Introduction

• “Wisdom of the crowds”
 – a single individual cannot know everything
 – but together, a group of individuals knows a lot

• Examples
 – Wikipedia
 – Crowdsourcing
 – Prediction

http://xkcd.com/903/
Introduction

• “SPIEGEL Wahlwette” (election bet) 2013
 – readers of SPIEGEL Online were asked to guess the federal election results
 – average across all participants:
 • only a few percentage points error for final result
 • conservative-liberal coalition cannot continue

https://lh6.googleusercontent.com/-U9DXTTcT-PM/UgsdSzdV3JI/AAAAAAAAFKs/GsRydeldasg/w800-h800/ Bildschirmfoto+2013-08-14+um+07.56.01.png
Introduction

• “Who wants to be a Millionaire?”
• Analysis by Franzen and Pointner (2009):
 – “ask the audience” gives a correct majority result in 89% of all cases
 – “telephone expert”: only 54%
Ensembles

• So far, we have addressed a learning problem like this:

\[
\text{classifier} = \text{YourFavoriteClassifier}(\text{parameter}=42)
\]

...and hoped for the best

• Ensembles:
 – wisdom of the crowds for learning operators
 – instead of asking a single learner, combine the predictions of different learners
Ensembles

• Prerequisites for ensembles: accuracy and diversity
 – different learning operators can address a problem (accuracy)
 – different learning operators make different mistakes (diversity)

• That means:
 – predictions on a new example may differ
 – if one learner is wrong, others may be right

• Ensemble learning:
 – use various base learners
 – combine their results in a single prediction
Voting

• The most straight forward approach
 – classification: use most-predicted label
 – regression: use average of predictions

• We have already seen this
 – k-nearest neighbors
 – each neighbor can be regarded as an individual classifier
Voting in RapidMiner & SciKit Learn

- **RapidMiner**: Vote operator uses different base learners
- **Python**: `VotingClassifier(
 ("dt", DecisionTreeClassifier(),
 "nb", GaussianNB(),
 "knn", KNeighborsClassifier())
)`
Performance of Voting

- Accuracy in this example:
 - Naive Bayes: 0.71
 - Ripper: 0.71
 - k-NN: 0.81
- Voting: 0.91
Why does Voting Work?

• Suppose there are 25 base classifiers
 – Each classifier has an accuracy of 0.65, i.e., error rate $\varepsilon = 0.35$
 – Assume classifiers are independent
 • i.e., probability that a classifier makes a mistake does not depend on whether other classifiers made a mistake
 • Note: in practice they are not independent!

• Probability that the ensemble classifier makes a wrong prediction
 – The ensemble makes a wrong prediction if the majority of the classifiers makes a wrong prediction
 – The probability that 13 or more classifiers are wrong is

$$\sum_{i=13}^{25} \binom{25}{i} \varepsilon^i (1-\varepsilon)^{25-i} \approx 0.06 \ll \varepsilon$$
Why does Voting Work?

• In theory, we can lower the error infinitely
 – just by adding more base learners

\[
\sum_{i=13}^{25} \binom{25}{i} \varepsilon^i (1 - \varepsilon)^{25-i} \approx 0.06 \ll \varepsilon
\]

• But that is hard in practice
 – Why?

• The formula only holds for *independent* base learners
 – It is hard to find many truly independent base learners
 – ...at a decent level of accuracy

• Recap: we need both *accuracy* and *diversity*
Recap: Overfitting and Noise

Likely to overfit the data
Bagging

• Biases in data samples may mislead classifiers
 – overfitting problem
 – model is overfit to single noise points

• If we *had* different samples
 – e.g., data sets collected at different times, in different places, …
 – …and trained a single model on each of those data sets…
 – only one model would overfit to each noise point
 – voting could help address these issues

• But usually, we only have one dataset!
Bagging

• Models may differ when learned on different data samples
• Idea of bagging:
 – create diverse samples by picking examples with replacement
 – learn a model on each sample
 – combine models
• Usually, the same base learner is used
• Samples
 – differ in the subset of examples
 – replacement randomly re-weights instances (see later)
Bagging: illustration

Training Data

Data1

Data2

Data m

Learner1

Learner2

Learner m

Model1

Model2

Model m

Model Combiner

Final Model
Bagging: Generating Samples

- Generate new training sets using sampling with replacement (bootstrap samples)

<table>
<thead>
<tr>
<th>Original Data</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bagging (Round 1)</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Bagging (Round 2)</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Bagging (Round 3)</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

