
Database Technology
SQL Part 2

Heiko Paulheim

02/28/18 Heiko Paulheim 2

Looking Back

• We have seen

– Table definition, creation, and removal

– Reading data from tables

02/28/18 Heiko Paulheim 3

Outline

• Join Expressions

• Modifications of the database

– Deletion of tuples from a given relation

– Insertion of new tuples into a given relation

– Updating of values in some tuples in a given relation

• Views

• Integrity Constraints

• SQL Data Types

• Authorization

02/28/18 Heiko Paulheim 4

Join Operations

• Join operations

– take two relations

– return as new relation as their result

• A join operation

– is a Cartesian product

– requires that tuples in the two relations match (under some
condition)

– specifies the attributes that are present in the result of the join

• The join operations are typically used as subquery expressions in
the from clause

02/28/18 Heiko Paulheim 5

Join Operations

• Recap: We have already seen a form of joins:

• A join operation

– is a Cartesian product

– requires that tuples in the two relations match (under some
condition)

– specifies the attributes that are present in the result of the join

• Find the names of all instructors who have taught some course and
the course_id

select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID

02/28/18 Heiko Paulheim 6

Outer Joins

• Consider the two relations below

• Desired:

– List all courses with their prerequisites

– Note: course CS-315 has no prerequisites

02/28/18 Heiko Paulheim 7

Outer Joins

• List all courses with their prerequisites

select C.course_id, C.title, C.credits, C.dept_name, P.course_id
from course as C, prereq as P
where C.course_id = P.course_id

C.course_id C.title C.credits C.dept_name P.course_id

BIO-301 Genetics 4 Biology BIO-101

CS-190 Game Design 4 Comp. Sci. CS-101

02/28/18 Heiko Paulheim 8

Outer Joins

• List all courses with their prerequisites
select C.course_id, C.title, C.credits, C.dept_name, P.prereq_id
from course as C left outer join prereq as P
on C.course_id = P.course_id

C.course_id C.title C.credits C.dept_name P.prereq_id

BIO-301 Genetics 4 Biology BIO-101

CS-190 Game Design 4 Comp. Sci. CS-101

CS-315 Robotics 3 Comp. Sci. null

02/28/18 Heiko Paulheim 9

Join Operations

• Join type – defines how tuples in each relation that do not match
any tuple in the other relation (based on the join condition) are
treated

– inner join: ignore

– outer join: fill with null values

• Join condition – defines which tuples in the two relations match,
and what attributes are present in the result of the join

– explicit: on clause

– implicit: natural keyword

02/28/18 Heiko Paulheim 10

Outer Joins

• List all courses with their prerequisites

select C.course_id, C.title, C.credits, C.dept_name, P.prereq_id
from course as C right outer join prereq as P
on C.course_id = P.course_id

C.course_id C.title C.credits C.dept_name P.prereq_id

BIO-301 Genetics 4 Biology BIO-101

CS-190 Game Design 4 Comp. Sci. CS-101

CS-347 null null null CS-101

02/28/18 Heiko Paulheim 11

Outer Joins

• List all courses with their prerequisites

select C.course_id, C.title, C.credits, C.dept_name, P.prereq_id
from course as C full outer join prereq as P
on C.course_id = P.course_id

C.course_id C.title C.credits C.dept_name P.prereq_id

BIO-301 Genetics 4 Biology BIO-101

CS-190 Game Design 4 Comp. Sci. CS-101

CS-347 null null null CS-101

CS-315 Robotics 3 Comp. Sci. null

02/28/18 Heiko Paulheim 12

Join Types at a Glance

https://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

02/28/18 Heiko Paulheim 13

Deleting from a Relation

• Delete

– Remove all tuples from the student relation

– delete from instructor

– May be refined (e.g., only removing specific tuples)

• delete from instructor where ...

02/28/18 Heiko Paulheim 14

Deleting from a Relation

• Delete all instructors from the Finance department

delete from instructor
where dept_name= ’Finance’;

• Delete all tuples in the instructor relation for those instructors
associated with a department located in the Watson building

delete from instructor
where dept name in (select dept name
 from department
 where building = ’Watson’);

02/28/18 Heiko Paulheim 15

Deleting from a Relation

• Delete all instructors whose salary is less than the average salary of
instructors

delete from instructor
where salary < (select avg (salary)

from instructor);

• This would delete five tuples

– But then, the average changes!

• How does the query behave if the
deletion is processed one by one?

