
Database Technology
Indexing and Hashing

Heiko Paulheim

03/21/18 Heiko Paulheim 2

Previously on Database Technology

• We can find information in databases

– e.g., employees by name:
SELECT * FROM employee WHERE name = ‘Brandt’

– e.g., employees within a range of salary
SELECT * FROM employee WHERE salary > 50000

03/21/18 Heiko Paulheim 3

Finding Information in Databases

• How does that work, actually?

– SELECT * FROM employee WHERE name = ‘Brandt’

• Naive approach (called linear search):

– Go through the table from top to bottom

– Find and return all employees with name ‘Brandt’

• Complexity:

– If there are N records in the table, this takes (up to) N steps

– We call this complexity: O(N)

– Note that even if we find a “Brandt” earlier, we need to search further,
since there might be more people named “Brandt”

• and the query is expected to return them all

03/21/18 Heiko Paulheim 4

Finding Information in Databases

• How does that work, actually?

– SELECT * FROM employee WHERE name = ‘Brandt’

• Better approach

– Let’s assume we have sorted the table by name

• We can now apply binary search

– Get element in the middle of the table

– If the searched element is “smaller”

• Search the upper half table

– Else

• Search the lower half table

ID name dept_name salary

83821 Brandt Comp. Sci. 92000

58583 Califieri History 62000

76766 Crick Biology 72000

22222 Einstein Physics 95000

32343 El Said History 60000

33456 Gold Physics 87000

45565 Katz Comp. Sci. 75000

98345 Kim Elec. Eng. 80000

15151 Mozart Music 40000

76543 Singh Finance 80000

10101 Srinivasan Comp. Sci. 65000

76543 Wu Finance 90000

03/21/18 Heiko Paulheim 5

Finding Information in Databases

• Binary search

– Works in O(log2N)

• However

– Sorting the table requires O(N * log2N)

– This pays off only if we sort once and query often

– Inserts are more expensive now

• What if our next query is

SELECT * FROM employee WHERE salary > 50000

• Now, the table is sorted by name, not salary

– If we re-sort before every query, it gets even worse than by linear
search

ID name dept_name salary

83821 Brandt Comp. Sci. 92000

58583 Califieri History 62000

76766 Crick Biology 72000

22222 Einstein Physics 95000

32343 El Said History 60000

33456 Gold Physics 87000

45565 Katz Comp. Sci. 75000

98345 Kim Elec. Eng. 80000

15151 Mozart Music 40000

76543 Singh Finance 80000

10101 Srinivasan Comp. Sci. 65000

76543 Wu Finance 90000

03/21/18 Heiko Paulheim 6

Finding Information in Databases

• Naive solution

– Provide copies of each table
sorted by each attribute we may need

• Hey, wait…

– We’ve always tried to reduce redundancy

– Not to increase it…

• More sophisticated solution:

– Index structures

ID name dept_name salary

83821 Brandt Comp. Sci. 92000

58583 Califieri History 62000

76766 Crick Biology 72000

22222 Einstein Physics 95000

32343 El Said History 60000

33456 Gold Physics 87000

45565 Katz Comp. Sci. 75000

98345 Kim Elec. Eng. 80000

15151 Mozart Music 40000

76543 Singh Finance 80000

10101 Srinivasan Comp. Sci. 65000

76543 Singh Finance 80000

ID name dept_name salary

83821 Brandt Comp. Sci. 92000

58583 Califieri History 62000

76766 Crick Biology 72000

22222 Einstein Physics 95000

32343 El Said History 60000

33456 Gold Physics 87000

45565 Katz Comp. Sci. 75000

98345 Kim Elec. Eng. 80000

15151 Mozart Music 40000

76543 Singh Finance 80000

10101 Srinivasan Comp. Sci. 65000

76543 Singh Finance 80000

ID name dept_name salary

83821 Brandt Comp. Sci. 92000

58583 Califieri History 62000

76766 Crick Biology 72000

22222 Einstein Physics 95000

32343 El Said History 60000

33456 Gold Physics 87000

45565 Katz Comp. Sci. 75000

98345 Kim Elec. Eng. 80000

15151 Mozart Music 40000

76543 Singh Finance 80000

10101 Srinivasan Comp. Sci. 65000

76543 Wu Finance 90000

03/21/18 Heiko Paulheim 7

Index Files

• Index files

– Provide a compromise between re-sorting

– and copying the table

• Idea

– Provide a sorted file of a single attribute only

• Allows linear search

– Index file contains pointers to actual file

• Which may or may not be sorted

03/21/18 Heiko Paulheim 8

Index Files

• Basic idea

– Search in index is O(log2N)

– Following link is O(1)

– Each index can remain sorted

– Create an index for each attribute
which you may use in a query

• Trade-off

– Faster queries

– Some redundancy

• But this is handled by the DBMS!

