
Data Mining II
Ensembles

Heiko Paulheim

2/26/24 Heiko Paulheim 2

Introduction

• “Wisdom of the crowds”

– a single individual cannot know everything

– but together, a group of individuals knows a lot

• Examples

– Wikipedia

– Crowdsourcing

– Prediction

http://xkcd.com/903/

2/26/24 Heiko Paulheim 3

Introduction

• “SPIEGEL Wahlwette” (election bet) 2013

– readers of SPIEGEL Online were asked to guess
the federal election results

– average across all participants:

• only a few percentage points error for final result

• conservative-liberal coalition cannot continue

https://lh6.googleusercontent.com/-U9DXTTcT-PM/UgsdSzdV3JI/AAAAAAAAFKs/GsRydeldasg/w800-h800/
Bildschirmfoto+2013-08-14+um+07.56.01.png

2/26/24 Heiko Paulheim 4

Introduction

• “Who wants to be a Millionaire?”

• Analysis by Franzen and Pointner (2009):

– “ask the audience” gives a correct majority result in 89% of all cases

– “telephone expert”: only 54%

http://hugapanda.com/wp-content/uploads/2010/05/who-wants-to-be-a-millionaire-2010.jpg

2/26/24 Heiko Paulheim 5

Ensembles

• So far, we have addressed a learning problem like this:

classifier = YourFavoriteClassifier(parameter=42)

...and hoped for the best

• Ensembles:

– wisdom of the crowds for learning operators

– instead of asking a single learner,
combine the predictions of different learners

2/26/24 Heiko Paulheim 6

Ensembles

• Prerequisites for ensembles: accuracy and diversity

– different learning operators can address a problem (accuracy)

– different learning operators make different mistakes (diversity)

• That means:

– predictions on a new example may differ

– if one learner is wrong, others may be right

• Ensemble learning:

– use various base learners

– combine their results in a single prediction

2/26/24 Heiko Paulheim 7

Voting

• The most straight forward approach

– classification: use most-predicted label

– regression: use average of predictions

• We have already seen this

– k-nearest neighbors

– each neighbor can be regarded
as an individual classifier

x

2/26/24 Heiko Paulheim 8

Voting in RapidMiner & SciKit Learn

• RapidMiner: Vote operator uses different base learners

• Python: VotingClassifier(
 (“dt”,DecisionTreeClassifier(),
 “nb”,GaussianNB(),
 “knn”,KNeighborsClassifier())

2/26/24 Heiko Paulheim 9

Performance of Voting

• Accuracy in this example:

– Naive Bayes: 0.71

– Ripper: 0.71

– k-NN: 0.81

• Voting: 0.91

2/26/24 Heiko Paulheim 10

Why does Voting Work?

• Suppose there are 25 base classifiers

– Each classifier has an accuracy of 0.65, i.e., error rate  = 0.35

– Assume classifiers are independent

• i.e., probability that a classifier makes a mistake does not depend
on whether other classifiers made a mistake

• Note: in practice they are not independent!

• Probability that the ensemble classifier makes a wrong prediction

– The ensemble makes a wrong prediction if the majority of the classifiers
makes a wrong prediction

– The probability that 13 or more classifiers are wrong is

∑
i=13

25

(25
i)εi (1−ε)25−i≈0.06≪ε

2/26/24 Heiko Paulheim 11

Why does Voting Work?

• In theory, we can lower the error infinitely

– just by adding more base learners

• But that is hard in practice

– Why?

• The formula only holds for independent base learners

– It is hard to find many truly independent base learners

– ...at a decent level of accuracy

• Recap: we need both accuracy and diversity

∑
i=13

25

25
i  i 1−25−i≈0.06≪

2/26/24 Heiko Paulheim 12

Recap: Overfitting and Noise

Likely to overfit the data

2/26/24 Heiko Paulheim 13

Bagging

• Biases in data samples may mislead classifiers

– overfitting problem

– model is overfit to single noise points

• If we had different samples

– e.g., data sets collected at different times, in different places, …

– ...and trained a single model on each of those data sets...

– only one model would overfit to each noise point

– voting could help address these issues

• But usually, we only have one dataset!

