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Introduction

* “Wisdom of the crowds”
— a single individual cannot know everything
— but together, a group of individuals knows a lot

* Examples
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Introduction

* “SPIEGEL Wahlwette” (election bet) 2013

— readers of SPIEGEL Online were asked to guess
the federal election results

— average across all participants:
* only a few percentage points error for final result
* conservative-liberal coalition cannot continue

Aktuelle Prognosen

Wahlkreis-Suche
Schnitt aller abgegebenen Wahlwetten PLZ

Union - 38,0
SPD - 26,6
Linke I Tyl

Griine . 14,2

Stand: 14.08.2013

https://lh6.googleusercontent.com/-U9DXTTcT-PM/UgsdSzdV3II/AAAAAAAAFKs/GsRydeldasg/w800-h800/
Bildschirmfoto+2013-08-144+um+07.56.01.png
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Introduction

* “Who wants to be a Millionaire?”

* Analysis by Franzen and Pointner (2009):
— “ask the audience” gives a correct majority result in 89% of all cases

— “telephone expert”: only 54%
$2,000
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http://hugapanda.com/wp-content/uploads/2010/05/who-wants-to-be-a-millionaire-2010.jpg
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Ensembles
e

* So far, we have addressed a learning problem like this:
classifier = YourFavoriteClassifier (parameter=42)

...and hoped for the best

* Ensembles:
— wisdom of the crowds for learning operators

— instead of asking a single learner,
combine the predictions of different learners
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Ensembles
e

* Prerequisites for ensembles: accuracy and diversity
— different learning operators can address a problem (accuracy)
— different learning operators make different mistakes (diversity)

* That means:
— predictions on a new example may differ
— if one learner is wrong, others may be right

* Ensemble learning:
— use various base learners
— combine their results in a single prediction
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Voting

* The most straight forward approach
— classification: use most-predicted label
— regression: use average of predictions

* We have already seen this
— k-nearest neighbors

— each neighbor can be regarded
as an individual classifier
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Voting in RapidMiner & SciKit Learn
e

* RapidMiner: Vote operator uses different base learners

* Python: VotingClassifier (
(“"dt”,DecisionTreeClassifier (),
“‘nb”,GaussianNB (),
“knn”,KNeighborsClassifier())
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Performance of Voting

Accuracy in this example:
— Naive Bayes: 0.71

— Ripper: 0.71

— k-NN: 0.81
* Voting: 0.91
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Why does Voting Work?
-

* Suppose there are 25 base classifiers

— Each classifier has an accuracy of 0.65, i.e., error rate £ =0.35

— Assume classifiers are independent

* i.e., probability that a classifier makes a mistake does not depend
on whether other classifiers made a mistake

* Note: in practice they are not independent!

* Probability that the ensemble classifier makes a wrong prediction

— The ensemble makes a wrong prediction if the majority of the classifiers
makes a wrong prediction

— The probability that 13 or more classifiers are wrong is

25

2

i=13

25
i

e (1—¢)”'~0.06 <
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Why does Voting Work?
-

» In theory, we can lower the error infinitely i (25)ei(1—e)25"'~0 06 <

— just by adding more base learners i=13 | 1

* But that is hard in practice
— Why?

* The formula only holds for independent base learners
— Itis hard to find many truly independent base learners
— ...at a decent level of accuracy

* Recap: we need both accuracy and diversity
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Recap: Overfitting and Noise
e
Likely to overfit the data
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Bagging
-

* Biases in data samples may mislead classifiers
— overfitting problem
— model is overfit to single noise points

* If we had different samples
— e.g., data sets collected at different times, in different places, ...
— ...and trained a single model on each of those data sets...
— only one model would overfit to each noise point
— voting could help address these issues

* But usually, we only have one dataset!
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Bagging
-

* Models may differ when learned on different data samples
* |dea of bagging:
— create diverse samples by picking examples with replacement
— learn a model on each sample
— combine models

* Usually, the same base learner is used

* Samples
— differ in the subset of examples
— replacement randomly re-weights instances (see later)
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Bagging: illustration

