 MANNHEIM

Database Technology
SQL Part 2

Heiko Paulheim

Looking Back
-

* We have seen
— Table definition, creation, and removal
— Reading data from tables

SQL
Commands
DDL DML DCL TCL

CREATE SELECT GRANT COMMIT
ALTER INSERT REVOKE ROLLBACK
DROP UPDATE SAVEPOINT
TRUNCATE DELETE SET TRANSACTION
COMMENT MERGE
RENAME CALL

EXPLAIN PLAN

LOCK TABLE

02/28/18 Heiko Paulheim

Outline
e

* Join Expressions

* Modifications of the database
— Deletion of tuples from a given relation
— Insertion of new tuples into a given relation
— Updating of values in some tuples in a given relation

* Views

* Integrity Constraints
* SQL Data Types

* Authorization

02/28/18 Heiko Paulheim

Join Operations
e

* Join operations

— take two relations

— return as new relation as their result
* Ajoin operation

— is a Cartesian product

— requires that tuples in the two relations match (under some
condition)

— specifies the attributes that are present in the result of the join

* The join operations are typically used as subquery expressions in
the from clause

02/28/18 Heiko Paulheim

Join Operations
e

* Recap: We have already seen a form of joins:
* Ajoin operation
— is a Cartesian product

— requires that|tuples in the two relations match (under some
condition)

— specifies the attributes that are present in the result of the join

* Find the names|of all instructors who have taught some course and

the course _id

select namejcourse id
from instructor, teach
where instructor.ID = teaches.ID

02/28/18 Heiko Paulheim

Outer Joins

Consider the two relations below

Desired:

— List all courses with their prerequisites

— Note: course CS-315 has no prerequisites

02/28/18

course_id title dept_name | credits
BIO-301 | Genetics Biology 4
C5-190 | Game Design| Comp. Sci. 4
CS-315 |Robotics Comp. Sci. 3
course_id | prereq_id
BIO-301 | BIO-101
C5-190 | C5-101
CS-347 | C5-101

Heiko Paulheim

Outer Joins
e

* List all courses with their prerequisites

select C.course _id, C.title, C.credits, C.dept_name, P.course_id
from course as C, prereq as P
where C.course id = P.course_id

course_id title dept_name | credits course_id | prereg_id

BIO-301 | Genetics Biology 4 BIO-301 | BIO-101

C5-190 [Game Design| Comp. Sci. 4 CS-190 CS-101

(C5-315 | Robotics Comp. Sci. 3 CS-347 CS-101
C.course _id C.title C.credits C.dept_name P.course id
Bl1O-301 Genetics 4 Biology BlIO-101
CS-190 Game Design 4 Comp. Sci. CS-101

02/28/18 Heiko Paulheim

Outer Joins
e

« List all courses with their prerequisites

select C.course _id, C.title, C.credits, C.dept _name, P.prereq_id
from course as C left outer join prereq as P
on C.course _id = P.course _id

course_id title dept_name | credits course_id | prereg_id

BIO-301 | Genetics Biology 4 BIO-301 | BIO-101

C5-190 [Game Design| Comp. Sci. 4 CS-190 | CS-101

(C5-315 |Robotics Comp. Sci. 3 CS-347 CSs-101
C.course_id C.title C.credits C.dept_name P.prereg_id
Bl1O-301 Genetics 4 Biology BlIO-101
CS-190 Game Design 4 Comp. Sci. CS-101
CS-315 Robotics 3 Comp. Sci. null

02/28/18 Heiko Paulheim

Join Operations

Join type — defines how tuples in each relation that do not match

any tuple in the other relation (based on the join condition) are
treated

— inner join: ignore

— outer join: fill with null values

Join condition — defines which tuples in the two relations match,
and what attributes are present in the result of the join

— explicit: on clause
— implicit: natural keyword

Join types Join Conditions
inner join natural

left outer join on <predicate>
right outer join using (A, Ay, ..., A))
full outer join