02/28/18 Heiko Paulheim 16

Deleting from a Relation

• Delete all instructors whose salary is less than the average salary of
instructors

delete from instructor
where salary < (select avg (salary)

from instructor);

• Processing this query in SQL

– First, the select query is evaluated

• i.e., the result is now treated as a constant

– Then, the delete statement is executed

02/28/18 Heiko Paulheim 17

DELETE vs. TRUNCATE

• All records from a table can also be removed using

truncate table instructor;

Difference to

delete from instructor;

?

• delete keeps the table and deletes only the data

• truncate drops and re-creates the table

– much faster

– but cannot be undone

• delete is DML, truncate is DDL

– Different rights may be necessary (see later!)

02/28/18 Heiko Paulheim 18

Insertion into a Relation

• Add a new tuple to course

 insert into course
 values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

• or equivalently
 insert into course (course_id, title, dept_name, credits)
 values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

• Add a new tuple to student with tot_creds set to null

 insert into student
 values (’3003’, ’Green’, ’Finance’, null);

02/28/18 Heiko Paulheim 19

Insertion of Data from Other Tables

• Add all instructors to the student relation with tot_creds set to 0

 insert into student
select ID, name, dept_name, 0

 from instructor

• As in the deletion example, the select from where statement is
evaluated fully before any of its results are inserted into the relation

 Otherwise queries like

 insert into table1 select * from table1

 would cause problems

02/28/18 Heiko Paulheim 20

Inserting Data into Relations with Constraints

• Effect of primary key constraints:

– insert into instructor values (‘10211’, ’Smith’, ’Biology’, 66000);

– insert into instructor values (‘10211’, ’Einstein’, ’Physics’, 95000);

– ...and we defined ID the primary key!

• Effect of not null constraints

– insert into instructor values (‘10211’, null, ’Biology’, 66000);

• Recap: DBMS takes care of data integrity

02/28/18 Heiko Paulheim 21

Updating Data

• Increase salaries of instructors whose salary is over $100,000 by
3%, and all others by a 5%

• Write two update statements:

 update instructor
 set salary = salary * 1.03
 where salary > 100000;
 update instructor
 set salary = salary * 1.05
 where salary <= 100000;

• The order is important

• Can be done better using the case statement (next slide)

02/28/18 Heiko Paulheim 22

Conditional Updates with case Statement

• Increase salaries of instructors whose salary is over $100,000 by
3%, and all others by a 5%

update instructor
 set salary = case
 when salary <= 100000 then salary * 1.05
 else salary * 1.03
 end

02/28/18 Heiko Paulheim 23

Updates with Subqueries

• Recompute and update tot_creds value for all students
update student S
set tot_cred = (select sum(credits)

 from takes, course
 where takes.course_id = course.course_id

 and S.ID= takes.ID.and takes.grade <> ’F’
 and takes.grade is not null);

• Sets tot_creds to null for students who have not taken any course

• Instead of sum(credits), use:

 case
 when sum(credits) is not null then sum(credits)
 else 0
 end

02/28/18 Heiko Paulheim 24

Views

• Recap: logical database model

– The relations in the database and their attributes

• Views:

– Virtual relations

– Different from those in the database

– But with the same data

– ...hide data from users

• Example: instructors’ names and departments without salaries, i.e.,
 select ID, name, dept_name
 from instructor

02/28/18 Heiko Paulheim 25

Views

• Example: some users may see employees with salaries,
others only without salary

• How about two tables

– One with salaries

– One without salaries

• ?

02/28/18 Heiko Paulheim 26

Defining Views

• A view is defined using the create view statement:
create view v as < query expression >

– <query expression> is any legal SQL expression

– the view name is represented by v

• Once the view has been created

– it can be addressed as v as any other relations

– it will always contain the data read by the SQL expression

• live, not at the time of definition!

