
Data Mining II
Optimization & Hyperparameter Tuning

Heiko Paulheim

3/27/23 Heiko Paulheim 2

Why Hyperparameter Tuning?

• What we have seen so far

– many learning algorithms for classification, regression, ...

• Many of those have hyperparameters

– k and distance function for k nearest neighbors

– splitting and pruning options in decision tree learning

– hidden layers in neural networks

– C, gamma, and kernel function for SVMs

– ...

• But what is their effect?

– hard to tell in general

– rules of thumb are rare

3/27/23 Heiko Paulheim 3

Parameters vs. Hyperparameters

• Parameters

– ...are learned during training

– Typical examples:

• Coefficients in (linear) regression

• Weights in neural networks

• …

– Training:

• Find set of of parameters so that
objective function is minimized/maximized

– (on a holdout set)

3/27/23 Heiko Paulheim 4

Parameters vs. Hyperparameters

• Hyperparameters

– ...are fixed before training

– Typical examples:

• Network layout and learning rate in neural networks

• k in kNN

• …

– Training:

• Find set of of parameters so that
objective function is minimized/maximized

– (on a holdout set)

– given a previously fixed set of hyperparameters

3/27/23 Heiko Paulheim 5

Hyperparameter Tuning – a Naive Approach

• You probably know that approach from the exercises

1. run classification/regression algorithm

2. look at the results (e.g., accuracy, RMSE, …)

3. choose different parameter settings, go to 1

● Questions:
● when to stop?
● how to select the next parameter setting to test?

3/27/23 Heiko Paulheim 6

Hyperparameter Tuning – Avoid Overfitting!

• Recap overfitting:

– classifiers may overadapt
to training data

– the same holds for
parameter settings

• Possible danger:

– finding parameters that
work well on the training set

– but not on the test set

• Remedy:

– train / test / validation
split

3/27/23 Heiko Paulheim 7

Hyperparameter Tuning – Avoid Overfitting!

• Parameter option: pruning (yes/no)

3/27/23 Heiko Paulheim 8

Hyperparameter Tuning – Avoid Overfitting!

• Real example: train a local polynomial regression model

– Parameter to tune: find the optimal maximum degree of the polynomial

• Tuning with proper validation: degree = 3

3/27/23 Heiko Paulheim 9

Hyperparameter Tuning – Avoid Overfitting!

• Real example: train a local polynomial regression model

– Parameter to tune: find the optimal maximum degree of the polynomial

• Tuning overfitting: degree = 9

3/27/23 Heiko Paulheim 10

Hyperparameter Tuning: Brute Force

• Try all parameter combinations that exist

• Consider, e.g., a k-NN classifier

– try 30 different distance measures

– try all k from 1 to 1,000

– use weighting or not

→ 60,000 runs of k-NN

→ we need a better strategy than brute force!

3/27/23 Heiko Paulheim 11

Intermezzo: Beyond Hyperparameter Tuning

• Hyperparameter tuning is an optimization problem

• Finding optimal values for N variables

• Properties of the problem:

– the underlying model is unknown

• i.e., we do not know changing a variable will influence the results

– we can tell how good a solution is when we see it

• i.e., by running a classifier with the given parameter set

– but looking at each solution is costly

• e.g., 60,000 runs of k-NN

• Such problems occur quite frequently

3/27/23 Heiko Paulheim 12

Intermezzo: Beyond Hyperparameter Tuning

• Related problem:

– feature subset selection

– cf. Data Mining 2, first lecture

• Given n features, brute force requires 2n evaluations

– for 20 features, that is already one million
→ ten million with cross validation

3/27/23 Heiko Paulheim 13

Intermezzo: Beyond Hyperparameter Tuning

• Knapsack problem

– given a maximum weight you can carry

– and a set of items with different weight and monetary value

– pack those items that maximize the monetary value

• Problem is NP hard

– i.e., deterministic algorithms
require an exponential amount of time

– Note: feature subset selection for N features
requires 2n evaluations

3/27/23 Heiko Paulheim 14

Intermezzo: Beyond Hyperparameter Tuning

• Many optimization problems are NP hard

– Routing problems (Traveling Salesman Problem)

– Integer factorization

hard enough to be used for cryptography

– Resource use optimization

• e.g., minimizing cutoff waste

– Chip design

• minimizing chip sizes

3/27/23 Heiko Paulheim 15

Intermezzo: Beyond Hyperparameter Tuning

http://xkcd.com/287/

3/27/23 Heiko Paulheim 16

Hyperparameter Tuning: Brute Force

• Properties of Brute Force search

– guaranteed to find the best parameter setting

– too slow in most practical cases

• Grid Search

– performs a brute force search

– with equal-width steps on non-discrete numerical attributes
(e.g., 10,20,30,..,100)

• Hyperparameter with a wide range (e.g., 0.0001 to 1,000,000)

– with ten equal-width steps, the first step would be 1,000

– but what if the optimum is around 0.1?