02/28/18 Heiko Paulheim

Outer Joins
e

* List all courses with their prerequisites

select C.course _id, C.title, C.credits, C.dept_name, P.prereq _id
from course as C right outer join prereq as P
on C.course id = P.course _id

course_id title dept_name | credits course_id | prereq_id
BIO-301 | Genetics Biology 4 BIO-301 | BIO-101

CS5-190 | Game Design| Comp. Sci. 4 CS-190 CS-101

CS-315 |Robotics Comp. Sci. 3 Cs-347 | CS-101
C.course_id C.title C.credits C.dept_name P.prereqg_id
Bl1O-301 Genetics 4 Biology BlIO-101
CS-190 Game Design 4 Comp. Sci. CS-101
CS-347 null null null CS-101

02/28/18 Heiko Paulheim

Outer Joins
e

* List all courses with their prerequisites

select C.course _id, C.title, C.credits, C.dept_name, P.prereq _id
from course as C full outer join prereq as P
on C.course id = P.course _id

course_id title dept_name | credits course_id | prereq_id

BIO-301 | Genetics Biology 4 BIO-301 | BIO-101

CS5-190 | Game Design| Comp. Sci. 4 CS-190 CS-101

CS-315 | Robotics Comp. Sci. 3 Cs-347 | CS-101
C.course_id C.title C.credits C.dept_name P.prered_id
B1O-301 Genetics 4 Biology BIO-101
CS-190 Game Design 4 Comp. Sci. CS-101
CS-347 null null null CS-101
CS-315 Robotics 3 Comp. Sci. null

02/28/18 Heiko Paulheim

Join Types at a Glance

SELECT <select_list> SELECT <schect_list=
FROM TableA A FROM TableA A
LEFT JOIN TableB B RIGHT JOIN Tableh B
O AKey = B.Key O™ AKey = B.Key
SELECT <sclect_lisy>
FROM TablcA A
INMNER JOIN TablcB B
OM A Key = B Key
SELECT <sclect list> SELECT <select_list=>
FROM TableA A FROM TableA A

LEFT JOIN TakleB B
OMN A Key = B.Key
WHERE B.Eey IS NULL

RIGHT JOHIMN TableB B
O AKey = B.Key
WHERE A.Kev 15 NULL

SELECT <schoet_list>
SELECT <sclect list> FROM TableA A

FROM Tablea A FULL OUTER JOIN TablcB B
FULL OUTER JOIN TableB B O™ AKey = B.Key

ON AKey = B.Eey WHERLE .A..Hr::.' I's MLUILL

SCL Mo, 2002 OR B.Key 15 NULL

https://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

02/28/18 Heiko Paulheim

Deleting from a Relation

* Delete
— Remove all tuples from the student relation
— delete from instructor
— May be refined (e.g., only removing specific tuples)
* delete from instructor where ...

<«

#
E il

02/28/18 Heiko Paulheim

Deleting from a Relation
-

* Delete all instructors from the Finance department

delete from instructor
where dept name= 'Finance’;

* Delete all tuples in the instructor relation for those instructors
associated with a department located in the Watson building

delete from instructor
where dept name in (select dept name
from department
where building = "Watson’);

02/28/18 Heiko Paulheim

Deleting from a Relation
-

* Delete all instructors whose salary is less than the average salary of

instructors
delete from instructor

where salary < (select avg (salary)

* This would delete five tuples
— But then, the average changes!

* How does the query behave if the
deletion is processed one by one?

02/28/18

from instructor);

Heiko Paulheim

ID name dept_name salary
22222 | Einstein Physics 95000
12121 | Wu Finance 90000

=5254S=—F1Sarct TS iULy 60000—
45565 | Katz Comp. Sci. | 75000
98345 | Kim Elec. Eng. 80000
FoFe——crieke Bietogy #2660
+610—-Srintvasarr—ComprSei——65666

583—Cattfrert History 62066
83821 | Brandt Comp. Sci. | 92000

55 Niozart vitrste +0000—
33456 | Gold Physics 87000
76543 | Singh Finance 80000

Deleting from a Relation
-

* Delete all instructors whose salary is less than the average salary of
Instructors

delete from instructor
where salary < (select avg (salary)
from instructor);