Training Data

Modell) (Modeld) =+ + = =+ @

Model Combiner

4

@al ModeD
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Bagging: Generating Samples
e

* Generate new training sets using sampling with replacement
(bootstrap samples)

Original Data 1 2 3 4 5 6 7 8 9 10
Bagging (Round 1) 7 8 10 2 ) 10 10 ) 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

— some examples may appear in more than one set
— some examples will appear more than once in a set

— for each set of size n, the probability that a given example appears in it
is n
Pr(xeD)=1—(1-1) -0.6322
n
* i.e., on average, less than 2/3 of the examples appear in any single
bootstrap sample
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Bagging in RapidMiner and Python

Bagging operator uses a base learner

Number and ratio of samples can be specified

— bagging = BaggingClassifier (
DecisionTreeClassifier (),

10,
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Performance of Bagging

* Accuracy in this example:
— Ripper alone: 0.71

— Ripper with bagging (10x0.5): 0.86
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Bagging in RapidMiner
-
* 10 different rule models are learned:

&) MetaModel Annotations
(%] : .
[} ?_%99'”9(5999'"9} #) TextView ( ) Annotations

I;'\.
':._1.-’ Maodel 2 (Rule Induction)
':._1.-’ Maodel 3 (Rule Induction)

':._1.} Model 4 (Rule Induction) RUIENIﬂdEl

':._1.-’ Model 5 (Rule Induction)

Eg;‘ Model 6 (Rule Induction) | if attribute 12 < 0.168 and attribute 25 > 0.553 then Rock (28 / 0)
& Model 7 (RuleInduction) ;¢ Sttripute 28 > 0.854 then Mine (2 / 23)

- | Madel 8 (Rule Induction) i . - . ) i
%)Mudmg[RmEnmummn} if attribute 31 =< 0.443 and attribute 30 > 0.246 then Mine (0 f18)
¢’ Model 10 (Rule Induction)) if attribute 4 < 0.061 then Rock (16 / 0)

else Mine (2 / 5)

correct: 88 out of 92 training examples.

* This ensures diversity!
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Variant of Bagging: Randomization
-

* Randomize the learning algorithm instead of the input data
* Some algorithms already have a random component
— e.g. initial weights in neural net

* Most algorithms can be randomized, e.g., greedy algorithms:

— Pick from the N best options at random instead of always picking the
best options

— e.g.: test selection in decision trees or rule learning

* Can be combined with bagging
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Random Forests
e

* A variation of bagging with decision trees

* Train a number of individual decision trees
— each on a random subset of examples

— only analyze a random subset of attributes for each split
(Recap: classic DT learners analyze all attributes at each split)

— usually, the individual trees are left unpruned

rf = RandomForestClassifier (n estimators=10)
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Paradigm Shift: Many Simple Learners
-

* So far, we have looked at learners that are as good as possible

| attribute_12 |

* Bagging allows a different approach

— several simple models
instead of a single complex one

— Analogy: the SPIEGEL poll
(mostly no political scientists,
nevertheless: accurate results) = 0.071 = 0071

— extreme case: using only decision stumps

* Decision stumps:

— decision trees with only one node b
Mine Rock
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Bagging with Weighted Voting
e

* Some learners provide confidence values
— e.g., decision tree learners
— e.g., Naive Bayes

*  Weighted voting
— use those confidence values for weighting the votes

— some models may be rather sure about an example,
while others may be indifferent

— Python: parameter voting=soft
* sums up all confidences for each class and predicts argmax

* caution: requires comparable confidence scores!
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Weighted Voting with Decision Stumps

*  Weights: confidence values | uinute 12 |

in each leaf
high confidence
= 0.0 = 0.071 that it is rock

lower confidence (weight = 1.0)
that it is mine

(weight = 0.6) \

b
Mine Rock
I S
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Intermediate Recap
e

* What we've seen so far
— ensembles often perform better than single base learners
— simple approach: voting, bagging

* More complex approaches coming up
— Boosting
— Stacking

* Boosting requires learning with weighted instances
— we'll have a closer look at that problem first
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Intermezzo: Learning with Weighted Instances
-

* So far, we have looked at learning problems
where each example is equally important