2/26/24 Heiko Paulheim 14

Bagging

• Models may differ when learned on different data samples

• Idea of bagging:

– create diverse samples by picking examples with replacement

– learn a model on each sample

– combine models

• Usually, the same base learner is used

• Samples

– differ in the subset of examples

– replacement randomly re-weights instances (see later)

2/26/24 Heiko Paulheim 15

Bagging: illustration

Training Data

Data1 Data mData2        

Learner1 Learner2 Learner m       

Model1 Model2 Model m       

Model Combiner

 Final Model

2/26/24 Heiko Paulheim 16

Bagging: Generating Samples

• Generate new training sets using sampling with replacement
(bootstrap samples)

– some examples may appear in more than one set

– some examples will appear more than once in a set

– for each set of size n, the probability that a given example appears in it
is

• i.e., on average, less than 2/3 of the examples appear in any single
bootstrap sample

Original Data 1 2 3 4 5 6 7 8 9 10
Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

Pr  x∈Di=1−1−1
n


n

0.6322

2/26/24 Heiko Paulheim 17

Bagging in RapidMiner and Python

• Bagging operator uses a base learner

• Number and ratio of samples can be specified

– bagging = BaggingClassifier(
 DecisionTreeClassifier(),
 10,
 0.5)

2/26/24 Heiko Paulheim 18

Performance of Bagging

• Accuracy in this example:

– Ripper alone: 0.71

– Ripper with bagging (10x0.5): 0.86

2/26/24 Heiko Paulheim 19

Bagging in RapidMiner

• 10 different rule models are learned:

• This ensures diversity!

2/26/24 Heiko Paulheim 20

Variant of Bagging: Randomization

• Randomize the learning algorithm instead of the input data

• Some algorithms already have a random component

– e.g. initial weights in neural net

• Most algorithms can be randomized, e.g., greedy algorithms:

– Pick from the N best options at random instead of always picking the
best options

– e.g.: test selection in decision trees or rule learning

• Can be combined with bagging

2/26/24 Heiko Paulheim 21

Random Forests

• A variation of bagging with decision trees

• Train a number of individual decision trees

– each on a random subset of examples

– only analyze a random subset of attributes for each split
(Recap: classic DT learners analyze all attributes at each split)

– usually, the individual trees are left unpruned

rf = RandomForestClassifier(n_estimators=10)

2/26/24 Heiko Paulheim 22

Paradigm Shift: Many Simple Learners

• So far, we have looked at learners that are as good as possible

• Bagging allows a different approach

– several simple models
instead of a single complex one

– Analogy: the SPIEGEL poll
(mostly no political scientists,
nevertheless: accurate results)

– extreme case: using only decision stumps

• Decision stumps:

– decision trees with only one node

2/26/24 Heiko Paulheim 23

Bagging with Weighted Voting

• Some learners provide confidence values

– e.g., decision tree learners

– e.g., Naive Bayes

• Weighted voting

– use those confidence values for weighting the votes

– some models may be rather sure about an example,
while others may be indifferent

– Python: parameter voting=soft

• sums up all confidences for each class and predicts argmax

• caution: requires comparable confidence scores!

2/26/24 Heiko Paulheim 24

Weighted Voting with Decision Stumps

• Weights: confidence values
in each leaf

high confidence
that it is rock
(weight = 1.0)lower confidence

that it is mine
(weight = 0.6)

2/26/24 Heiko Paulheim 25

Intermediate Recap

• What we've seen so far

– ensembles often perform better than single base learners

– simple approach: voting, bagging

• More complex approaches coming up

– Boosting

– Stacking

• Boosting requires learning with weighted instances

– we'll have a closer look at that problem first

2/26/24 Heiko Paulheim 26

Intermezzo: Learning with Weighted Instances

• So far, we have looked at learning problems
where each example is equally important

• Weighted instances

– assign each instance a weight (think: importance)

– getting a high-weighted instance wrong is more expensive

– accuracy etc. can be adapted

• Example:

– data collected from different sources (e.g., sensors)

– sources are not equally reliable

• we want to assign more weight to the data from reliable sources

2/26/24 Heiko Paulheim 27

Intermezzo: Learning with Weighted Instances

• Two possible strategies of dealing with weighted instances

• Changing the learning algorithm

– e.g., decision trees, rule learners: adapt splitting/rule growing heuristics,
example on following slides