* Processing this query in SQL
— First, the select query is evaluated
* i.e., the result is now treated as a constant
— Then, the delete statement is executed

02/28/18 Heiko Paulheim

DELETE vs. TRUNCATE
I EE——

* All records from a table can also be removed using
truncate table instructor;
Difference to

delete from instructor;

* delete keeps the table and deletes only the data
* truncate drops and re-creates the table

— much faster Description

— but cannot be undone TRUNCATE TABLE empties a table completely. It requires the prop
privilege (before 5.1.16, it required the DELETE privilege) See

* delete is DML, truncate is DDL GRANT |
— Different rights may be necessary (see later!)

02/28/18 Heiko Paulheim

Insertion into a Relation
S e

* Add a new tuple to course

insert into course
values ('CS-437°, 'Database Systems’, 'Comp. Sci.’, 4);

COWYSE

CoUrse i

title
dept_name |
credits

* or equivalently
insert into course (course_id, title, dept_name, credits)
values ('CS-437’, 'Database Systems’, 'Comp. Sci.’, 4);

* Add a new tuple to student with tot creds set to null

insert into student
values ('3003’, 'Green’, 'Finance’, null);

02/28/18 Heiko Paulheim

Insertion of Data from Other Tables
e

* Add all instructors to the student relation with tot creds setto 0

insert into student
select /D, name, dept_name, 0
from instructor

* As in the deletion example, the select from where statement is
evaluated fully before any of its results are inserted into the relation

Otherwise queries like
insert into table1 select * from table
would cause problems

02/28/18 Heiko Paulheim

Inserting Data into Relations with Constraints
S

» Effect of primary key constraints:
— insert into instructor values (‘10211’°, 'Smith’, '‘Biology’, 66000);
— insert into instructor values (‘10211’, ’Einstein’, 'Physics’, 95000);
— ...and we defined ID the primary key!

* Effect of not null constraints
— insert into instructor values (‘10211’, null, 'Biology’, 66000);

* Recap: DBMS takes care of data integrity

02/28/18 Heiko Paulheim

Updating Data
-

* Increase salaries of instructors whose salary is over $100,000 by
3%, and all others by a 5%

* Write two update statements:

update instructor
set salary = salary * 1.03
where salary > 100000;
update instructor
set salary = salary * 1.05
where salary <= 100000;

* The order is important
* Can be done better using the case statement (next slide)

02/28/18 Heiko Paulheim

Conditional Updates with case Statement
e

* Increase salaries of instructors whose salary is over $100,000 by
3%, and all others by a 5%

update instructor
set salary = case
when salary <= 100000 then salary * 1.05
else salary * 1.03
end

02/28/18 Heiko Paulheim

Updates with Subqueries
e

* Recompute and update tot_creds value for all students
update student S
set tot cred = (select sum(credits)
from takes, course
where takes.course id = course.course_id
and S./D= takes.ID.and takes.grade <>'F’
and takes.grade is not null);

* Sets tot creds to null for students who have not taken any course
* Instead of sum(credits), use:

case
when sum(credits) is not null then sum(credits)
else 0

end

02/28/18 Heiko Paulheim

Views
e

* Recap: logical database model

— The relations in the database and their attributes
* Views:

— Virtual relations

— Different from those in the database

— But with the same data

— ...hide data from users

* Example: instructors’ names and departments without salaries, i.e.,
select /D, name, dept_name
from instructor

02/28/18 Heiko Paulheim

Views
e

* Example: some users may see employees with salaries,
others only without salary

* How about two tables
— One with salaries

— One without salaries
e 7

02/28/18 Heiko Paulheim

Defining Views
S

* Aview is defined using the create view statement:
create view v as < query expression >

— <query expression> is any legal SQL expression
— the view name is represented by v
* Once the view has been created
— it can be addressed as v as any other relations
— it will always contain the data read by the SQL expression