* Weighted instances
— assign each instance a weight (think: importance)
— getting a high-weighted instance wrong is more expensive
— accuracy etc. can be adapted

* Example:
— data collected from different sources (e.g., sensors)

— sources are not equally reliable
* we want to assign more weight to the data from reliable sources
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Intermezzo: Learning with Weighted Instances
-

* Two possible strategies of dealing with weighted instances

* Changing the learning algorithm

— e.g., decision trees, rule learners: adapt splitting/rule growing heuristics,
example on following slides

* Duplicating instances
— an instance with weight n is copied n times
— simple method that can be used on all learning algorithms
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Recap: Accuracy
e

Most frequently used metrics:

TP+TN
ITP+TN+ FP+ FN

Accuracy =

Error Rate =1— Accuracy
PREDICTED CLASS

Class=Yes | Class=No

ACTUAL
CLASS Class=Yes TP FN

Class=No FP TN
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Accuracy with Weights
-

* Definition of accuracy

ITP+TN
ITP+TN+ FP+ FN

Accuracy =

*  Without weights, TP, FP etc. are counts of instances

* With weights, they are sums of their weights
— classic TP, FP etc. are the special case where all weights are 1
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Adapting Algorithms: Decision Trees
-

* Recap: Gini index as splitting criterion
GINI(t)=1-) [p(j|OT
J

* The probabilities are obtained by counting examples
— Again, we can sum up weights instead

* The same works for rule-based classifiers and their heuristics
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Adapting Algorithms: Neural Networks
-

* Neural Networks try to miminize a loss function

* e.g., MAE or MSE
— Weights can be introduced easily

Y | predicted — actuall
M AE — all examples

N

Z ( predicted —actual )2
MSE — all examples

N
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Adapting Algorithms: Neural Networks
-

* Neural Networks try to miminize a loss function

* e.g., MAE or MSE
— Weights can be introduced easily

> W orampie | PYEdiCted — actual|

__all examples
MAE weighted ~— Z
w example

all examples

Z W orample ( predicted —actual )’

_ all examples
MSE weighted ~ Z
Wexample

all examples
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Adapting Algorithms: k-NN

* Standard approach
— use average of neighbor predictions

* With weighted instances
— weighted average
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Intermezzo: Learning with Weighted Instances
-

* Handling imbalanced classification problems

* Sofar:
— undersampling
* removes examples — loss of information
— oversampling
* adds examples — larger data (performance!)
* also: synthetic data points (SMOTE)

* Alternative:
— lowering instance weights for larger class
— simplest approach: weight 1/|C| for each instance in class C
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Back to Ensembles: Boosting
-

* |dea of boosting
— train a set of classifiers, one after another

— later classifiers focus on examples that were misclassified by earlier
classifiers

— weight the predictions of the classifiers with their error

* Realization
— perform multiple iterations
* each time using different example weights
— weight update between iterations
* increase the weight of incorrectly classified examples

* so they become more important in the next iterations
(misclassification errors for these examples count more heavily)

— combine results of all iterations
* weighted by their respective error measures
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lllustration of the Weights
e

* Classifier Weights o

— differences near O or 1
are emphasized

 Good classifier
— highly positive weight - -
 Bad classifier

—~~
-
<
D
()
=
~

[l 1-x05)
]
|

— highly negative weight
* Classifier with error 0.5 i
— weight O

— this is equal to guessing!

00 0.2 04 0.6 0.8 1.0

(error)
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lllustration of the Weights

* Example Weights
— multiplier for correct and incorrect examples
— depending on error

* Later iterations need to focus =

on examples that are /'
correct 85
oo — i rect examples

— Incorrectly classified by a
good classifier

ltiplier
4]
|

— Correctly classified by a
bad classifier

wialght mu
4
|

0.ao 0z 04 0.6 n.g 1.0

2rr
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Boosting — Algorithm AdaBoost.M1
-

1. initialize example weights wi=1/N (i=1..N)