- some examples may appear in more than one set
- some examples will appear more than once in a set
- for each set of size n, the probability that a given example appears in it is
 $$\Pr(x \in D_i) = 1 - \left(1 - \frac{1}{n}\right)^n \rightarrow 0.6322$$
 - i.e., on average, less than 2/3 of the examples appear in any single bootstrap sample
Bagging in RapidMiner and Python

- Bagging operator uses a base learner
- Number and ratio of samples can be specified
 - `bagging = BaggingClassifier(DecisionTreeClassifier(), 10, 0.5)`
Performance of Bagging

• Accuracy in this example:
 – Ripper alone: 0.71
 – Ripper with bagging (10x0.5): 0.86
Bagging in RapidMiner

• 10 different rule models are learned:

• This ensures diversity!
Variant of Bagging: Randomization

• Randomize the learning algorithm instead of the input data
• Some algorithms already have a random component
 – e.g. initial weights in neural net
• Most algorithms can be randomized, e.g., greedy algorithms:
 – Pick from the N best options at random instead of always picking the best options
 – e.g.: test selection in decision trees or rule learning
• Can be combined with bagging
Random Forests

- A variation of bagging with decision trees
- Train a number of individual decision trees
 - each on a random subset of examples
 - only analyze a random subset of attributes for each split
 (Recap: classic DT learners analyze all attributes at each split)
 - usually, the individual trees are left unpruned

```python
rf = RandomForestClassifier(n_estimators=10)
```
Paradigm Shift: Many Simple Learners

• So far, we have looked at learners that are as good as possible

• Bagging allows a different approach
 – several simple models instead of a single complex one
 – Analogy: the SPIEGEL poll
 (mostly no political scientists, nevertheless: accurate results)
 – extreme case: using only decision stumps

• Decision stumps:
 – decision trees with only one node
Bagging with Weighted Voting

- Some learners provide confidence values
 - e.g., decision tree learners
 - e.g., Naive Bayes

- Weighted voting
 - use those confidence values for weighting the votes
 - some models may be rather sure about an example, while others may be indifferent
 - Python: parameter `voting=soft`
 - sums up all confidences for each class and predicts argmax
 - caution: requires *comparable* confidence scores!
Weighted Voting with Decision Stumps

- Weights: confidence values in each leaf

- High confidence that it is rock (weight = 1.0)

- Lower confidence that it is mine (weight = 0.6)
Intermediate Recap

• What we've seen so far
 – ensembles often perform better than single base learners
 – simple approach: voting, bagging

• More complex approaches coming up
 – Boosting
 – Stacking

• Boosting requires learning with weighted instances
 – we'll have a closer look at that problem first
Intermezzo: Learning with Weighted Instances

- So far, we have looked at learning problems where each example is equally important.
- Weighted instances:
 - Assign each instance a weight (*think: importance*).
 - Getting a high-weighted instance wrong is more expensive.
 - Accuracy etc. can be adapted.
- Example:
 - Data collected from different sources (e.g., sensors).
 - Sources are not equally reliable.
 - We want to assign more weight to the data from reliable sources.
Intermezzo: Learning with Weighted Instances

- Two possible strategies of dealing with weighted instances

- Changing the learning algorithm
 - e.g., decision trees, rule learners: adapt splitting/rule growing heuristics, example on following slides

- Duplicating instances
 - an instance with weight n is copied n times
 - simple method that can be used on all learning algorithms
Recap: Accuracy

• Most frequently used metrics:

\[
\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}
\]

Error Rate = 1 – Accuracy
Accuracy with Weights

• Definition of accuracy

\[
\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}
\]

• Without weights, TP, FP etc. are *counts* of instances

• With weights, they are *sums of their weights*
 – classic TP, FP etc. are the special case where all weights are 1
Adapting Algorithms: Decision Trees

• Recap: Gini index as splitting criterion

\[GINI(t) = 1 - \sum_j [p(j \mid t)]^2 \]

• The probabilities are obtained by counting examples
 – Again, we can sum up weights instead

• The same works for rule-based classifiers and their heuristics
Adapting Algorithms: Neural Networks

- Neural Networks try to minimize a loss function
- e.g., MAE or MSE
 - Weights can be introduced easily

\[
\text{MAE} = \frac{\sum_{\text{all examples}} |\text{predicted} - \text{actual}|}{N}
\]

\[
\text{MSE} = \frac{\sum_{\text{all examples}} (\text{predicted} - \text{actual})^2}{N}
\]
Adapting Algorithms: Neural Networks