LIVE
ON AIR

02/28/18 Heiko Paulheim

Example Views
e

* Instructors without their salary

create view faculty as
select /D, name, dept_name
from instructgr

* Using the view./find all instructors in the Biology department

from faculty
where dept name = ‘Biology’;

* Create a view of department salary totals

create view departments_total salary(dept _name, total salary)
as

select dept name, sum (salary)

from instructor

group by dept _name;

02/28/18 Heiko Paulheim

Defining Views using other Views
-

* create view physics fall 2009 as
select course.course _id, sec id, building, room_number
from course, section
where course.course id = section.course id
and course.dept _name = 'Physics’
and section.semester = 'Fall’
and ¢ ¢ aans

create view physics fall 2009 watson as
* create view p (select course_id, room_number
select cour from (select course.course_id, building, room_number
from physi from course, section
where builc where course.course id = section.course_id
and course.dept_name = 'Physics’
and section.semester = 'Fall’
and section.year = ’2009’)
where building= "Watson’;

02/28/18 Heiko Paulheim

Defining Views using Other Views
S

* One view may be used in the expression defining another view

* A view relation v, is said to depend directly on a view relation v,
if v, is used in the expression defining v;

* A view relation v, is said to depend on view relation v,
if either v, depends directly to v,
or there is a path of dependencies from v, to v,

— I.e., the depends on relation is transitive
* A view relation v is said to be recursive if it depends on itself

02/28/18 Heiko Paulheim

Updating Views
S

* Definition of a simple view (recap: instructors without salaries):

ivstructor

create view faculty as D +
select /D, name, dept_name
from instructor

natte
—| dept name
salary

* Add a new tuple to faculty view which we defined earlier
insert into faculty values ('30765’, 'Green’, 'Music’);

* This insertion must be represented by the insertion of the tuple
('30765’, 'Green’, 'Music’, null)

into the instructor relation < -

ﬁs\gan only work

/If salary is not defin
t as not null!

02/28/18 Heiko Paulheim

Updating Views
S

 (Consider the view

ivstructor

create view biology faculty as D +
select /ID,name _| ot it
from faculty e

where dept _name = ‘Biology’;

* and

insert into biology faculty
values (43278,'Smith’);

* Would this lead to
insert into instructor values (43278,'Smith’,’Biology’,null);

02/28/18 Heiko Paulheim

Updating Views
S

* Most where constraints cannot be translated into a value to insert

* Consider
where dept _name = ‘Biology’ or dept_name = ‘Physics’

or
where salary > 50000

* Hence, where clauses are typically not translated into a value

02/28/18 Heiko Paulheim

Updating Views
S

* Other example used before

create view departments_total salary(dept _name, total salary)
as

select dept name, sum (salary)

from instructor

group by dept _name;

* What should happen upon

update departments total salary
set fotal salary = total _salary * 1.05
where dept _name = “Comp. Sci.”;

02/28/18 Heiko Paulheim

Updating Views
S

* create view instructor_info as
select /D, name, building
from instructor, department
where instructor.dept _name= department.dept name,;

* insert into instructor_info values ('69987’, 'White’, 'Taylor’);
— which department, if multiple departments are in Taylor?

— what if no department is in Taylor? department

dept _name
building
budget

instructor
ia) —
Haie
dept nante
salary

02/28/18 Heiko Paulheim

Updateable Views
-

* Aview is called updateable if
— The from clause has only one database relation

— The select clause contains only attribute names of the relation,
and does not have any expressions, aggregates, or distinct
specification

— Any attribute not listed in the select clause can be set to null
— The query does not have a group by or having clause

* Most DMBS only allow updates on such views!