2. form=1tot // t ... number of iterations
a) learn a classifier C» using the current example weights

b) compute a weighted B Z w,of allincorrectly classified e,
error estimate = N

i=1

w;, < =1 because weights
are normalized

c) if errn>0.5 — exit loop

e . 1 —
d) compute a classifier weight am:lln( W’") update weights so
= _.err,
e) for all correctly classified examplés e; : w—we ® ¥ thatsum of

correctly classified
examples equals
sum of incorrectly

3. for each test example classified examples

f) for all incorrectly classified examples e:;: «,
W —w.e" =«

g) normalize the weights wi so that they sum to 1

a) try all classifiers Cn,
b) predict the class that receives the highest sum of weights a
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Boosting — Error Rate Example
-

* boosting of decision stumps on simulated data

wr
]
Single Stump
= _|
o
— d il
g 400 Mode Tree
LlJ —— - Sp—— - . — -
*g;l
T eq
"—-—_‘__-_.
G—: _l
|| | I | I
Q 100 200 300 400

Boosting Herations

from Hastie, Tibshirani, Friedman: The Elements of Statistical Learning, Springer Verlag 2001
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Toy Example
-

(taken from Verma & Thrun, Slides to CALD Course CMU 15-781,
Machine Learning, Fall 2000)
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Round 1
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0t=0.42
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Round 2
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Round 3
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Final Hypothesis
-

H_ =sign) 0.42 + 0.65 +0.92
final
4+
+ 4|
— _|_ — L
+ —
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Hypothesis Space of Ensembles
-

* Each learner has a hypothesis space

— e.g., decision stumps: a linear separation of the dataset,
parallel to the axes

* The hypothesis space of an ensemble
— can be larger than that of its base learners

* Example: bagging with decision stumps
— different stumps — different linear separations
— resulting hypothesis space also allows polygon separations
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Boosting in RapidMiner and Python

Just like voting and bagging

— bdt = AdaBoostClassifier (

DecisionTreeClassifier),
n estimators=200)
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Experimental Results on Ensembles
-

* Ensembles have been used to improve generalization accuracy
on a wide variety of problems

* On average, Boosting provides a larger increase in accuracy than
Bagging
— Boosting on rare occasions can degrade accuracy
— Bagging more consistently provides a modest improvement

* Boosting is particularly subject to over-fitting
when there is significant noise in the training data

— subsequent learners over-focus on noise points

(Freund & Schapire, 1996; Quinlan, 1996)
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Back to Combining Predictions

* Voting
— each ensemble member votes for one of the classes
— predict the class with the highest number of vote (e.g., bagging)

*  Weighted Voting
— make a weighted sum of the votes of the ensemble members
— weights typically depend

* on the classifier's confidence in its prediction
(e.g., the estimated probability of the predicted class)

* on error estimates of the classifier (e.g., boosting)
« Stacking

— Why not use a classifier for making the final decision?

— training material are the class labels of the training data and the
(cross-validated) predictions of the ensemble members
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Stacking
-

* Basic ldea:
— learn a function that combines the predictions of the individual classifiers

* Algorithm:

— train n different classifiers C1...Cx (the base classifiers)
— obtain predictions of the classifiers for the training examples

— form a new data set (the meta data)

* classes
— the same as the original dataset

 attributes
— one attribute for each base classifier
— value is the prediction of this classifier on the example

— train a separate classifier M (the meta classifier)
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Stacking (2)
-

* Example: * Using a stacked
classifier:
Attributes Class Ch Oz ... Ch,
T .. Tin, ; N M 7 — try each of the
T21 ...  Tan, f foot .. ¢ classifiers C]...Cn
| . . — form a feature
Frel Fneng £ Jr J £ r
— vector consisting
training set predictions of the of their predictions
classfiers _
— submit these
feature vectors
Cy € ... (O, | Class to the meta
toot t classifier M
A T t f
' t i

training set for stacking
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Stacking and Overfitting
-

* Consider a dumb base learner D, which works as follows:
— during training: store each training example
— during classification: if example is stored, return its class
otherwise: return a random prediction

* If D is used along with a number of classifiers in stacking,
what will the meta classifier look like?