• Duplicating instances

– an instance with weight n is copied n times

– simple method that can be used on all learning algorithms

2/26/24 Heiko Paulheim 28

Recap: Accuracy

• Most frequently used metrics:

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes TP FN

Class=No FP TN

FNFPTNTP

TNTP




Accuracy

Accuracy1 RateError

2/26/24 Heiko Paulheim 29

Accuracy with Weights

• Definition of accuracy

• Without weights, TP, FP etc. are counts of instances

• With weights, they are sums of their weights

– classic TP, FP etc. are the special case where all weights are 1

FNFPTNTP

TNTP




Accuracy

2/26/24 Heiko Paulheim 30

Adapting Algorithms: Decision Trees

• Recap: Gini index as splitting criterion

• The probabilities are obtained by counting examples

– Again, we can sum up weights instead

• The same works for rule-based classifiers and their heuristics


j

tjptGINI 2)]|([1)(

2/26/24 Heiko Paulheim 31

Adapting Algorithms: Neural Networks

• Neural Networks try to miminize a loss function

• e.g., MAE or MSE

– Weights can be introduced easily

MAE =
∑

all examples

|predicted−actual|

N

MSE =
∑

all examples

(predicted −actual)2

N

2/26/24 Heiko Paulheim 32

Adapting Algorithms: Neural Networks

• Neural Networks try to miminize a loss function

• e.g., MAE or MSE

– Weights can be introduced easily

MAE weighted=
∑

all examples

w example|predicted −actual|

∑
all examples

w example

MSE weighted =
∑

all examples

w example (predicted −actual)2

∑
all examples

wexample

2/26/24 Heiko Paulheim 33

Adapting Algorithms: k-NN

• Standard approach

– use average of neighbor predictions

• With weighted instances

– weighted average

x

2/26/24 Heiko Paulheim 34

Intermezzo: Learning with Weighted Instances

• Handling imbalanced classification problems

• So far:

– undersampling

• removes examples → loss of information

– oversampling

• adds examples → larger data (performance!)

• also: synthetic data points (SMOTE)

• Alternative:

– lowering instance weights for larger class

– simplest approach: weight 1/|C| for each instance in class C

2/26/24 Heiko Paulheim 35

Back to Ensembles: Boosting

• Idea of boosting

– train a set of classifiers, one after another

– later classifiers focus on examples that were misclassified by earlier
classifiers

– weight the predictions of the classifiers with their error

• Realization

– perform multiple iterations

• each time using different example weights

– weight update between iterations

• increase the weight of incorrectly classified examples

• so they become more important in the next iterations
(misclassification errors for these examples count more heavily)

– combine results of all iterations

• weighted by their respective error measures

2/26/24 Heiko Paulheim 36

Illustration of the Weights

• Classifier Weights am

– differences near 0 or 1
are emphasized

• Good classifier

→ highly positive weight

• Bad classifier

→ highly negative weight

• Classifier with error 0.5

→ weight 0

→ this is equal to guessing!

(error)

(w
ei

gh
t)

2/26/24 Heiko Paulheim 37

Illustration of the Weights

• Example Weights

– multiplier for correct and incorrect examples

– depending on error

• Later iterations need to focus
on examples that are

– Incorrectly classified by a
good classifier

– Correctly classified by a
bad classifier

2/26/24 Heiko Paulheim 38

Boosting – Algorithm AdaBoost.M1

1. initialize example weights wi = 1/N (i = 1..N)

2. for m = 1 to t // t ... number of iterations

a) learn a classifier Cm using the current example weights

b) compute a weighted
error estimate

c) if errm>0.5 → exit loop

d) compute a classifier weight

e) for all correctly classified examples ei :

f) for all incorrectly classified examples ei :

g) normalize the weights wi so that they sum to 1

3. for each test example

a) try all classifiers Cm

b) predict the class that receives the highest sum of weights α m

αm=
1
2

ln(
1−errm

errm

)

w i  wi e
−m

wi wi e
m

errm=∑ wi of all incorrectly classified ei

∑i=1

N
wi = 1 because weights

 are normalized

update weights so
that sum of
correctly classified
examples equals
sum of incorrectly
classified examples

2/26/24 Heiko Paulheim 39

Boosting – Error Rate Example

• boosting of decision stumps on simulated data

from Hastie, Tibshirani, Friedman: The Elements of Statistical Learning, Springer Verlag 2001