02/28/18 Heiko Paulheim

Materialized vs. Non-Materialized Views
S e

* Normal views are not materialized

— When issuing a select against a view, the underlying data
is created on the fly

— Pro: guarantees recent and non-redundant data, saves space

— Con: some views may be expensive to compute
(e.g., extensive use of aggregates)

* Materializing a view: create a physical table containing all the
tuples in the result of the query defining the view

— If relations used in the query are updated, the materialized view result
becomes out of date

— Need to maintain the view, by updating the view whenever the
underlying relations are updated

02/28/18 Heiko Paulheim

Integrity Constraints
S

* Data errors may occur due to, e.g.,
— Accidental wrong entries in form fields
— Faulty application program code
— Deliberate attacks

* Integrity constraints

— qguard against damage to the database

— ensuring that authorized changes to the database do not result in a loss
of data consistency

* Examples
— A checking account must have a balance greater than $10,000.00
— A salary of a bank employee must be at least $4.00 an hour
— A customer must have a (non-null) phone number

02/28/18 Heiko Paulheim

Integrity Constraints on a Single Relation
S

* We have already encountered
— not null
— primary and foreign key
* We will get to know
— unique
— check (P), where P is a predicate

02/28/18 Heiko Paulheim

NOT NULL and UNIQUE Constraints
e

* not null
— Declare name and budget to be not null

name varchar(20) not nuli
budget numeric(12,2) not null

 unique (A1, Ay, ..., An)

— The unique specification states that the attributes A1, A2, ... Am
form a candidate key

— Candidate keys are permitted to be null
(in contrast to primary keys)

02/28/18 Heiko Paulheim

The CHECK Constraint

* check (P)
— where P is a predicate

* Example: ensure that semester is either fall or spring

create table section (
course_id varchar (8),
sec id varchar (8),
semester varchar (6),
year numeric (4,0),
building varchar (15),
room_number varchar (7),
time slot id varchar (4),
primary key (course _id, sec_id, semester, year),
check (semester in ('Fall’, 'Spring’))

);

02/28/18 Heiko Paulheim

Foreign Keys and Referential Integrity

departrment
° Example dept_name
. building
— instructors have a department budget
— each department should also appear
In the department relation
. g sty uct
* Definition: s
— Let A be a set of attributes Efgilm
Salary

— Let R and S be two relations that contain attributes A and where
A is the primary key of S

— Ais said to be a foreign key of R if for any values of A
appearing in R these values also appear in S

02/28/18 Heiko Paulheim

Cascading Actions in Referential Integrity
e

‘ department
* Example: degt_name
. buildin
— instructors have a department duitet
— each department should also appear
In the department relation
. . . . instructor
How to ensure referential integrity? o +—
— i.e., what happens if a department is deleted ok i
salary

from the department relation
* Possible approaches

— Reject the deletion<h default action

— Delete all instructors as well

— Set the department of those instructors to null

02/28/18 Heiko Paulheim

Cascading Actions in Referential Integrity
e

* (Cascading updates ‘ m:f
— If a foreign key is changed (e.g., renaming a department) ZE;I;;TS
— ...then rename in all referring relations
* Cascading deletions |
— If a foreign key is deleted (e.g., deleting a department) Emmt
— ...then delete all rows in referring relations ;%M

* create table instructor (

dept_name varchar(20),

foreign key (dept_name) references department
on delete cascade
on update cascade,

)

02/28/18 Heiko Paulheim

Cascading Actions in Referential Integrity

* Cascading deletions may run over several tables

...s0 we should be very careful!

student

02/28/18

n
[d
5

takes
D
2
s
s ¥
grade
section COuYse
B course id " P congie 4
Ly sec_id e txtI
— 5 o
i be " tirme_siot C‘"’ 1ts
| | room_no tisme _slot id
time_slot id day
start iime
end_time
classroot %
Ll Building]
o room s
capacity teaches

h 4
A

I
e
ot

Y

department i
e 5 I
bu: mE
msfrucfor

W

/

Heiko Paulheim

Cascading Actions in Referential Integrity
e

* set null for updates
— If a foreign key is changed (e.g., renaming a department)
— ...then set null for all referring relations
* set null for deletions
— If a foreign key is deleted (e.g., deleting a department)
— ...then set null in referring relations

* create table instructor (

dept_name varchar(20),

foreign key (dept _name) references department
on delete set null,
on update set null,