— D is perfect on the training set
— so the meta classifier will say: always use D's result
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Stacking and Overfitting

* Solution 1: split dataset (e.g., 50/50)
— use one portion for training the base classifiers
— use other portion to train meta model

* Solution 2: cross-validate base classifiers
— train classifier on 90% of training data
— create features for the remaining 10% on that classifier
— repeat 10 times

* The second solution is better in most cases
— uses whole dataset for meta learner
— uses 90% of the dataset for base learners
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Stacking in RapidMiner and Python
-

* Looks familiar again
— we need a set of base learners (like for voting)
— and a learner for the stacking model

* Python: not in scikit-learn, use, e.g., package mixtend
— requires setting base classifiers and meta learner as well

Stacking [Performance ]
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Performance of Stacking

Accuracy in this experiment:
— Naive Bayes: 0.71

— k-NN: 0.81

— Ripper: 0.71

* Stacked model: 0.86

Retrieve Sonar Stacking Performance
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Stacking
-

* Variant: also keep the original attributes

* Predictions of base learners are additional attributes
for the stacking predictor

— allows the identification of “blind spots” of individual base learners

* Variant: stacking with confidence values

— if learners output confidence values,
those can be used by the stacking learner

— often further improves the results
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Multi-Modal Data Revisited

 Last week, we saw the idea of encoders

Paticnt value  Reference interval”

- " 1 v
Tt i rennt ol 28 (low) 50 110 ~— ~— [ e A R R S0
40 (high) 00-02 !
728 (high) 21 7 N v | | | | )
) Ll r/R}‘ -~~~
Lymphocytes (x10%ul) 16 1345 | | | | | |
Monocytes (<10%jl) 2.8 (high) 00-05 | j \ ; !
osinaphils (<10%ul) 0 00-05 m v | | /
‘White blood cell 2 -k I “r k - e ‘N‘(JM’J(—M‘
‘morphology 2+ Dohle bodies . O &
Red blood cell comnt 11.4 (high) 70-1L0 " v | |
C10%0) - N R G Y LA AP R WD ol ) PRI, e EEE | |
Hemoglobin (g/dl) 139 115160 bty oy o
Packed call volume (%) 40 3445 i | |
Mean copuscular 315 o) 360 490 m AE PRI | |
volume (1) ‘"\H/—Mf\/—qw—'y\/—ﬂﬁ«—ﬂf\/—d’\ Yo -
Mean corpuscular 122 (low) 1274175
hemoglobin (pg) VF v6 |
‘Mean corpuscular 387 340-36.0 Bayii Ty \,/\——Af ‘:J\JM/\_J /RL
hemoglabin
concentration (g/dl)
Red call distribution 317 18.0-250 u LT D e
width (%) v
Platelets (<10°/pl) 924 130-300

Fibrinogen (mgfdl) B 100-400 ﬂ U

L] e o 1

Y | | ¢
Classifier/Regressor
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The Classifier Selection Problem
e

* (Question: decision trees or rule learner — which one is better?
* Two corner cases — recap from Data Mining 1

Accuracy: Accuracy:

Baseline: 0.89
Decision Tree: 1.0
Rule Learner: 0.89

Baseline: 0.5
Decision Tree: 0.45
Rule Learner: 0.7

* Voting: 0.65 * Voting: 0.89
* Weighted Voting: 0.7 * Weighted Voting: 1.0
 Stacking: 0.83 * Stacking: 1.0
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Regression Ensembles

* Most ensemble methods also work for regression
— voting: use average
— bagging: use average or weighted average
— stacking: learn regression model as stacking model!

— boosting: the regression variant is called additive regression

In Python: usually the same class ending in Regressor instead of

Classifier
Retrieve Poly... Performance
out [ { 1ab @ per [
o ﬁ] i per % exa [
o
Split Data Apply Model
{] exa par [} {] mod — b [
? par [} { uni W mod [
par [ 0
a
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Additive Regression
-

* Boosting can be seen as a greedy algorithm for fitting additive
models

* Same kind of algorithm for numeric prediction:
— Build standard regression model
— Gather residuals, learn model predicting residuals, and repeat
* Given a prediction p(x), residual = (x-p(x))?
* To predict, simply sum up weighted individual predictions from all

models
Additive Reqr...
{ tra ~ mad [
M'u:. exrd ::I
0 =
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Additive Regression w/ Linear Regression
-

* What happens if we use Linear Regression
inside of Additive Regression?