2/26/24 Heiko Paulheim 40

Toy Example

(taken from Verma & Thrun, Slides to CALD Course CMU 15-781,
 Machine Learning, Fall 2000)

2/26/24 Heiko Paulheim 41

Round 1

2/26/24 Heiko Paulheim 42

Round 2

2/26/24 Heiko Paulheim 43

Round 3

2/26/24 Heiko Paulheim 44

Final Hypothesis

2/26/24 Heiko Paulheim 45

Hypothesis Space of Ensembles

• Each learner has a hypothesis space

– e.g., decision stumps: a linear separation of the dataset,
parallel to the axes

• The hypothesis space of an ensemble

– can be larger than that of its base learners

• Example: bagging with decision stumps

– different stumps → different linear separations

– resulting hypothesis space also allows polygon separations

2/26/24 Heiko Paulheim 46

Boosting in RapidMiner and Python

• Just like voting and bagging

– bdt = AdaBoostClassifier(
 DecisionTreeClassifier),
 n_estimators=200)

2/26/24 Heiko Paulheim 47

Experimental Results on Ensembles

• Ensembles have been used to improve generalization accuracy
on a wide variety of problems

• On average, Boosting provides a larger increase in accuracy than
Bagging

– Boosting on rare occasions can degrade accuracy

– Bagging more consistently provides a modest improvement

• Boosting is particularly subject to over-fitting
when there is significant noise in the training data

– subsequent learners over-focus on noise points

(Freund & Schapire, 1996; Quinlan, 1996)

2/26/24 Heiko Paulheim 48

Back to Combining Predictions

• Voting

– each ensemble member votes for one of the classes

– predict the class with the highest number of vote (e.g., bagging)

• Weighted Voting

– make a weighted sum of the votes of the ensemble members

– weights typically depend

• on the classifier's confidence in its prediction
(e.g., the estimated probability of the predicted class)

• on error estimates of the classifier (e.g., boosting)

• Stacking

– Why not use a classifier for making the final decision?

– training material are the class labels of the training data and the
(cross-validated) predictions of the ensemble members

2/26/24 Heiko Paulheim 49

Stacking

• Basic Idea:

– learn a function that combines the predictions of the individual classifiers

• Algorithm:

– train n different classifiers C1...Cn (the base classifiers)

– obtain predictions of the classifiers for the training examples

– form a new data set (the meta data)

• classes
– the same as the original dataset

• attributes
– one attribute for each base classifier

– value is the prediction of this classifier on the example

– train a separate classifier M (the meta classifier)

2/26/24 Heiko Paulheim 50

Stacking (2)

• Using a stacked
classifier:

– try each of the
classifiers C1...Cn

– form a feature
vector consisting
of their predictions

– submit these
feature vectors
to the meta
classifier M

• Example:

2/26/24 Heiko Paulheim 51

Stacking and Overfitting

• Consider a dumb base learner D, which works as follows:

– during training: store each training example

– during classification: if example is stored, return its class

otherwise: return a random prediction

• If D is used along with a number of classifiers in stacking,
what will the meta classifier look like?

– D is perfect on the training set

– so the meta classifier will say: always use D's result

2/26/24 Heiko Paulheim 52

Stacking and Overfitting

• Solution 1: split dataset (e.g., 50/50)

– use one portion for training the base classifiers

– use other portion to train meta model

• Solution 2: cross-validate base classifiers

– train classifier on 90% of training data

– create features for the remaining 10% on that classifier

– repeat 10 times

• The second solution is better in most cases

– uses whole dataset for meta learner

– uses 90% of the dataset for base learners

2/26/24 Heiko Paulheim 53

Stacking in RapidMiner and Python

• Looks familiar again

– we need a set of base learners (like for voting)

– and a learner for the stacking model

• Python: not in scikit-learn, use, e.g., package mlxtend

– requires setting base classifiers and meta learner as well

2/26/24 Heiko Paulheim 54

Performance of Stacking

• Accuracy in this experiment:

– Naive Bayes: 0.71

– k-NN: 0.81

– Ripper: 0.71

• Stacked model: 0.86

2/26/24 Heiko Paulheim 55

Stacking

• Variant: also keep the original attributes

• Predictions of base learners are additional attributes
for the stacking predictor

– allows the identification of “blind spots” of individual base learners

• Variant: stacking with confidence values

– if learners output confidence values,
those can be used by the stacking learner

– often further improves the results

2/26/24 Heiko Paulheim 56

Multi-Modal Data Revisited

• Last week, we saw the idea of encoders

Classifier/Regressor

2/26/24 Heiko Paulheim 57

The Classifier Selection Problem

• Question: decision trees or rule learner – which one is better?