02/28/18 Heiko Paulheim 27

Example Views

• Instructors without their salary

create view faculty as
select ID, name, dept_name
from instructor

• Using the view: find all instructors in the Biology department
 select name
 from faculty
 where dept_name = ‘Biology’;

• Create a view of department salary totals

create view departments_total_salary(dept_name, total_salary)
as
select dept_name, sum (salary)
from instructor
group by dept_name;

02/28/18 Heiko Paulheim 28

Defining Views using other Views

• create view physics_fall_2009 as
 select course.course_id, sec_id, building, room_number
 from course, section
 where course.course_id = section.course_id
 and course.dept_name = ’Physics’
 and section.semester = ’Fall’
 and section.year = ’2009’;

• create view physics_fall_2009_watson as
 select course_id, room_number
 from physics_fall_2009
 where building= ’Watson’;

create view physics_fall_2009_watson as
(select course_id, room_number
from (select course.course_id, building, room_number
 from course, section
 where course.course_id = section.course_id
 and course.dept_name = ’Physics’
 and section.semester = ’Fall’
 and section.year = ’2009’)
where building= ’Watson’;

02/28/18 Heiko Paulheim 29

Defining Views using Other Views

• One view may be used in the expression defining another view

• A view relation v1 is said to depend directly on a view relation v2
if v2 is used in the expression defining v1

• A view relation v1 is said to depend on view relation v2
if either v1 depends directly to v2
or there is a path of dependencies from v1 to v2

– i.e., the depends on relation is transitive

• A view relation v is said to be recursive if it depends on itself

02/28/18 Heiko Paulheim 30

Updating Views

• Definition of a simple view (recap: instructors without salaries):

create view faculty as
select ID, name, dept_name
from instructor

• Add a new tuple to faculty view which we defined earlier

insert into faculty values (’30765’, ’Green’, ’Music’);

• This insertion must be represented by the insertion of the tuple

(’30765’, ’Green’, ’Music’, null)

into the instructor relation

This can only work
if salary is not defined

as not null!

02/28/18 Heiko Paulheim 31

Updating Views

• Consider the view

create view biology_faculty as
select ID,name
from faculty
where dept_name = ‘Biology’;

• and

insert into biology_faculty
values (43278,‘Smith’);

• Would this lead to

insert into instructor values (43278,’Smith’,’Biology’,null);

?

02/28/18 Heiko Paulheim 32

Updating Views

• Most where constraints cannot be translated into a value to insert

• Consider

where dept_name = ‘Biology’ or dept_name = ‘Physics’

or

where salary > 50000

• Hence, where clauses are typically not translated into a value

02/28/18 Heiko Paulheim 33

Updating Views

• Other example used before

create view departments_total_salary(dept_name, total_salary)
as
select dept_name, sum (salary)
from instructor
group by dept_name;

• What should happen upon

update departments_total_salary
set total_salary = total_salary * 1.05
where dept_name = “Comp. Sci.”;

?

02/28/18 Heiko Paulheim 34

Updating Views

• create view instructor_info as
 select ID, name, building
 from instructor, department
 where instructor.dept_name= department.dept_name;

• insert into instructor_info values (’69987’, ’White’, ’Taylor’);

– which department, if multiple departments are in Taylor?

– what if no department is in Taylor?

02/28/18 Heiko Paulheim 35

Updateable Views

• A view is called updateable if

– The from clause has only one database relation

– The select clause contains only attribute names of the relation,
and does not have any expressions, aggregates, or distinct
specification

– Any attribute not listed in the select clause can be set to null

– The query does not have a group by or having clause

• Most DMBS only allow updates on such views!

02/28/18 Heiko Paulheim 36

Materialized vs. Non-Materialized Views

• Normal views are not materialized

– When issuing a select against a view, the underlying data
is created on the fly

– Pro: guarantees recent and non-redundant data, saves space

– Con: some views may be expensive to compute
(e.g., extensive use of aggregates)

• Materializing a view: create a physical table containing all the
tuples in the result of the query defining the view

– If relations used in the query are updated, the materialized view result
becomes out of date

– Need to maintain the view, by updating the view whenever the
underlying relations are updated

02/28/18 Heiko Paulheim 37

Integrity Constraints

• Data errors may occur due to, e.g.,

– Accidental wrong entries in form fields

– Faulty application program code

– Deliberate attacks

• Integrity constraints

– guard against damage to the database

– ensuring that authorized changes to the database do not result in a loss
of data consistency

• Examples

– A checking account must have a balance greater than $10,000.00

– A salary of a bank employee must be at least $4.00 an hour

– A customer must have a (non-null) phone number

02/28/18 Heiko Paulheim 38

Integrity Constraints on a Single Relation

• We have already encountered

– not null

– primary and foreign key

• We will get to know

– unique

– check (P), where P is a predicate

02/28/18 Heiko Paulheim 39

NOT NULL and UNIQUE Constraints

• not null

– Declare name and budget to be not null

 name varchar(20) not null
 budget numeric(12,2) not null

• unique (A1, A2, …, Am)

– The unique specification states that the attributes A1, A2, … Am
form a candidate key