• i.e., mainly a storage capacity problem,
not so much a consistency problem

name index

Brandt

Califieri

Crick

Einstein

El Said

Gold

Katz

Kim

Mozart

Singh

Srinivasan

Wu

03/21/18 Heiko Paulheim 9

Index Files and Joins

• Understanding the need for an index file

– Analyzing possible queries

• First use case: search attributes

– quite straight forward

• Second use case: joins

• Suppose we want to query for the building of an instructor
by name

– name on instructor is straight forward for an index candidate

– Query processing:

• find instructor by name

• read dept_name

• look up dept_name in department

hence, we need an index
on dept_name
in department!

03/21/18 Heiko Paulheim 10

Index Files – Basic Concepts

• Indexing mechanisms used to speed up access to desired data

– e.g., searching by a specific attribute

– but also: joins!

• Search Key - attribute to set of attributes used to look up records in
a file

– An index file consists of records (called index entries) of the form

• Two basic kinds of indices:

– Ordered indices: search keys are stored in sorted order

– Hash indices: search keys are distributed uniformly across “buckets”
using a “hash function”

search-key pointer

03/21/18 Heiko Paulheim 11

ￌ

Metrics for Evaluating Index Structures

• Access types supported efficiently

– records with a specified value in the attribute

– or records with an attribute value falling in a specified range of values

• Access time

• Insertion time

– Note: index needs to be updated as well

• Deletion time

– Note: may require deletion from index

• Storage space overhead

03/21/18 Heiko Paulheim 12

Ordered Indices

• In an ordered index, index entries are stored sorted on the search
key value

– allows O(log2N) search

• Primary index: in a sequentially ordered file, the index whose
search key specifies the sequential order of the file

– Also called clustering index

– Search key: usually (but not necessarily) the primary key

• Secondary index: an index whose search key specifies an order
different from the sequential order of the file

– Also called non-clustering index

03/21/18 Heiko Paulheim 13

Dense vs. Sparse Index Files

• Dense index: index record appears for every search-key value

– e.g., index on ID attribute of instructor relation

03/21/18 Heiko Paulheim 14

Dense vs. Sparse Index Files

• Dense index: index record appears for every search-key value

– e.g., index on department attribute of instructor relation

03/21/18 Heiko Paulheim 15

Dense vs. Sparse Index Files

• Sparse Index: contains index records for only some values

– Applicable when records are sequentially ordered on search-key

• To locate a record with search-key value K we:

– Find index record with largest search-key value < K

– Search file sequentially starting at that record

03/21/18 Heiko Paulheim 16

Dense vs. Sparse Index Files

• Dense index

– Guaranteed search time of O(log2N)

– Requires O(N) storage space

• Sparse index (storing every k-th value)

– Search time O(log2N + log2k)

– Requires O(N/k) storage time

• Comparison

– Dense index is faster

– Sparse index
takes less space

03/21/18 Heiko Paulheim 17

Secondary Index

• Frequently, one wants to find all the records whose values in a
certain field (which is not the search-key of the primary index)
satisfy some condition

– Example 1: In the instructor relation stored sequentially by ID, we may
want to find all instructors in a particular department

– Example 2: as above, but where we want to find all instructors with a
specified salary or with salary in a specified range of values

• We can have a secondary index with an index record for each
search-key value

03/21/18 Heiko Paulheim 18

Secondary Index

• Primary index: index on the attribute by which a file is ordered

• Secondary index: index on any other attribute

– Index record points to a bucket that contains pointers to all the actual
records with that particular search-key value

– Secondary indices have to be dense why?

03/21/18 Heiko Paulheim 19

Multi-Level Indices

• Computer storage:

– RAM: fast, but limited

– Disk: slow, but large

• Fast access

– Keep primary index in memory,
actual data on disk

• What if the primary index
does not fit in memory?