)

02/28/18 Heiko Paulheim

Date and Time Data Types in SQL
e

* We have already encountered characters and numbers
* date: Dates, containing a (4 digit) year, month and date
— Example: date 2005-7-27°
* time: Time of day, in hours, minutes and seconds.
— Example: time ‘09:00:30° time ‘09:00:30.7%’
* timestamp: date plus time of day
— Example: timestamp ‘2005-7-27 09:00:30.75’
* interval: period of time
— Example: interval ‘1’ day

— Subtracting a date/time/timestamp value from another gives an
interval value

— Interval values can be added to date/time/timestamp values

02/28/18 Heiko Paulheim

Arithmetics with Dates
e

* Dates can be compared
— i.e,<or>
— e.g., select employees who started before January 1st, 2017
— Special function: NOW() (in MariaDB; name may differ for other DBMS)
* Dates can be added to / substracted from intervals and other dates
— e.g., select students who have been enrolled for more than five years

* Implementation not standardized
— Details differ from DBMS to DBMS!

02/28/18 Heiko Paulheim

User Defined Types
S

* create type construct in SQL creates user-defined type

create type Dollars as numeric (12,2) final

* create table department required due to

(dept_name varchar (20), SQL standard;
building varchar (15), not rgallg I
budget Dollars); meaningtu

02/28/18 Heiko Paulheim

User-defined Domains
e

* create domain construct creates user-defined domain types

create domain person_name char(20) not null

* Types and domains are similar

— Domains can have constraints, such as not null, specified on
them

create domain degree level varchar(10)
constraint degree level test
check (value in ('Bachelors’, 'Masters’, 'Doctorate’));

02/28/18 Heiko Paulheim

Domain Constraints vs. Table Constraints

* Some checks may reoccur over different relations
— e.g., degrees for students or instructors
— e.g., salutations
— e.g., valid ranges for ZIP codes

bologna
* Binding them to a domain is preferred process

— Central definition
— Consistent usage

o

st 1123140555 112314158

GRONN 7~ 1004

HAND DRAUFY
1Y

17 Q8P 93-18

Seit 1.7 gelten newe Posteitzahlen

02/28/18 Heiko Paulheim

Large Object Types
S

* Large objects (photos, videos, CAD files, etc.) are stored as a large
object.
— blob: binary large object -- object is a large collection of

uninterpreted binary data (whose interpretation is left to an
application outside of the database system)

— clob: character large object -- object is a large collection of
character data

* When a query returns a large object, a pointer is returned rather
than the large object itself

02/28/18 Heiko Paulheim

Authorization
e

* Rights for accessing a database may differ
— Only administrators may change the schema

* Rights for accessing a database can be very fine grained
— Not everybody may see a persons’ salary
— Not everybody may alter a person’s salary
— Nobody may alter their own salary

— Special restrictions may apply for entering salaries
over a certain upper bound

02/28/18 Heiko Paulheim

Authorization
e

* Forms of authorization on parts of the database:
— Read - allows reading, but not modification of data

— Insert - allows insertion of new data, but not modification of
existing data

— Update - allows modification, but not deletion of data
— Delete - allows deletion of data

* Forms of authorization to modify the database schema
— Index - allows creation and deletion of indices
— Resources - allows creation of new relations
— Alteration - allows addition or deletion of attributes in a relation
— Drop, Truncate - allows deletion of relations

02/28/18 Heiko Paulheim

Authorization Specification in SQL
-

* The grant statement is used to confer authorization
grant <privilege list>
on <relation name or view name> to <user list>
* <user list> is:
— auser-id
— public, which allows all valid users the privilege granted
— A role (more on this later)

* Granting a privilege on a view does not imply granting any
privileges on the underlying relations

* The grantor of the privilege must already hold the privilege on the
specified item (or be the database administrator)

02/28/18 Heiko Paulheim

Privilege Definition in SQL
e

* select: allows read access to relation,or the ability to query using
the view

— Example: grant users U,, U,, and U; select authorization on the
instructor relation:

grant select on instructor to U,, U,, U
* insert: the ability to insert tuples
* update: the ability to update using the SQL update statement
* delete: the ability to delete tuples.
* all privileges: used as a short form for all the allowable privileges