– Candidate keys are permitted to be null
(in contrast to primary keys)

02/28/18 Heiko Paulheim 40

The CHECK Constraint

• check (P)

– where P is a predicate

● Example: ensure that semester is either fall or spring

create table section (
course_id varchar (8),
sec_id varchar (8),
semester varchar (6),
year numeric (4,0),
building varchar (15),
room_number varchar (7),
time slot id varchar (4),
primary key (course_id, sec_id, semester, year),
check (semester in (’Fall’, ’Spring’))

);

02/28/18 Heiko Paulheim 41

Foreign Keys and Referential Integrity

• Example:

– instructors have a department

– each department should also appear
in the department relation

• Definition:

– Let A be a set of attributes

– Let R and S be two relations that contain attributes A and where
A is the primary key of S

– A is said to be a foreign key of R if for any values of A
appearing in R these values also appear in S

02/28/18 Heiko Paulheim 42

Cascading Actions in Referential Integrity

• Example:

– instructors have a department

– each department should also appear
in the department relation

• How to ensure referential integrity?

– i.e., what happens if a department is deleted
from the department relation

• Possible approaches

– Reject the deletion

– Delete all instructors as well

– Set the department of those instructors to null

default action

02/28/18 Heiko Paulheim 43

Cascading Actions in Referential Integrity

• Cascading updates

– If a foreign key is changed (e.g., renaming a department)

– ...then rename in all referring relations

• Cascading deletions

– If a foreign key is deleted (e.g., deleting a department)

– ...then delete all rows in referring relations

• create table instructor (
 …
 dept_name varchar(20),
 foreign key (dept_name) references department
 on delete cascade
 on update cascade,
 . . .
)

02/28/18 Heiko Paulheim 44

Cascading Actions in Referential Integrity

• Cascading deletions may run over several tables

– ...so we should be very careful!

x

x
x

x
xx

x

x

x

02/28/18 Heiko Paulheim 45

Cascading Actions in Referential Integrity

• set null for updates

– If a foreign key is changed (e.g., renaming a department)

– ...then set null for all referring relations

• set null for deletions

– If a foreign key is deleted (e.g., deleting a department)

– ...then set null in referring relations

• create table instructor (
 …
 dept_name varchar(20),
 foreign key (dept_name) references department
 on delete set null,
 on update set null,
 . . .
)

02/28/18 Heiko Paulheim 46

Date and Time Data Types in SQL

• We have already encountered characters and numbers

• date: Dates, containing a (4 digit) year, month and date

– Example: date ‘2005-7-27’

• time: Time of day, in hours, minutes and seconds.

– Example: time ‘09:00:30’ time ‘09:00:30.75’

• timestamp: date plus time of day

– Example: timestamp ‘2005-7-27 09:00:30.75’

• interval: period of time

– Example: interval ‘1’ day

– Subtracting a date/time/timestamp value from another gives an
interval value

– Interval values can be added to date/time/timestamp values

02/28/18 Heiko Paulheim 47

Arithmetics with Dates

• Dates can be compared

– i.e., < or >

– e.g., select employees who started before January 1st, 2017

– Special function: NOW() (in MariaDB; name may differ for other DBMS)

• Dates can be added to / substracted from intervals and other dates

– e.g., select students who have been enrolled for more than five years

• Implementation not standardized

– Details differ from DBMS to DBMS!

02/28/18 Heiko Paulheim 48

User Defined Types

• create type construct in SQL creates user-defined type

create type Dollars as numeric (12,2) final

• create table department
(dept_name varchar (20),
building varchar (15),
budget Dollars);

required due to
SQL standard;

not really
meaningful

02/28/18 Heiko Paulheim 49

User-defined Domains

• create domain construct creates user-defined domain types

create domain person_name char(20) not null

• Types and domains are similar

– Domains can have constraints, such as not null, specified on
them

create domain degree_level varchar(10)
constraint degree_level_test
check (value in (’Bachelors’, ’Masters’, ’Doctorate’));

02/28/18 Heiko Paulheim 50

Domain Constraints vs. Table Constraints

• Some checks may reoccur over different relations

– e.g., degrees for students or instructors

– e.g., salutations

– e.g., valid ranges for ZIP codes

• Binding them to a domain is preferred

– Central definition

– Consistent usage

02/28/18 Heiko Paulheim 51

Large Object Types

• Large objects (photos, videos, CAD files, etc.) are stored as a large
object:

– blob: binary large object -- object is a large collection of
uninterpreted binary data (whose interpretation is left to an
application outside of the database system)

– clob: character large object -- object is a large collection of
character data

• When a query returns a large object, a pointer is returned rather
than the large object itself

02/28/18 Heiko Paulheim 52

Authorization

• Rights for accessing a database may differ

– Only administrators may change the schema

• Rights for accessing a database can be very fine grained

– Not everybody may see a persons’ salary

– Not everybody may alter a person’s salary

– Nobody may alter their own salary

– Special restrictions may apply for entering salaries
over a certain upper bound

– ...