* The first iteration learns a linear regression model Ir4
— By minimizing the sum of squared errors
* The second iteration aims at learning a LR Ir. model for
— X' = (x-Iry(x))?
— Since (x-Ir1(x))? is already minimal, Ir, cannot improve upon this

* Hence, the subsequent linear models
will always be a constant 0
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Additive Regression w/ Linear Regression
-

* First regression model.
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Additive Regression w/ Linear Regression
-

* Second (and third, fourth, ...) regression model:
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1y AdditiveRegression (Additive Regressicn) Table View (@) TexView: () Annotations
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Additive Regression
-
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MetaModel Annotations

[Model 2 (Linear Regression)
fModel 3 (Linear Regression)
Model 4 (Linear Regression)
Model 5 (Linear Regression)
[Model 6 (Linear Regression)
MModel 7 (Linear Regression)
[Model 8 (Linear Regression)
MModel 9 (Linear Regression)
fModel 10 (Linear Regression)

'y AdditiveRegression (Additive Regression)

LinearRegression

65.376 * attl
+ 4.584 * att3
4.624 * attd
+ 2.829 * atts
- 27.281

% Result Overview ‘-,__,7’ AdditiveRegression (Additive Regression)

&) MetaModel Annotations
(] i ; P Y P, ]
. .?.gmtweRegressmn [Additive Regression) Table View (#):Text View: () Annotations
w Model 1 (Linear Regression) | T "rtteteeees

"

.:';

b -

Model 3 (Linesr Regression) - -
Model 4 (Linear Regressicn) LlﬂEﬂl’REgl’ESSlﬂﬂ
Model 5 (Linear Regression)

Model 6 (Linear Regression) - 0.000

Model ¥ (Linesr Regression)

Model 8 (Linesr Regression)

Model 9 (Linesr Regression)

Model 10 (Linear Regression)

G

Bottom line: additive and linear regression are not a good match
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Example 1: One-dimensional, Non-linear
e

Linear Regression: RMSE = 0.199
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~ Isotonic Regression: RMSE = 0.171 Additive Isotonic Regression:
;\ RMSE = 0.073
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Example 2: Multidimensional, Non-Linear
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XGBoost
e

* A pretty strong learning algorithm
— For a while, it was the leading algorithm in top submissions at Kaggle

* Additive Regression w/ Regression Trees

* Regularization
— Respect size of trees
— Larger trees: more likely to overfit!
* Introduce penalty for tree size
— Overcomes the problem of overfitting in boosting
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Intermediate Recap
e

* Ensemble methods
— outperform base learners
— Help minimizing shortcomings of single learners/models
— simple and complex methods for method combination

* Reasons for performance improvements
— individual errors of single learners can be “outvoted”
— more complex hypothesis space
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Ensembles for Other Problems
e

* There are ensembles also for...

* ...clustering (Vega-Pons and Ruiz-Shulkloper, 2011)

— trying to unify different clusterings

— using a consensus function mapping different clusterings to each other
* ...outlier detection (Zimek et al., 2014)

— unifying outlier scores of different approaches

— requires score normalization and/or rank aggregation

* efc.
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Learning with Costs
S

* Most classifiers aim at reducing the number of errors
— all errors are regarded as being equally important

* In reality, misclassification costs may differ

* Consider a warning system in an airplane
— issue a warning if stall is likely to occur
— based on a classifier using different sensor data

— wrong warnings may be ignored by the pilot
— missing warnings may cause the plane to crash

* Here, we have different costs for
— actual: true, predicted: false — very expensive
— actual: false, predicted true — not so expensive

http://i.telegraph.co.uk/multimedia/archive/01419/plane_1419831c.jpg
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The MetaCost Algorithm
-

* Form multiple bootstrap replicates of the training set
— Learn a classifier on each training set
— i.e., perform bagging
* Estimate each class’s probability for each example
— by the fraction of votes that it receives from the ensemble
* Use conditional risk equation to relabel each training example
— with the estimated optimal class
* Reapply the classifier to the relabeled training set
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MetaCost
e