02/28/18 Heiko Paulheim

Revoking Privileges
-

* The revoke statement is used to revoke authorization.
revoke <privilege list>
on <relation name or view name> from <user list>
* Example:
revoke select on branch from U,, U,, U,
* <privilege-list> may be all to revoke all privileges the revokee may hold

* If <revokee-list> includes public, all users lose the privilege except
those granted it explicitly

* If the same privilege was granted twice to the same user by different
grantees, the user may retain the privilege after the revocation

* All privileges that depend on the privilege being revoked are also
revoked

02/28/18 Heiko Paulheim

Roles
S e

* Databases may have many users
— e.g., all students and employees of a university

* Managing privileges for all those individually can be difficult
— User groups (also called: roles) are more handy
— Example roles
* Student
Instructor

Secretary
Dean

02/28/18 Heiko Paulheim

Roles
S e

* Creating roles and assigning them to individual users
— create role instructor;
— grant instructor to Amit;

* Granting privileges to roles
— grant select on takes to instructor;

* Roles can form hierarchies
— i.e., arole inherits from other roles
create role fteaching assistant
grant teaching assistant to instructor,
— Instructor inherits all privileges of teaching assistant

02/28/18 Heiko Paulheim

Roles on Views
S e

Example: Geology department members can administrate their own
staff, but not others

create view geo instructor as
(select *

from instructor

where dept _name = 'Geology’);

grant select on geo instructor to geo_staff
Suppose that a geo_ staff member issues

select *
from geo instructor,

What if
— geo_staff does not have permissions on instructor?
— creator of view did not have some permissions on instructor?

02/28/18 Heiko Paulheim

Wrap-up
e

SQL
Commands
DDL DML DCL TCL

CREATE SELECT GRANT COMMIT
ALTER INSERT REVOKE ROLLBACK
DROP UPDATE SAVEPOINT
TRUNCATE DELETE SET TRANSACTION
COMMENT MERGE
RENAME CALL

EXPLAIN PLAN

LOCK TABLE

Source: https://www.w3schools.in/mysql/ddI-dml-dcl/

02/28/18 Heiko Paulheim

Wrap-up

* Today, we have seen
— More sophisticated means to read date from multiple tables

SELECT <select_list> SELECT <sclect_list>
FROM TableA A FROM TableA A

LEFT JOIN TableB B RIGHT JOIN TableB B
ON AKey = B.Key ON AKey = BKey

— a.k.a. join operators

SELECT <sclect_list>
FROM TableA A
INNER JOIN Tablch B
ON AKey = B.Key

SELECT <scleci_lisi> SELECT <select_list>
FROM TableA A FROM TableA A
LEFT JOIN TablcB B
ON AKey = B.Eey
WHERE B.Key IS NULL

RIGHT J{HMN TableB B
OMN AKey = BKey
WHERE A.Key 15 NULL

SELECT <schoct_list>
FROM Tablek A
FULL OUTER JOIN TahleB B
FULL OUTER JOIN TablcB B ON A.Key = B.Key
ON A.Key = B.Key WHERE AKey IS NULL

SCL Mo, 3003 OR B.Key IS NULL

SELECT <scleet_list>
FROM Tablch A

https://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

02/28/18 Heiko Paulheim 61

Wrap-up
e

* Today, we have seen
— How to manipulate data in databases
— i.e., insert, update, and delete statements

* \Views

— are used to provide different subsets
and/or aggregations of data

— updateable views
— materialized views

02/28/18 Heiko Paulheim

Wrap-up
e

* Integrity constraints
— unique and not null constraints
— cascading updates and deletions

* Access rights
— can be fine grained
— can be bound to user groups and roles
— roles may inherit from each other

02/28/18 Heiko Paulheim

Questions?

s

&

02/28/18 Heiko Paulheim

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Questions?