– logarithmic steps may perform better

3/27/23 Heiko Paulheim 17

Hyperparameter Tuning: Heuristics

• Properties of Brute Force search

– guaranteed to find the best parameter setting

– too slow in most practical cases

• Needed:

– solutions that take less time/computation

– and often find the best parameter setting

– or find a near-optimal parameter setting

3/27/23 Heiko Paulheim 18

Beyond Brute Force

https://xkcd.com/399/

3/27/23 Heiko Paulheim 19

Hyperparameter Tuning: One After Another

• Given n parameters with m degrees of freedom
– brute force takes mn runs of the base classifier

• Simple tweak:

1. start with default settings

2. try all options for the first parameter

2a. fix best setting for first parameter

3. try all options for the second parameter

3a. fix best setting for second parameter

4. ...

• This reduces the runtime to n*m
– i.e., no longer exponential!

– but we may miss the best solution

3/27/23 Heiko Paulheim 20

Hyperparameter Tuning: Interaction Effects

• Interaction effects make parameter tuning hard

– i.e., changing one parameter may change the optimal settings for
another one

• Example: two parameters p and q, each with values 0,1, and 2

– the table depicts classification accuracy

p=0 p=1 p=2

q=0 0.5 0.4 0.1

q=1 0.4 0.3 0.2

q=2 0.1 0.2 0.7

3/27/23 Heiko Paulheim 21

Hyperparameter Tuning: Interaction Effects

• If we try to optimize one parameter by another (first p, then q)

– we end at p=0,q=0 in six out of nine cases

– on average, we investigate 2.3 solutions

p=0 p=1 p=2

q=0 0.5 0.4 0.1

q=1 0.4 0.3 0.2

q=2 0.1 0.2 0.7

3/27/23 Heiko Paulheim 22

Hill-Climbing Search

• a.k.a. greedy local search

• always search in the direction of the steepest ascend
– "Like climbing Everest in thick fog with amnesia"

3/27/23 Heiko Paulheim 23

Hill-Climbing Search

• Problem: depending on initial state,
one can get stuck in local maxima

3/27/23 Heiko Paulheim 24

Hill Climbing Search

• Given our previous problem

– we end up at the optimum in three out of nine cases

– but the local optimum (p=0,q=0) is reached in six out of nine cases!

– on average, we investigate 2.1 solutions

p=0 p=1 p=2

q=0 0.5 0.4 0.1

q=1 0.4 0.3 0.2

q=2 0.1 0.2 0.7

3/27/23 Heiko Paulheim 25

Variations of Hill Climbing Search

• Stochastic hill climbing

– random selection among the uphill moves

– the selection probability can vary with the steepness of the uphill move

• First-choice hill climbing

– generating successors randomly until a better one is found, then pick
that one

• Random-restart hill climbing

– run hill climbing with different seeds

– tries to avoid getting stuck in local maxima

3/27/23 Heiko Paulheim 26

Local Beam Search

• Keep track of k states rather than just one

• Start with k randomly generated states

• At each iteration, all the successors of all k states are generated

• Select the k best successors from the complete list and repeat

3/27/23 Heiko Paulheim 27

Grid Search vs. Random Search

• All the examples discussed so far use fixed grids

– e.g., an interval from 0 to 1 with a step size of 0.05

• Challenges:

– some hyperparameters are pretty sensitive

• e.g., 0.02 is a good value, but 0 and 0.05 are not

– others have little influence

• but it is hard to know upfront which

3/27/23 Heiko Paulheim 28

Grid Search vs. Random Search

• Paper from 2012 (Bergstra and Bengio):

– grid search may easily miss best parameters

– random search often yields better results

Bergstra & Bengio: Random Search for Hyper-Parameter Optimization, JMLR, 2012

3/27/23 Heiko Paulheim 29

Learning Hyperparameters

• Hyperparameter tuning as a learning problem:

– Given a set of hyperparameters H, predict performance p of model

– The prediction model is referred to as a surrogate model or oracle

– Rationale:

• Training and evaluating an actual model is costly

• Learning and predicting with the surrogate model is fast

Surrogate Model Actual Model

“test these
hyperparameters, please”

“here’s the performance
of those hyperparameters”

3/27/23 Heiko Paulheim 30

Learning Hyperparameters

• Note:

– we want to use not too many runs of the actual model

– i.e., the surrogate model will have few training points

• use a simple model

– Most well-known: bayesian optimization

Surrogate Model Actual Model

“test these
hyperparameters, please”

“here’s the performance
of those hyperparameters”

3/27/23 Heiko Paulheim 31

Summary: Grid Search, Random Search, etc.