– Treat primary index kept on disk as a sequential file

– Construct a sparse index on it, keep that index in memory

• Outer vs. inner index

– outer index – a sparse index of primary index

– inner index – the primary index file

03/21/18 Heiko Paulheim 20

Insertion into Index

• Single-level index insertion

– Perform a lookup using the search-key value appearing in the record to
be inserted

– Dense indices – if the search-key value does not appear in the index,
insert it

– Sparse indices – if index stores an entry for each block of the file, no
change needs to be made to the index unless a new block is created

• If a new block is created, the first search-key value appearing in the
new block is inserted into the index

• Multilevel insertion: algorithms are simple extensions of the single-
level algorithms

Costly!

03/21/18 Heiko Paulheim 21

Deletion from Index

• If deleted record was the only record in the file with its particular
search-key value, the search-key is deleted from the index also

• Single-level index entry deletion:

– Dense indices – deletion of search-key is similar to file record deletion

– Sparse indices

• if an entry for the search key exists in the index, it is deleted by
replacing the entry in the index with the next search-key value in the
file (in search-key order)

• If the next search-key value already has an index entry, the entry is
deleted instead of being replaced

• Multilevel deletion: algorithms are simple extensions of the single-
level algorithms

03/21/18 Heiko Paulheim 22

Summary Sequential Indices

• Access time: O(log2N)

• Insertion time: O(N)

– worst case: insertion at the top, all other entries need to be moved down

• Deletion time: O(N)

– worst case: deletion from the top, all other entries need to be moved up

03/21/18 Heiko Paulheim 23

B+-Tree Index Files

• Disadvantage of indexed-sequential files

– performance degrades as file grows, since many overflow blocks get
created

– periodic reorganization of entire file is required

• Advantage of B+-tree index files:

– automatically reorganizes itself with small, local, changes, in the face of
insertions and deletions

– reorganization of entire file is not required to maintain performance

• (Minor) disadvantage of B+-trees:

– extra insertion and deletion overhead, space overhead

• Advantages of B+-trees outweigh disadvantages

• B+-trees are used extensively

03/21/18 Heiko Paulheim 24

B+-Trees

• A B+-tree is a rooted tree satisfying the following properties:

– All paths from root to leaf are of the same length

– Each node that is not a root or a leaf has between n/2 and n
children

– A leaf node has between (n–1)/2 and n–1 values

• Special cases:

– If the root is not a leaf, it has at least 2 children.

– If the root is a leaf (that is, there are no other nodes in the tree),
it can have between 0 and (n–1) values.

Round up
to next integer

03/21/18 Heiko Paulheim 25

B+-Trees: Example

03/21/18 Heiko Paulheim 26

B+-Trees: Example

• Example: n=4

– All paths from root to leaf are of the same length

– Each node that is not a root or a leaf
has between n/2=2 and n=4 children

– A leaf node has between (n–1)/2 =2 and n–1=3 values

– Root has at least 2 children

03/21/18 Heiko Paulheim 27

B+-Tree Node Structure

• Typical node

• Ki are the search-key values

• Pi are pointers to children (for non-leaf nodes)
or pointers to records or buckets of records (for leaf nodes)

• The search-keys in a node are ordered

 K1 < K2 < K3 < . . . < Kn–1

– for the moment: assuming there are no duplicate keys,
but extension to handling duplicate keys is easily possible

03/21/18 Heiko Paulheim 28

• For i = 1, 2, . . ., n–1, pointer Pi points to a file record with search-
key value Ki,

• If Li, Lj are leaf nodes and i < j, Li’s search-key values are less than
or equal to Lj’s search-key values

• Pn points to next leaf node in search-key order

Leaf Nodes in B+-Trees

03/21/18 Heiko Paulheim 29

• Properties of an inner node with m entries:

– All the search-keys in the subtree to which P1 points are less
than K1

– For 2  i  n – 1, all the search-keys in the subtree to which Pi
points have values greater than or equal to Ki–1 and less than Ki

– All the search-keys in the subtree to which Pn points have values
greater than or equal to Kn–1

Inner Nodes in B+-Trees

03/21/18 Heiko Paulheim 30

Observations about B+-Trees

• Since the inter-node connections are done by pointers, “logically”
close blocks need not be “physically” close

• The non-leaf levels of the B+-tree form a hierarchy of sparse indices

• The B+-tree contains a relatively small number of levels

– Level below root has at least 2* n/2 values

– Next level has at least 2* n/2 * n/2 values

• .. etc.

