Data Mining II
Organization

Heiko Paulheim, Nicolas Heist
Hello

• Heiko Paulheim
• Professor for Data Science
• Research Interests:
 – Semantic Web and Linked Open Data
 – Data Mining with Linked Open Data
 – Ontology Matching
 – Data Quality and Data Cleaning
• Consultation: Tuesdays, 9-10am
 – Please make an appointment via e-mail to Ms. Lermer
• Heiko will teach the lectures
Hello

- M.Sc. Nicolas Heist
- Graduate Research Associate
- Research Interests:
 - Semantic Web Technologies
 - Knowledge Graphs and Linked Data
- eMail: nico@informatik.uni-mannheim.de
- Nico will teach the exercises and co-supervise the projects
Course Organization

• Lecture
 – addresses advanced data mining topics
 – builds on Data Mining I lecture contents!

• Project Work
 – we will take part in the Data Mining Cup 2020
 – with eight teams
 • the two best performing teams submit their solutions
 – regular presentations of your approaches
 – paper and final presentation

• Exercise
 – weekly with warm up on DMC tasks from previous years
Requirements

- Final exam
 - 100 % written exam
 - project is not graded, but mandatory!
- Project work
 - work on DMC tasks
- Presentations
 - up to three intermediate presentations
 - open questions, problems, current results (numbers!)
 - everybody has to present once during those presentations
- Final report
 - 10 pages
 - solutions, results, lessons learned
The Data Mining Cup

• An annual competition
 – for students
 – run since 2002
 – participation from all over the world
 – max. two teams per institution (i.e., university)
 – 2019: 149 participating teams from 28 countries

• Timeline
 – DMC registration today (!)
 – tasks are published on March 19th
 – submissions are due on April 23rd (internal submission: April 22nd)

• Further information: http://www.data-mining-cup.de/
The Data Mining Cup

- 2017: both Uni Mannheim teams among top 10 (out of 202)
- 2018: team from Uni Mannheim scores 2nd place (out of 197)
- 2019: team from Uni Mannheim scores 10th place (out of 149)
- Prices are awarded at a conference in Berlin in June
 - Top 10 teams are invited to present their solutions
Schedule

• 18.2. Introduction & Data Preprocessing
• 25.2. Ensembles
• 3.3. Time Series
• 10.3. Neural Networks & Deep Learning
• 17.3. Hyperparameter Tuning
• 24.3. DMC Session 1
• 31.3. DMC Session 2
• 7.4. Easter Break
• 14.4. Easter Break
• 21.4. DMC Session 3
• 28.4. Anomaly Detection
• 5.5. Model Verification

DMC task published on 19.3.

final DMC submission 23.4.
Deadlines at a Glance

• today: DMC registration
• March 19th: you know the DMC tasks and your team
• April 21st: submission of your DMC solution to Nico and Heiko
• April 23rd: official submission of your DMC solution
• May 24th: submission of your final report
Lecture Contents

- Data Preprocessing (today!)
- Ensemble Learning
- Time Series Analysis
- Neural Networks and Deep Learning
- Parameter Tuning
- Anomaly Detection
- Model Evaluation, Verification, and Comparison
Course Organization

• Lecture Webpage: Slides, Announcements
 – hint: look at version tags!

• Additional Material
Video Recordings of Last Year's Lecture

 - Accessible from within university network and VPN

Interquartile Range

- Divides data in quartiles
- Definitions:
 - \(Q_1 : x \geq Q_1 \) holds for 75% of all \(x \)
 - \(Q_3 : x \geq Q_3 \) holds for 25% of all \(x \)
 - \(IQR = Q_3 - Q_1 \)
- Outlier detection:
 - All values outside \([\text{median} - 1.5 \times \text{IQR} ; \text{median} + 1.5 \times \text{IQR}]\)
- Example:
 - \(0, 1, 1, 3, 3, 5, 7, 42 \) → median = 3, \(Q_1 = 1 \), \(Q_3 = 7 \) → \(IQR = 6 \)
 - Allowed interval: \([3\times 1.5^6 ; 3\times 1.5^6] = [6 ; 12] \)
 - Thus, 42 is an outlier
Literature & Slide Sources

• Pang-Ning Tan, Michael Steinbach, Vipin Kumar: Introduction to Data Mining, Pearson / Addison Wesley.
 – 10 copies in university library.
 – we provide scans of important chapters via ILIAS

 – several copies in university library
 – we provide scans of important chapters via ILIAS
Literature & Slide Sources

• Gregory Piatetsky-Shapiro, Gary Parker: KDNuggets Data Mining course: http://www.kdnuggets.com/data_mining_course/

• Jiawei Han and Micheline Kamber: Data Mining – Concepts and Techniques
 – free e-book access via university library
Questions?