- Neural Networks try to minimize a loss function
- e.g., MAE or MSE
 - Weights can be introduced easily

\[
\text{MAE}_{\text{weighted}} = \frac{\sum \limits_{\text{all examples}} w_{\text{example}} |\text{predicted} - \text{actual}|}{\sum \limits_{\text{all examples}} w_{\text{example}}}
\]

\[
\text{MSE}_{\text{weighted}} = \frac{\sum \limits_{\text{all examples}} w_{\text{example}} (\text{predicted} - \text{actual})^2}{\sum \limits_{\text{all examples}} w_{\text{example}}}
\]
Adapting Algorithms: k-NN

• Standard approach
 – use average of neighbor predictions

• With weighted instances
 – weighted average
Intermezzo: Learning with Weighted Instances

• Handling imbalanced classification problems

• So far:
 – undersampling
 • removes examples → loss of information
 – oversampling
 • adds examples → larger data (performance!)
 • also: synthetic data points (SMOTE)

• Alternative:
 – lowering instance weights for larger class
 – simplest approach: weight $1/|C|$ for each instance in class C
Back to Ensembles: Boosting

- Idea of boosting
 - train a set of classifiers, one after another
 - later classifiers focus on examples that were misclassified by earlier classifiers
 - weight the predictions of the classifiers with their error

- Realization
 - perform multiple iterations
 - each time using different example weights
 - weight update between iterations
 - increase the weight of incorrectly classified examples
 - so they become more important in the next iterations (misclassification errors for these examples count more heavily)
 - combine results of all iterations
 - weighted by their respective error measures
Illustration of the Weights

- Classifier Weights α_m
 - differences near 0 or 1 are emphasized
- Good classifier
 \rightarrow highly positive weight
- Bad classifier
 \rightarrow highly negative weight
- Classifier with error 0.5
 \rightarrow weight 0
 \rightarrow this is equal to guessing!
Illustration of the Weights

- Example Weights
 - multiplier for correct and incorrect examples
 - depending on error

- Later iterations need to focus on examples that are
 - Incorrectly classified by a good classifier
 - Correctly classified by a bad classifier
Boosting – Algorithm AdaBoost.M1

1. initialize example weights \(w_i = 1/N \) (\(i = 1..N \))

2. for \(m = 1 \) to \(t \) // \(t \) ... number of iterations
 a) learn a classifier \(C_m \) using the current example weights
 b) compute a weighted error estimate
 \[
 err_m = \frac{\sum w_i \text{of all incorrectly classified } e_i}{\sum_{i=1}^{N} w_i}
 \]
 c) if \(err_m > 0.5 \) → exit loop
 d) compute a classifier weight
 \[
 \alpha_m = \frac{1}{2} \ln \left(\frac{1-err_m}{err_m} \right)
 \]
 e) for all correctly classified examples \(e_i \):
 \[
 w_i \leftarrow w_i e^{-\alpha_m}
 \]
 f) for all incorrectly classified examples \(e_i \):
 \[
 w_i \leftarrow w_i e^{\alpha_m}
 \]
 g) normalize the weights \(w_i \) so that they sum to 1

3. for each test example
 a) try all classifiers \(C_m \)
 b) predict the class that receives the highest sum of weights \(\alpha_m \)
Boosting – Error Rate Example

- boosting of decision stumps on simulated data

from Hastie, Tibshirani, Friedman: The Elements of Statistical Learning, Springer Verlag 2001
Toy Example

\(D_1 \)

(taken from Verma & Thrun, Slides to CALD Course CMU 15-781, Machine Learning, Fall 2000)
Round 1

\[h_1 \]

\[\varepsilon_1 = 0.30 \]
\[\alpha_1 = 0.42 \]

\[D_2 \]
Round 2

\[\varepsilon_2 = 0.21 \]

\[\alpha_2 = 0.65 \]
Round 3

$$\varepsilon_3 = 0.14$$
$$\alpha_3 = 0.92$$
Final Hypothesis

\[H_{\text{final}} = \text{sign} \left(\begin{array}{c} 0.42 \\ + 0.65 \\ + 0.92 \end{array} \right) \]
Hypothesis Space of Ensembles

• Each learner has a hypothesis space
 – e.g., decision stumps: a linear separation of the dataset, parallel to the axes