– If there are K search-key values in the file, the tree height is no
more than  logn/2(K)

• thus searches can be conducted efficiently

• Insertions and deletions to the main file can be handled efficiently
(as we shall see)

03/21/18 Heiko Paulheim 31

Querying B+-Trees

• Given a search value V (e.g., “Einstein”)

– In non-leaf nodes: follow non-null pointers Pi where V<Ki,
so that i maximal

– In leaf nodes: if there is a value Ki=V, follow Pi

• else: record
does not exist

03/21/18 Heiko Paulheim 32

Querying B+-Trees

• If there are K search-key values in the file, the height of the tree is
no more than logn/2(K)
– i.e., this is the number of leaf nodes to inspect

– supposing a disk-based index: the number of nodes to be retrieved

• A node is generally the same size as a disk block, typically 4
kilobytes

– and n is typically around 100 (40 bytes per index entry)

• With 1 million search key values and n = 100

– at most log50(1,000,000) = 4 nodes are accessed in a lookup

disk I/O is
the crucial
factor here

03/21/18 Heiko Paulheim 33

Updates on B+-Trees: Insertion

● Find the leaf node in which the search-key value would appear
● If the search-key value is already present in the leaf node

● add record to the file
● if necessary, add a pointer to the bucket

● If the search-key value is not present, then
● add the record to the main file (and create a bucket if necessary)
● If there is room in the leaf node

● insert (key-value, pointer) pair in the leaf node
● else

● split the node (along with the new (key-value, pointer) entry)

hopefully the
frequent case

03/21/18 Heiko Paulheim 34

Updates on B+-Trees: Insertion

• Splitting a leaf node:

– take the n (search-key value, pointer) pairs (including the one being
inserted) in sorted order. Place the first n/2 in the original node, and
the rest in a new node p

– let k be the least key value in p. Insert (k,p) in the parent of the node
being split.

– If the parent is full, split it and propagate the split further up

• Splitting of nodes proceeds upwards till a node that is not full is
found

– In the worst case (i.e., root is full) the root node may be split increasing
the height of the tree by 1

Result of splitting node containing Brandt, Califieri, Crick on inserting Adams
Next step: insert entry with (Califieri,pointer-to-new-node) into parent

03/21/18 Heiko Paulheim 35

Updates on B+-Trees: Insertion

• Inserting “Adams”

03/21/18 Heiko Paulheim 36

Updates on B+-Trees: Insertion

• Inserting “Lamport”

03/21/18 Heiko Paulheim 37

Updates on B+-Trees: Deletion

• Find the record to be deleted, and remove it from the main file and
from the bucket (if present)

• Remove (search-key value, pointer) from the leaf node if there is no
bucket or if the bucket has become empty

• If the node has too few entries due to the removal, and the entries
in the node and a sibling fit into a single node, then merge siblings

• Otherwise, if the node has too few entries due to the removal, but
the entries in the node and a sibling do not fit into a single node,
then redistribute pointers

03/21/18 Heiko Paulheim 38

Updates on B+-Trees: Deletion

• Merge siblings

– Insert all the search-key values in the two nodes into a single node (the
one on the left), and delete the other node

– Delete the pair (Ki–1, Pi), where Pi is the pointer to the deleted node, from
its parent (potential recursion)

• Redistribute pointers

– Redistribute the pointers between the node and a sibling such that both
have more than the minimum number of entries

– Update the corresponding search-key value in the parent of the node
(potential recursion)

• The node deletions may cascade upwards till a node which has
n/2 or more pointers is found

– If the root node has only one pointer after deletion, it is deleted and the
sole child becomes the root

03/21/18 Heiko Paulheim 39

Updates on B+-Trees: Deletion

• Deleting “Srinivasan”

merged leaf

updated node

03/21/18 Heiko Paulheim 40

Indexing Strings

• Variable length strings as keys

– Variable fanout

– Use space utilization as criterion for splitting, not number of
pointers

• Prefix compression

– Key values at internal nodes can be prefixes of full key

• Keep enough characters to distinguish entries in the
subtrees separated by the key value

– E.g. “Silas” and “Silberschatz” can be separated by “Silb”

– Keys in leaf node can be compressed by sharing common
prefixes

03/21/18 Heiko Paulheim 41

Bulk Loading into B+-Trees

• Inserting entries one-at-a-time into a B+-tree requires  1 IO per
entry

– assuming leaf level does not fit in memory

– can be very inefficient for loading a large number of entries at a time
(bulk loading)