« Conditional risk R(i|x) is the expected cost of predicting that x belongs
to class i

— R(ilx) = 2 P(x)C(, j)
— C(i,j) are the misclassification costs
(classify an example of class j as class i)

— P(j|x) are obtained by running the bagged classifiers

 The goal of MetaCost procedure is: to relabel the training examples
with their “optimal” classes

— |.e., those with lowest risk
 Then, re-run the classifier to build a final model

— the resulting classifier will be defensive,
i.e., make low-risk predictions

— in the end, the costs are minimized
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MetaCost

8/10 classifiers

* Pilot alarm alarm example Zarecorrect y predicted
— Xs: alarm, P(alarm|x1) = 0.8 alarm | no alarm
— X2: no, P(no|xz2) = 0.9 E alarm 0 10

* Risk values: E & | no alarm 1 0

— R(alarm|x,) = P(alarm|X1)*C(alarrﬁy/,alarm) + P(no|x+1)*C(alarm,no) = 0.2*1 = 0.2
— R(no|x1) = P(alarm|x4)*C(no,alarm) + P(no|x:)*C(no,no) = 0.8*10 = 8
— R(alarm|x;) = P(alarm|xz)*C(alarm,alarm) + P(no|xz)*C(alarm,no) = 0.9*1 = 0.9
— R(no|x2) = P(alarm|x2)*C(no,alarm) + P(no|x2)*C(no,no) = 0.1*10 = 1

 Since 0.9<1

— X2 is relabeled to “alarm”

http://i.telegraph.co.uk/multimedia/archive/01419/plane_1419831c.jpg
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MetaCost vs. Balancing
-

* Recap balancing:
— in an unbalanced dataset, there is a bias towards the larger class
— balancing the dataset helps building more meaningful models

* MetaCost:;

— incidentally unbalance the dataset,
labeling more instances with the “cheap” class

— make the learner have a bias towards the “cheap” class
* i.e., expensive mis-classifications are avoided
— in the end, the overall cost is reduced

* Inthe example:

— there will be more false alarms (stall warning, but actually no stall)
— the risk of not issuing a warning is reduced
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MetaCost Example

e
* Python: https://github.com/Treers/MetaCost

»»>» from sklearn.datasets import load iris

»»> from sklearn.linear model import LogisticRegression
»»» import pandas as pd

»>>> import numpy as np

»»» 5 = pd.DataFrame({load iris().data)

»»> 5[ "target’'] = load_iris().target
»»» LR = LogisticRegression(solver="1lbfgs", multi class="multinomial’)
»»> C = np.array([[®, 1, 1], [1, &, 1], [1, 1, @]])

»»» model = MetaCost(S, LR, C).fit( 'target’, 3)
»»>» model .predict proba{load iris().data[[2]])
»»»> model.score{5[[@, 1, 2, 3]].values, 5[ 'target'])
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MetaCost Example

Experiment: set misclassification cost
Rock — Mine = 2; Mine — Rock = 1

Non-cost sensitive decision tree:
— misclassification cost = 0.33
« MetaCost with decision tree:

— misclassification cost = 0.24

Retrieve Sonar MetaCost
@ aut [ {{ exa @ exa )
'S \?Zj per[:l
&
Split Data Apply Model
(] exa par [ (] mod —, lab [
'ﬁ par :I ( unl 7| miod :I
par :1 &)
Lo}
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Another Example for Cost-Sensitive Prediction

* Predicting ordinal attributes
— e.g., very low, low, medium, high, very high

* Typical cost matrix:

predicted
very low | low medium | high very high
very low 0 1 2 4 8
low 1 0 1 2 4
medium 2 1 0 1 2
f_g high 4 2 1 0 1
& | very high 8 4 2 1 0
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Wrap-up
e

* Ensemble methods in general

— build a strong model from several weak ones
* Ingredients

— base learners

— a combination method

* Variants
— Voting
— Bagging (based on sampling)
— Boosting (based on reweighting instances)
— Stacking (use learner for combination)

* Also used for cost-sensitive predictions (MetaCost)
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Questions?

s
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