• The hypothesis space of an ensemble
 – can be larger than that of its base learners

• Example: bagging with decision stumps
 – different stumps → different linear separations
 – resulting hypothesis space also allows polygon separations
Boosting in RapidMiner and Python

- Just like voting and bagging

 \[
 \texttt{bdt = AdaBoostClassifier(}
 \texttt{DecisionTreeClassifier),}
 \texttt{n_estimators=200)}
 \]
Experimental Results on Ensembles

• Ensembles have been used to improve generalization accuracy on a wide variety of problems
• On average, Boosting provides a larger increase in accuracy than Bagging
 – Boosting on rare occasions can degrade accuracy
 – Bagging more consistently provides a modest improvement
• Boosting is particularly subject to over-fitting when there is significant noise in the training data
 – subsequent learners over-focus on noise points

(Freund & Schapire, 1996; Quinlan, 1996)
Back to Combining Predictions

• Voting
 – each ensemble member votes for one of the classes
 – predict the class with the highest number of vote (e.g., bagging)

• Weighted Voting
 – make a *weighted* sum of the votes of the ensemble members
 – weights typically depend
 • on the classifier's confidence in its prediction
 (e.g., the estimated probability of the predicted class)
 • on error estimates of the classifier (e.g., boosting)

• Stacking
 – Why not use a classifier for making the final decision?
 – training material are the class labels of the training data and the
 (cross-validated) predictions of the ensemble members
Stacking

• Basic Idea:
 – learn a function that combines the predictions of the individual classifiers

• Algorithm:
 – train \(n \) different classifiers \(C_1 \ldots C_n \) (the base classifiers)
 – obtain predictions of the classifiers for the training examples
 – form a new data set (the meta data)
 • classes
 – the same as the original dataset
 • attributes
 – one attribute for each base classifier
 – value is the prediction of this classifier on the example
 – train a separate classifier \(M \) (the meta classifier)
Stacking (2)

- Example:

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{11}</td>
<td>t</td>
</tr>
<tr>
<td>x_{21}</td>
<td>f</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$x_{n_{e1}}$</td>
<td>t</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C_1</th>
<th>C_2</th>
<th>...</th>
<th>C_{n_c}</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>...</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>...</td>
<td>t</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>...</td>
<td>t</td>
</tr>
</tbody>
</table>

- Using a stacked classifier:
 - try each of the classifiers $C_1 ... C_n$
 - form a feature vector consisting of their predictions
 - submit these feature vectors to the meta classifier M
Stacking and Overfitting

• Consider a dumb base learner D, which works as follows:
 – during training: store each training example
 – during classification: if example is stored, return its class
 otherwise: return a random prediction

• If D is used along with a number of classifiers in stacking, what will the meta classifier look like?
 – D is perfect on the training set
 – so the meta classifier will say: always use D's result
Stacking and Overfitting

• Solution 1: split dataset (e.g., 50/50)
 – use one portion for training the base classifiers
 – use other portion to train meta model

• Solution 2: cross-validate base classifiers
 – train classifier on 90% of training data
 – create features for the remaining 10% on that classifier
 – repeat 10 times

• The second solution is better in most cases
 – uses whole dataset for meta learner
 – uses 90% of the dataset for base learners
Stacking in RapidMiner and Python

• Looks familiar again
 – we need a set of base learners (like for voting)
 – and a learner for the stacking model

• Python: not in scikit-learn, use, e.g., package mlxtend
 – requires setting base classifiers and meta learner as well
Performance of Stacking

- Accuracy in this experiment:
 - Naive Bayes: 0.71
 - k-NN: 0.81
 - Ripper: 0.71
- Stacked model: 0.86
Stacking

• Variant: also keep the original attributes
• Predictions of base learners are additional attributes for the stacking predictor
 – allows the identification of “blind spots” of individual base learners

• Variant: stacking with confidence values
 – if learners output confidence values, those can be used by the stacking learner
 – often further improves the results
Multi-Modal Data Revisited