• Efficient alternative 1:

– sort entries first, insert in sorted order

– heavy reorganizations are avoided

– much improved IO performance, but most leaf nodes half full

• Efficient alternative 2: Bottom-up B+-tree construction

– As before sort entries

– And then create tree layer-by-layer, starting with leaf level

– Implemented as part of bulk-load utility by most database systems

03/21/18 Heiko Paulheim 42

Bulk Loading into B+-Trees

• Bottom-up bulk loading

– Leads to a compact tree representation

– Fast, since no reorganizations are required

• Start with ordered sequence

– Create full leaves

– Create upper levels

Brandt CalifieriBrandt Califieri CalifieriCrick Brandt CalifieriEinstein El Said CalifieriGold Brandt CalifieriKatz Kim CalifieriMozart Brandt CalifieriSingh Srinivasan CalifieriWu

Brandt CalifieriEinstein Katz CalifieriSingh

03/21/18 Heiko Paulheim 43

Indices on Multiple Attributes

• Use multiple indices for certain types of queries

• Example:

select ID
from instructor
where dept_name = “Finance” and salary = 80000

• Possible strategies for processing query using indices on single
attributes:

1. Use index on dept_name to find instructors with department
name Finance; test salary = 80000

2. Use index on salary to find instructors with a salary of
$80000; test dept_name = “Finance”

3. Use both indices, take intersection of sets of pointers
obtained

03/21/18 Heiko Paulheim 44

Indices on Multiple Attributes

• Composite search keys are search keys containing more than one
attribute

– e.g. (dept_name, salary)

• Lexicographic ordering: (a1, a2) < (b1, b2) if either

– a1 < b1, or

– a1=b1 and a2 < b2

• Use this ordering to create an index (sequential or B+-tree)

03/21/18 Heiko Paulheim 45

Indices on Multiple Attributes

• Suppose we have an index on (dept_name, salary)

• With the where clause
 where dept_name = “Finance” and salary = 80000
the index on (dept_name, salary) can be used to fetch only records
that satisfy both conditions

• Using separate indices is less efficient — we may fetch many
records (or pointers) that satisfy only one of the conditions

03/21/18 Heiko Paulheim 46

Indices on Multiple Attributes

• Note:

– Ordering is sensitive to order of attributes

– i.e., (salary,dept_name) would lead to a different ordering!

• With (dept_name,salary), we can efficiently retrieve

dept_name = “Finance” and salary > 80000

• But not

dept_name > “Finance” and salary = 80000

• Ordering of index is by dept_name first, then salary

03/21/18 Heiko Paulheim 47

Multi-Attribute Indices vs. Multiple Indices

• Multi-Attribute are faster than multiple indices

– Make sure you only retrieve the records you are interested in

– Avoid unnecessary lookups, comparisons, and/or intersections

• On the other hand

– Storing an index for all combinations of attributes would be costly

• 10 attributes, all combinations of only 2 attributes → 100 indices!

– Think: storage capacity

– Think: cost of insert/update/delete operations

• Typical considerations

– Heavily used attribute combinations

– Expected runtime disadvantage of individual indices

03/21/18 Heiko Paulheim 48

Indexing vs. Hashing

• Index structures:

– Look up value

– Retrieve storage location (e.g., row number in table)

• Hashing:

– Compute storage location directly from the value using a hash function

03/21/18 Heiko Paulheim 49

Static Hashing

• A bucket is a unit of storage containing one or more records (a
bucket is typically a disk block)

• In a hash file organization, we obtain the bucket of a record
directly from its search-key value using a hash function

• Hash function h is a function from the set of all search-key values K
to the set of all bucket addresses B

• Hash function is used to locate records for access, insertion as well
as deletion

• Records with different search-key values may be mapped to the
same bucket; thus entire bucket has to be searched sequentially to
locate a record

03/21/18 Heiko Paulheim 50

Example for a Hash Function

• There are 10 buckets

• The binary representation of the
ith character is assumed to be
the integer i

• The hash function returns
the sum of the binary representations
of the characters modulo 10

• e.g., h(Music) = 1 h(History) = 2
 h(Physics) = 3 h(Elec. Eng.) = 3

03/21/18 Heiko Paulheim 51

Hash Functions

• A hash function should be

– uniform, i.e., each bucket is assigned the same number of search-key
values

– random, i.e., the size of buckets should be independent of the actual
distribution of search-key values

