidence 8.2% confidence 99.3 % confidence

Goodfellow et al.: Explaining and Harnessing Adverserial Examples, 2015

3/13/23 Heiko Paulheim

Possible Implications

* Face Detection

Sharif et al.: Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art
Face Recognition, 2016

3/13/23 Heiko Paulheim

Possible Implications

* Autonomous Driving

o AV

Papernot et al.: Practical Black-Box Attacks against Machine Learning, 2017

3/13/23 Heiko Paulheim

Using ANNs for Time Series Prediction

* Last week, we have learned about time series prediction
— Long term trends
— Seasonal effects
— Random fluctuation

* Scenario: predict the continuation of a time series
— let’s use the last five values as features (3-window)

T-5 (
T-4 ()
T-3 ()
T-2
T-1 (>

input hidden 1 output

3/13/23 Heiko Paulheim

Using ANNs for Time Series Prediction
e

* Assume that this is running continuously
— we will always just use the last five examples
— we cannot detect longer term trends

* Solution
— introduce a memory
— Implementation: backward loops

T-1 C

input hidden 1 output

3/13/23 Heiko Paulheim

Long Short Term Memory Networks (LSTM)
-

* Notion of a recurrent neural network
— A folded deep neural network
— Note: influence of the past decays over time

O o, , 0, 0.1

A A A

|4 % V 1%
O =Gt OOt
4 Unfold W gx Wy W
U U U U

x X, x x

1 t t+1

 LSTMs are special recurrent neural networks

3/13/23 Heiko Paulheim

CNNs for Time Series Prediction
e

* Notion: time series also have typical features
— Think: trends, seasonal variation, ...

Filter layer & Actvation layer Pooling layer Filier ayer & Actvation layer Poolinglayer
| s | F e | L |
feature maps
2 E') P

featur e maps
124

Flattening
O fully -conn ected
MLP

feature maps feature map
122 61

[W

f

1 1°.

Feature extraction Classification [(MLP)

Zheng et al.: Time Series Classification Using Multi-Channels Deep Convolutional
Neural Networks, 2014

3/13/23 Heiko Paulheim 67

word2vec
e

 word2vec is similar to an auto encoder for words
* Training set: a text corpus

* Training task variants:

— Continuous bag of words (CBOW): predict a word from the surrounding
words

— Skip-Gram: predicts surrounding words of a word

g Input layer o Output layer
e
10

/ o])/."J

Input layer
Output layer

\ Hidden layer g l—hﬂden layer /g

N~ — B o \\-o) o

: N : o :
o Wy 3} Wiy :; Yi X0 Woy Ay o Wil Yai

Y . : o/ :

— ~ o _—" N-dim

—7 i T O]
- N-dim V-dim

i V-dim P
w NxV g

Wy
Ol

CxV-dim Cx l;-diln

Xin Rong: word2vec parameter learning explained

[oXe]| [C ==

Xok

[e]

s 0 = 000Q] [©

©

3/13/23 Heiko Paulheim

word2vec

* word2vec creates an n-dimensional vector for each word
* Each word becomes a point in a vector space
* Properties:

— Similar words are positioned to each other

— Relations have the same direction

WOMAN QUEENS
AUNT

MAN /’ KINGS
UNCLE

QUEEN \ QUEEN
P A

KING KING

(Mikolov et al., NAACL HLT, 2013)

3/13/23 Heiko Paulheim

word2vec

* Arithmetics are possible in the vector space
— king — man + woman = queen
* This allows for finding analogies:
— king:man < queen:woman
— knee:leg < elbow:forearm
— Hillary Clinton:democrat «» Donald Trump:Republican

WOMAN QUEENS
AUNT

MAN /’ KINGS
UNCLE

QUEEN \ QUEEN
P A

KING KING

(Mikolov et al., NAACL HLT, 2013)

3/13/23 Heiko Paulheim

word2vec

* Pre-trained models exist
— e.g., on Google News Corpus or Wikipedia

* Can be downloaded and used instantly
172ms [["Mine_Inch_Mails’,0.6071341037750244] ["Reznor’,0.5817075371742249] ["MIN 0.51026165485382048],

[Radiohead’0.4629957675933838],['Metallica’0.45992764830589294]]
T you don't get “queen” back, something went wrong and baby SkyMet cries
Try more examples too: “he” s to “his™ as "she” is to 7, "Berlin” is to "Germany™ as “Paris™ is to 7 (click to fill in).

Till_Lindemann is to Rammstein as | Trent Reznor

-
o LU

Nine_Inch_Mails
Computer Science is to Computers as Philosophy igt:.

3/13/23 Heiko Paulheim 71

BERT
E——

* Learns a representation of words in context
— Unlike word2vec: one fixed representation per word
— Larger training corpus required

[MASK] [MASK]
e B ¢ ™, g N A .Y # Ve

Input [CLS]] my dog is (cute | [SEP] he | Iikesm playw ##ing} [SEP]
Token
Embeddings EICLS] Emy E[MASK: E|5 ECute E[SEP] Ehe E:Masni Eplav E==|ng E[SEP]

-+ L -+ -+ -+ + -+ - -+ -+ +
Sentence
Embedding £ RES (RESH NE-N| (NESH NENS (RESN HESN WES E: E;

-+ -+ Ll -+ -+ + -+ -+ -+ -+ -+
Transformer
Positional
Eml:lzelbdding EU El EZ E3 E4 ES EG E? EB E9 Em

3/13/23 Heiko Paulheim

Reusing Pre-trained Networks
e

* The output of a network can be used as an input
to yet another classifier (neural network or other)

* Think: a multi-label image classifier as an auto-encoder

* Example: predict movie genre from poster
— Using an image classifier trained for object recognition

Maximally accurate Maximally specific Maximally accurate Maximally specific Maximally accurate Maximally specific

. self-propelled vehicle

craft : clothing

space shuttle f covering motor vehicle

| spacecraft military uniform wheeled vehicle

‘ satellite 8 uniform web site

consumer goods vehicle

(vehicle

saving private ryan

http://demo.caffe.berkeleyvision.org/

3/13/23 Heiko Paulheim

Reusing Pre-trained Networks
e

* In many cases, the last or second-to last layer are reused

* Fine-tuning on a task at hand often leads to advantages

— i.e., use the trained network, add a new classification layer,
and present examples

— Referred to as “transfer learning”

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

3/13/23 Heiko Paulheim 75

Transfer Learning with Pretrained Networks
-

* Pre-trained neural networks can be (re)used for other tasks
— They can also be retrained, using the pre-training as initialization
— Sometimes, different layers are frozen

* Rationale:
— There are already some valuable information learned

~new.output
Feature maps Y

Convolutions Subsampling Convolutions Subsampling Fully connected

3/13/23 Heiko Paulheim 76

Summary
e

* Atrtificial Neural Networks
— Powerful learning tool, approximates arbitrary functions or boundaries
— Lots of hyperparameters: learning rate, batch size, drop out, ...

* Deep neural networks
— ANNSs with multiple hidden layers
— Hidden layers learn to identify relevant features
— Many architectural variants exist

* Pre-trained models
— e.g,. for image recognition
— word embeddings

3/13/23 Heiko Paulheim

Questions?

s

3/13/23 Heiko Paulheim