• Problems of grid search

– Inefficient

– Fixed grid sizes may miss good parameters

• Smaller grid sizes would be even less efficient!

• Random search

– Often finds good solutions in less time

• Learning hyperparameters / bayesian optimization

– Sucessively tests hyperparameters close to local optima

– Similar to hill climbing

• Difference: explicit surrogate model

3/27/23 Heiko Paulheim 32

Genetic Algorithms

• Inspired by evolution

• Overall idea:

– use a population of individuals (solutions)

– create new individuals by crossover

– introduce random mutations

– from each generation, keep only
the best solutions
(“survival of the fittest”)

• Developed in the 1970s

• John H. Holland:

– Standard Genetic Algorithm (SGA)
Charles Darwin (1809-1882)

3/27/23 Heiko Paulheim 33

Genetic Algorithms

• Basic ingredients:

– individuals: the solutions

• hyperparameter tuning: a hyperparameter setting

– a fitness function

• hyperparameter tuning: performance of a hyperparameter setting
(i.e., run learner with those parameters)

– a crossover method

• hyperparameter tuning: create a new setting from two others

– a mutation method

• hyperparameter tuning: change one parameter

– survivor selection

3/27/23 Heiko Paulheim 34

SGA Reproduction Cycle

1. Select parents for the mating pool

(size of mating pool = population size)

2. Shuffle the mating pool

3. For each consecutive pair apply crossover with probability pc,
otherwise copy parents

4. For each offspring apply mutation
(bit-flip with probability pm independently for each bit)

5. Replace the whole population with the resulting offspring

3/27/23 Heiko Paulheim 35

SGA Operators: 1-point crossover

• Choose a random point on the two parents
• Split parents at this crossover point
• Create children by exchanging tails

• Pc typically in range (0.6, 0.9)

Hyperparameter/
Solution

hp1 hp2 hp3 hp4 hp5 hp6 hp7

s1 true 0.87 0.75 0.01 sgd 0.05 0.72

s2 false 0.75 0.83 0.04 adam 0.04 0.53

Hyperparameter/
Solution

hp1 hp2 hp3 hp4 hp5 hp6 hp7

s1’ true 0.87 0.75 0.01 adam 0.04 0.53

s2’ false 0.75 0.83 0.04 sgd 0.05 0.72

3/27/23 Heiko Paulheim 36

SGA Operators: Mutation

• Alter each gene independently with a probability pm

• pm is called the mutation rate
– Typically between 1/pop_size and 1/ chromosome_length

Hyperparameter/
Solution

hp1 hp2 hp3 hp4 hp5 hp6 hp7

s1 true 0.87 0.75 0.01 sgd 0.05 0.72

s2 false 0.75 0.83 0.04 adam 0.04 0.53

Hyperparameter/
Solution

hp1 hp2 hp3 hp4 hp5 hp6 hp7

s1 true 0.87 0.75 0.01 sgd 0.05 0.72

s2 false 0.75 0.86 0.04 adam 0.04 0.53

3/27/23 Heiko Paulheim 37

• Main idea: better individuals get higher chance
– Chances proportional to fitness
– Implementation: roulette wheel technique

» Assign to each individual a part of the
roulette wheel

» Spin the wheel n times to select n
individuals

SGA Operators: Selection

fitness(A) = 3

fitness(B) = 1

fitness(C) = 2

A C

 1/6 = 17%

3/6 = 50%

B

2/6 = 33%

3/27/23 Heiko Paulheim 38

Crossover OR Mutation?

• Decade long debate: which one is better / necessary ...

• Answer (at least, rather wide agreement):
– it depends on the problem, but
– in general, it is good to have both
– both have another role
– mutation-only-EA is possible, crossover-only-EA would not work

3/27/23 Heiko Paulheim 39

● Exploration: Discovering promising areas in the search

space, i.e. gaining information on the problem

● Exploitation: Optimising within a promising area, i.e. using

information
● There is co-operation AND competition between them

● Crossover is explorative, it makes a big jump to an area
somewhere “in between” two (parent) areas

● Mutation is exploitative, it creates random small
diversions, thereby staying near (in the area of) the
parent

Crossover OR Mutation? (cont’d)

3/27/23 Heiko Paulheim 40

Crossover OR Mutation? (cont'd)