- Last week, we saw the idea of encoders

<table>
<thead>
<tr>
<th>Test Results</th>
<th>Patient value</th>
<th>Reference interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin</td>
<td>13.9</td>
<td>11.5 - 16.0</td>
</tr>
<tr>
<td>Hb percentage</td>
<td>96.9</td>
<td>100 - 106</td>
</tr>
<tr>
<td>Body temperature</td>
<td>35.7</td>
<td>36.0 - 37.5</td>
</tr>
<tr>
<td>Urea</td>
<td>4.5</td>
<td>2.5 - 6.5</td>
</tr>
<tr>
<td>Creatinine</td>
<td>0.9</td>
<td>0.6 - 1.1</td>
</tr>
<tr>
<td>SOD</td>
<td>2.4</td>
<td>1.5 - 4.0</td>
</tr>
<tr>
<td>Aspartate</td>
<td>1.6</td>
<td>0.9 - 2.0</td>
</tr>
<tr>
<td>Lactate</td>
<td>1.2</td>
<td>0.7 - 1.7</td>
</tr>
<tr>
<td>NYST</td>
<td>3.4</td>
<td>1.5 - 2.0</td>
</tr>
</tbody>
</table>

Classifier/Regressor
The Classifier Selection Problem

- Question: decision trees or rule learner – which one is better?
- Two corner cases – recap from Data Mining 1

<table>
<thead>
<tr>
<th>Method</th>
<th>Baseline</th>
<th>Decision Tree</th>
<th>Rule Learner</th>
<th>Voting</th>
<th>Weighted Voting</th>
<th>Stacking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decision Tree</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rule Learner</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voting</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weighted Voting</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stacking</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Regression Ensembles

• Most ensemble methods also work for regression
 – voting: use average
 – bagging: use average or weighted average
 – stacking: learn regression model as stacking model!
 – boosting: the regression variant is called additive regression

• In Python: usually the same class ending in Regressor instead of Classifier
Additive Regression

• Boosting can be seen as a greedy algorithm for fitting additive models
• Same kind of algorithm for numeric prediction:
 – Build standard regression model
 – Gather residuals, learn model predicting residuals, and repeat
 • Given a prediction $p(x)$, residual $= (x-p(x))^2$
• To predict, simply sum up weighted individual predictions from all models
Additive Regression w/ Linear Regression

• What happens if we use Linear Regression inside of Additive Regression?

• The first iteration learns a linear regression model lr_1
 – By minimizing the sum of squared errors

• The second iteration aims at learning a LR lr_2 model for
 – $x' = (x - \text{lr}_1(x))^2$
 – Since $(x - \text{lr}_1(x))^2$ is already minimal, lr_2 cannot improve upon this
 • Hence, the subsequent linear models will always be a constant 0
Additive Regression w/ Linear Regression

- First regression model:
Additive Regression w/ Linear Regression

- Second (and third, fourth, ...) regression model:
Additive Regression

• Bottom line: additive and linear regression are not a good match
Example 1: One-dimensional, Non-linear

- Linear Regression: RMSE = 0.199
- Isotonic Regression: RMSE = 0.171
- Additive Isotonic Regression: RMSE = 0.073
Example 2: Multidimensional, Non-Linear

- $z = 10x^2 - y^3$

RMSE of...
- Linear Regression: 385
- Isotonic Regression: 293
- Additive Isotonic Regression: 122
XGBoost

- A pretty strong learning algorithm
 - For a while, it was the leading algorithm in top submissions at Kaggle
- Additive Regression w/ Regression Trees
- Regularization
 - Respect size of trees
 - Larger trees: more likely to overfit!
 - Introduce penalty for tree size
 - Overcomes the problem of overfitting in boosting
Intermediate Recap

• Ensemble methods
 – outperform base learners
 – Help minimizing shortcomings of single learners/models
 – simple and complex methods for method combination

• Reasons for performance improvements
 – individual errors of single learners can be “outvoted”
 – more complex hypothesis space
Ensembles for Other Problems

- There are ensembles also for...
- ...clustering (Vega-Pons and Ruiz-Shulkloper, 2011)
 - trying to unify different clusterings
 - using a consensus function mapping different clusterings to each other
- ...outlier detection (Zimek et al., 2014)
 - unifying outlier scores of different approaches
 - requires score normalization and/or rank aggregation
- etc.
Learning with Costs

• Most classifiers aim at reducing the number of errors
 – all errors are regarded as being equally important

• In reality, misclassification costs may differ
• Consider a warning system in an airplane
 – issue a warning if stall is likely to occur
 – based on a classifier using different sensor data
 – wrong warnings may be ignored by the pilot
 – missing warnings may cause the plane to crash

• Here, we have different costs for
 – actual: true, predicted: false → very expensive
 – actual: false, predicted true → not so expensive

http://i.telegraph.co.uk/multimedia/archive/01419/plane_1419831c.jpg
The MetaCost Algorithm