• Two corner cases – recap from Data Mining 1

Accuracy:
● Baseline: 0.5
● Decision Tree: 0.45
● Rule Learner: 0.7

Accuracy:
● Baseline: 0.89
● Decision Tree: 1.0
● Rule Learner: 0.89

● Voting: 0.65
● Weighted Voting: 0.7
● Stacking: 0.83

● Voting: 0.89
● Weighted Voting: 1.0
● Stacking: 1.0

2/26/24 Heiko Paulheim 58

Regression Ensembles

• Most ensemble methods also work for regression

– voting: use average

– bagging: use average or weighted average

– stacking: learn regression model as stacking model!

– boosting: the regression variant is called additive regression

• In Python: usually the same class ending in Regressor instead of
Classifier

2/26/24 Heiko Paulheim 59

Additive Regression

• Boosting can be seen as a greedy algorithm for fitting additive
models

• Same kind of algorithm for numeric prediction:

– Build standard regression model

– Gather residuals, learn model predicting residuals, and repeat

• Given a prediction p(x), residual = (x-p(x))²

• To predict, simply sum up weighted individual predictions from all
models

2/26/24 Heiko Paulheim 60

Additive Regression w/ Linear Regression

• What happens if we use Linear Regression
inside of Additive Regression?

• The first iteration learns a linear regression model lr1

– By minimizing the sum of squared errors

• The second iteration aims at learning a LR lr2 model for

– x' = (x-lr1(x))²

– Since (x-lr1(x))² is already minimal, lr2 cannot improve upon this

• Hence, the subsequent linear models
will always be a constant 0

2/26/24 Heiko Paulheim 61

Additive Regression w/ Linear Regression

• First regression model:

y

x

2/26/24 Heiko Paulheim 62

Additive Regression w/ Linear Regression

• Second (and third, fourth, ...) regression model:

y

x

2/26/24 Heiko Paulheim 63

Additive Regression

• Bottom line: additive and linear regression are not a good match

2/26/24 Heiko Paulheim 64

Example 1: One-dimensional, Non-linear

Linear Regression: RMSE = 0.199

Isotonic Regression: RMSE = 0.171 Additive Isotonic Regression:
RMSE = 0.073

2/26/24 Heiko Paulheim 65

Example 2: Multidimensional, Non-Linear

• z = 10x² – y³

RMSE of...
...Linear Regression: 385
...Isotonic Regression: 293
...Additive Isotonic Regression: 122

2/26/24 Heiko Paulheim 66

XGBoost

• A pretty strong learning algorithm

– For a while, it was the leading algorithm in top submissions at Kaggle

• Additive Regression w/ Regression Trees

• Regularization

– Respect size of trees

– Larger trees: more likely to overfit!

• Introduce penalty for tree size

– Overcomes the problem of overfitting in boosting

2/26/24 Heiko Paulheim 67

Intermediate Recap

• Ensemble methods

– outperform base learners

– Help minimizing shortcomings of single learners/models

– simple and complex methods for method combination

• Reasons for performance improvements

– individual errors of single learners can be “outvoted”

– more complex hypothesis space

2/26/24 Heiko Paulheim 68

Ensembles for Other Problems

• There are ensembles also for...

• ...clustering (Vega-Pons and Ruiz-Shulkloper, 2011)

– trying to unify different clusterings

– using a consensus function mapping different clusterings to each other

• ...outlier detection (Zimek et al., 2014)

– unifying outlier scores of different approaches

– requires score normalization and/or rank aggregation

• etc.