02/28/18 Heiko Paulheim 53

Authorization

● Forms of authorization on parts of the database:

– Read - allows reading, but not modification of data

– Insert - allows insertion of new data, but not modification of
existing data

– Update - allows modification, but not deletion of data

– Delete - allows deletion of data

● Forms of authorization to modify the database schema

– Index - allows creation and deletion of indices

– Resources - allows creation of new relations

– Alteration - allows addition or deletion of attributes in a relation

– Drop, Truncate - allows deletion of relations

02/28/18 Heiko Paulheim 54

Authorization Specification in SQL

• The grant statement is used to confer authorization

grant <privilege list>

on <relation name or view name> to <user list>

• <user list> is:

– a user-id

– public, which allows all valid users the privilege granted

– A role (more on this later)

• Granting a privilege on a view does not imply granting any
privileges on the underlying relations

• The grantor of the privilege must already hold the privilege on the
specified item (or be the database administrator)

02/28/18 Heiko Paulheim 55

Privilege Definition in SQL

• select: allows read access to relation,or the ability to query using : allows read access to relation,or the ability to query using
the viewthe view

– Example: grant users U1, U2, and U3 select authorization on the

instructor relation:

grant select on instructor to U1, U2, U3

• insert: the ability to insert tuples

• update: the ability to update using the SQL update statement

• delete: the ability to delete tuples.

• all privileges: used as a short form for all the allowable privileges

02/28/18 Heiko Paulheim 56

Revoking Privileges

• The revoke statement is used to revoke authorization.

revoke <privilege list>

on <relation name or view name> from <user list>

• Example:

revoke select on branch from U1, U2, U3

• <privilege-list> may be all to revoke all privileges the revokee may hold

• If <revokee-list> includes public, all users lose the privilege except
those granted it explicitly

• If the same privilege was granted twice to the same user by different
grantees, the user may retain the privilege after the revocation

• All privileges that depend on the privilege being revoked are also
revoked

02/28/18 Heiko Paulheim 57

Roles

• Databases may have many users

– e.g., all students and employees of a university

• Managing privileges for all those individually can be difficult

– User groups (also called: roles) are more handy

– Example roles

• Student

• Instructor

• Secretary

• Dean

• ...

02/28/18 Heiko Paulheim 58

Roles

• Creating roles and assigning them to individual users

– create role instructor;

– grant instructor to Amit;

• Granting privileges to roles

– grant select on takes to instructor;

• Roles can form hierarchies

– i.e., a role inherits from other roles

create role teaching_assistant

grant teaching_assistant to instructor;

– Instructor inherits all privileges of teaching_assistant

02/28/18 Heiko Paulheim 59

Roles on Views

• Example: Geology department members can administrate their own
staff, but not others

create view geo_instructor as
(select *
from instructor
where dept_name = ’Geology’);

grant select on geo_instructor to geo_staff

• Suppose that a geo_staff member issues

select *
from geo_instructor;

• What if

– geo_staff does not have permissions on instructor?

– creator of view did not have some permissions on instructor?

02/28/18 Heiko Paulheim 60

Wrap-up

Source: https://www.w3schools.in/mysql/ddl-dml-dcl/

02/28/18 Heiko Paulheim 61

Wrap-up

• Today, we have seen

– More sophisticated means to read date from multiple tables

– a.k.a. join operators

https://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

02/28/18 Heiko Paulheim 62

Wrap-up

• Today, we have seen

– How to manipulate data in databases

– i.e., insert, update, and delete statements

• Views

– are used to provide different subsets
and/or aggregations of data

– updateable views

– materialized views

02/28/18 Heiko Paulheim 63

Wrap-up

• Integrity constraints

– unique and not null constraints

– cascading updates and deletions

• Access rights

– can be fine grained

– can be bound to user groups and roles

– roles may inherit from each other

02/28/18 Heiko Paulheim 64

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Questions?