• Form multiple bootstrap replicates of the training set
 – Learn a classifier on each training set
 – i.e., perform bagging
• Estimate each class’s probability for each example
 – by the fraction of votes that it receives from the ensemble
• Use conditional risk equation to relabel each training example
 – with the estimated optimal class
• Reapply the classifier to the relabeled training set
MetaCost

• Conditional risk \(R(i|x) \) is the expected cost of predicting that \(x \) belongs to class \(i \)

 \[R(i|x) = \sum P(j|x)C(i, j) \]

 – \(C(i,j) \) are the misclassification costs
 (classify an example of class \(j \) as class \(i \))

 – \(P(j|x) \) are obtained by running the bagged classifiers

• The goal of MetaCost procedure is: to relabel the training examples with their “optimal” classes

 – i.e., those with lowest risk

• Then, re-run the classifier to build a final model

 – the resulting classifier will be defensive,
 i.e., make low-risk predictions

 – in the end, the costs are minimized
Pilot alarm alarm example
- \(x_1 \): alarm, \(P(\text{alarm}|x_1) = 0.8 \)
- \(x_2 \): no, \(P(\text{no}|x_2) = 0.9 \)

Risk values:
- \(R(\text{alarm}|x_1) = P(\text{alarm}|x_1) \times C(\text{alarm,alarm}) + P(\text{no}|x_1) \times C(\text{alarm,no}) = 0.2 \times 1 = 0.2 \)
- \(R(\text{no}|x_1) = P(\text{alarm}|x_1) \times C(\text{no,alarm}) + P(\text{no}|x_1) \times C(\text{no,no}) = 0.8 \times 10 = 8 \)
- \(R(\text{alarm}|x_2) = P(\text{alarm}|x_2) \times C(\text{alarm,alarm}) + P(\text{no}|x_2) \times C(\text{alarm,no}) = 0.9 \times 1 = 0.9 \)
- \(R(\text{no}|x_2) = P(\text{alarm}|x_2) \times C(\text{no,alarm}) + P(\text{no}|x_2) \times C(\text{no,no}) = 0.1 \times 10 = 1 \)

Since 0.9 < 1
- \(x_2 \) is relabeled to “alarm”
MetaCost vs. Balancing

- Recap balancing:
 - in an unbalanced dataset, there is a bias towards the larger class
 - balancing the dataset helps building more meaningful models

- MetaCost:
 - incidentally unbalance the dataset,
 labeling more instances with the “cheap” class
 - make the learner have a bias towards the “cheap” class
 - i.e., expensive mis-classifications are avoided
 - in the end, the overall cost is reduced

- In the example:
 - there will be more false alarms (stall warning, but actually no stall)
 - the risk of not issuing a warning is reduced
MetaCost Example

- Python: https://github.com/Treers/MetaCost

```python
>>> from sklearn.datasets import load_iris
>>> from sklearn.linear_model import LogisticRegression
>>> import pandas as pd
>>> import numpy as np
>>> S = pd.DataFrame(load_iris().data)
>>> S['target'] = load_iris().target
>>> LR = LogisticRegression(solver='lbfgs', multi_class='multinomial')
>>> C = np.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]])
>>> model = MetaCost(S, LR, C).fit('target', 3)
>>> model.predict_proba(load_iris().data[[2]])
>>> model.score(S[[0, 1, 2, 3]].values, S['target'])
```
MetaCost Example

- Experiment: set misclassification cost
 Rock → Mine = 2; Mine → Rock = 1
- Non-cost sensitive decision tree:
 - misclassification cost = 0.33
- MetaCost with decision tree:
 - misclassification cost = 0.24
Another Example for Cost-Sensitive Prediction

- Predicting *ordinal* attributes
 - e.g., very low, low, medium, high, very high

- Typical cost matrix:

<table>
<thead>
<tr>
<th>actual</th>
<th>very low</th>
<th>low</th>
<th>medium</th>
<th>high</th>
<th>very high</th>
</tr>
</thead>
<tbody>
<tr>
<td>very low</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>low</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>medium</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>high</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>very high</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Wrap-up

• Ensemble methods in general
 – build a strong model from several weak ones

• Ingredients
 – base learners
 – a combination method

• Variants
 – Voting
 – Bagging (based on sampling)
 – Boosting (based on reweighting instances)
 – Stacking (use learner for combination)

• Also used for cost-sensitive predictions (MetaCost)
Questions?