2/26/24 Heiko Paulheim 69

Learning with Costs

• Most classifiers aim at reducing the number of errors

– all errors are regarded as being equally important

• In reality, misclassification costs may differ

• Consider a warning system in an airplane

– issue a warning if stall is likely to occur

– based on a classifier using different sensor data

– wrong warnings may be ignored by the pilot

– missing warnings may cause the plane to crash

• Here, we have different costs for

– actual: true, predicted: false → very expensive

– actual: false, predicted true → not so expensive

http://i.telegraph.co.uk/multimedia/archive/01419/plane_1419831c.jpg

2/26/24 Heiko Paulheim 70

The MetaCost Algorithm

• Form multiple bootstrap replicates of the training set

– Learn a classifier on each training set

– i.e., perform bagging

• Estimate each class’s probability for each example

– by the fraction of votes that it receives from the ensemble

• Use conditional risk equation to relabel each training example

– with the estimated optimal class

• Reapply the classifier to the relabeled training set

2/26/24 Heiko Paulheim 71

MetaCost

• Conditional risk R(i|x) is the expected cost of predicting that x belongs
to class i

– R(i|x) = ∑P(j|x)C(i, j)

– C(i,j) are the misclassification costs
(classify an example of class j as class i)

– P(j|x) are obtained by running the bagged classifiers

• The goal of MetaCost procedure is: to relabel the training examples
with their “optimal” classes

– i.e., those with lowest risk

• Then, re-run the classifier to build a final model

– the resulting classifier will be defensive,
i.e., make low-risk predictions

– in the end, the costs are minimized

2/26/24 Heiko Paulheim 72

MetaCost

• Pilot alarm alarm example

– x1: alarm, P(alarm|x1) = 0.8

– x2: no, P(no|x2) = 0.9

• Risk values:
– R(alarm|x1) = P(alarm|x1)*C(alarm,alarm) + P(no|x1)*C(alarm,no) = 0.2*1 = 0.2

– R(no|x1) = P(alarm|x1)*C(no,alarm) + P(no|x1)*C(no,no) = 0.8*10 = 8

– R(alarm|x2) = P(alarm|x2)*C(alarm,alarm) + P(no|x2)*C(alarm,no) = 0.9*1 = 0.9

– R(no|x2) = P(alarm|x2)*C(no,alarm) + P(no|x2)*C(no,no) = 0.1*10 = 1

• Since 0.9<1

– x2 is relabeled to “alarm”

http://i.telegraph.co.uk/multimedia/archive/01419/plane_1419831c.jpg

predicted

alarm no alarm

alarm 0 10

no alarm 1 0ac
tu

al

8/10 classifiers
are correct

=0

2/26/24 Heiko Paulheim 73

MetaCost vs. Balancing

• Recap balancing:

– in an unbalanced dataset, there is a bias towards the larger class

– balancing the dataset helps building more meaningful models

• MetaCost:

– incidentally unbalance the dataset,
labeling more instances with the “cheap” class

– make the learner have a bias towards the “cheap” class

• i.e., expensive mis-classifications are avoided

– in the end, the overall cost is reduced

• In the example:

– there will be more false alarms (stall warning, but actually no stall)

– the risk of not issuing a warning is reduced

2/26/24 Heiko Paulheim 74

MetaCost Example

• Python: https://github.com/Treers/MetaCost

Base Learner

Cost Matrix

2/26/24 Heiko Paulheim 75

MetaCost Example

• Experiment: set misclassification cost
Rock → Mine = 2; Mine → Rock = 1

• Non-cost sensitive decision tree:

– misclassification cost = 0.33

• MetaCost with decision tree:

– misclassification cost = 0.24

2/26/24 Heiko Paulheim 76

Another Example for Cost-Sensitive Prediction

• Predicting ordinal attributes

– e.g., very low, low, medium, high, very high

• Typical cost matrix:

predicted

very low low medium high very high

very low 0 1 2 4 8

low 1 0 1 2 4

medium 2 1 0 1 2

high 4 2 1 0 1

very high 8 4 2 1 0ac
tu

al

2/26/24 Heiko Paulheim 77

Wrap-up

• Ensemble methods in general

– build a strong model from several weak ones

• Ingredients

– base learners

– a combination method

• Variants

– Voting

– Bagging (based on sampling)

– Boosting (based on reweighting instances)

– Stacking (use learner for combination)

• Also used for cost-sensitive predictions (MetaCost)

2/26/24 Heiko Paulheim 78

Questions?