• Recall the solution space example from Hill Climbing

– crossover makes big jumps

– mutation makes small steps

solution 1 solution 2

x-over solution

mutation solution

3/27/23 Heiko Paulheim 41

• Only crossover can combine information from two

parents

• Only mutation can introduce new information (alleles)

• To hit the optimum you often need a ‘lucky’ mutation

Crossover OR Mutation? (cont’d)

3/27/23 Heiko Paulheim 42

Genetic Feature Subset Selection

• Feature Subset Selection

– can also be solved by Genetic Programming

• Individuals: feature subsets

• Representation: binary

– 1 = feature is included

– 0 = feature is not included

• Fitness: classification performance

• Crossover: combine selections of two subsets

• Mutation: flip bits

3/27/23 Heiko Paulheim 43

Selecting a Learner

• So far, we have looked at finding good parameters for a learner

– the learner was always fixed

• A similar problem is selecting a learner for the task at hand

• Again, we could go with search

• Another approach is meta learning

3/27/23 Heiko Paulheim 44

Selecting a Learner by Meta Learning

• Meta Learning

– i.e., learning about learning

• Goal: learn how well a learner will perform on a given dataset

– features: dataset characteristics, learning algorithm

– prediction target: accuracy, RMSE, ...

3/27/23 Heiko Paulheim 45

Selecting a Learner by Meta Learning

• Also known as AutoML

• Basic idea: train a regression model

– data points: individual datasets
plus ML approach

– target: expected accuracy/RMSE etc.

• Examples for features

– number of instances/attributes

– fraction of nominal/numerical attributes

– min/max/average entropy of attributes

– skewness of classes

– ...

3/27/23 Heiko Paulheim 46

Selecting a Learner by Meta Learning

3/27/23 Heiko Paulheim 47

...and now for something completely different.

• Recap: search heuristics are good for problems where...

– finding an optimal solution is difficult

– evaluating a solution candidate is easy

– the search space of possible solutions is large

• Possible solution: genetic programming

• We have encountered such problems quite frequently

• Example: learning an optimal decision tree from data

3/27/23 Heiko Paulheim 48

Genetic Decision Tree Learning

• e.g., GAIT (Fu et al., 2003)

– also the source of the pictures on the following slides

• Population: candidate decision trees

– initialization: e.g., trained on small subsets of data

• Create new decision trees by means of

– crossover

– mutation

• Fitness function: e.g., accuracy

3/27/23 Heiko Paulheim 49

Genetic Decision Tree Learning

• Crossover:

3/27/23 Heiko Paulheim 50

Genetic Decision Tree Learning

• Mutation:

3/27/23 Heiko Paulheim 51

Genetic Decision Tree Learning

• Feasibility Check:

3/27/23 Heiko Paulheim 52

Combination of GP with other Learning Methods

• Rule Learning (“Learning Classifier Systems”), since late 70s

– Population: set of rule sets (!)

– Crossover: combining rules from two sets

– Mutation: changing a rule

• Artificial Neural Networks

– Easiest solution: fixed network layout

– The network is then represented as an ordered set (vector) of weights
e.g., [0.8, 0.2, 0.5, 0.1, 0.1, 0.2]

– Crossover and mutation are straight forward

– Variant: AutoMLP

• Searches for best combination
of hidden layers and learning rate

3/27/23 Heiko Paulheim 53

Hyperparameter Optimization vs. Pruning

• Architecture of a neural network can be seen as parameters

– How many hidden layers? Which size?

• Pruning approaches: train large network, then start eliminating
connections

Han et al. (2015): Learning both Weights and Connections for Efficient Neural Network

3/27/23 Heiko Paulheim 54

Wrap-Up

• Hyperparameter tuning is important

– many learning methods work poorly with standard hyperparameters

– often no global optimum, dataset dependent

• Hyperparameter tuning has a large search space

– trying all combinations is infeasible

– interaction effects do not allow for one-by-one tuning

• State of the art

– Grid search, random search, bayesian optimization

3/27/23 Heiko Paulheim 55

Wrap-Up

• Heuristic Methods

– Hill climbing with variations

– Beam search

– Simulated Annealing

– Genetic Programming

– Random search

– Hyperparameter learning

• Other uses of genetic programming

– Feature subset selection

– Model fitting

3/27/23 Heiko Paulheim 56

Hyperparameter Tuning: Criticism

• Just let those numbers sink…

– ...think: carbon footprint

– ...think: fair chances?

Strubell et al. (2019): Energy and Policy Considerations for Deep Learning in NLP

3/27/23 Heiko Paulheim 57

Questions?

Data Mining II
Optimization & Parameter Tuning

Heiko Paulheim