• e.g., language is not uniformly distributed

• Worst case hash function maps all search-key values to the same
bucket

– access time proportional to the number of search-key values in the file

• Typical hash functions perform computation on the internal binary
representation of the search-key

– e.g.,, for a string search-key, the binary representations of all the
characters in the string could be added and the sum modulo the number
of buckets could be returned

03/21/18 Heiko Paulheim 52

Bucket Overflow

• Typical implementation:

– Buckets have fixed size (e.g., block size on disk)

• Bucket overflow: insufficient bucket for records to store

• Possible reasons:

– multiple records have same search-key value

– chosen hash function produces non-uniform distribution of key values

• Bucket overflow cannot be avoided completely

– Solution: use overflow buckets

• ...but its probability can be minimized by the choice of a
good (i.e., almost uniform) hash function and suitable bucket size

03/21/18 Heiko Paulheim 53

Bucket Overflow

• Overflow chaining (also called closed hashing)

– the overflow buckets of a given bucket are chained together in a linked
list

03/21/18 Heiko Paulheim 54

Hash Indices

• Hashing can be used not only for file organization, but also for
index-structure creation

– A hash index organizes the search keys, with their associated record
pointers, into a hash file structure

overflow bucket

empty bucket

03/21/18 Heiko Paulheim 55

Drawbacks of Static Hashing

• In static hashing, function h maps search-key values to a fixed set
of B of bucket addresses

– But databases may grow or shrink over time

• Growing database

– performance degrades due to many overflow buckets

• Shrinking database

– space is wasted by underfull buckets

• Possible solution: periodic re-organization of the file with a new
hash function

– Expensive, disrupts normal operations

• Better solution

– allow the number of buckets to be modified dynamically

– aka dynamic hashing

03/21/18 Heiko Paulheim 56

Dynamic Hashing

• Good for database that grows and shrinks in size

• Allows the hash function to be modified dynamically

• Extendable hashing – one form of dynamic hashing

– Hash function generates values over a large range

– typically b-bit integers, e.g., b = 32.

• At any time use only a prefix of the hash function to index into a table of
bucket addresses

– Let the length of the prefix be i bits, 0  i  32.

– Bucket address table size = 2i. Initially i = 0

• Value of i grows and shrinks as the size of the database grows and shrinks

• Multiple entries in the bucket address table may point to a bucket (why?)

– Thus, actual number of buckets is < 2i

– Number of buckets also changes dynamically by merging and splitting buckets

03/21/18 Heiko Paulheim 57

Extendable Hash Structure

• Example:

– more hash values with prefix “1” than with prefix “0”

03/21/18 Heiko Paulheim 58

Extendable Hashing

• Each bucket j stores a value ij

• All the entries that point to the same bucket have the same values
on the first ij bits

• To locate the bucket containing search-key Kj:

1. Compute h(Kj) = X

2. Use the first i bits of X as a displacement into bucket address table,
and follow the pointer to appropriate bucket

• To insert a record with search-key value Kj

– follow same procedure as look-up and locate the bucket, say j

– If there is room in the bucket j insert record in the bucket

– else the bucket must be split and insertion re-attempted

• Deletion may cause a merge of buckets

• Overflow buckets may still be needed for key collisions

03/21/18 Heiko Paulheim 59

Extendable Hashing – Example

• Bucket size: 2

*

Bucket 0

03/21/18 Heiko Paulheim 60

Extendable Hashing – Example

• After insertion of
Mozart, Srinivisan, Wu

0 15151 Mozart Music 40000

Bucket 0

10101 Srinivisan Comp.Sci 90000

12121 Wu Finance 90000

Bucket 1

1

Prefix length 1

03/21/18 Heiko Paulheim 61

Extendable Hashing – Example

• After insertion of
Einstein

00

15151 Mozart Music 40000

Bucket 0

10101 Srinivisan Comp.Sci 90000

Bucket 2

01

10

11

12121 Wu Finance 90000

22222 Einstein Physics 95000

Bucket 1

Pointers to
same bucket

03/21/18 Heiko Paulheim 62

Extendable Hashing – Example

• After insertion of
Gold, El Said

100

15151 Mozart Music 40000

Bucket 0

10101 Srinivisan Comp.Sci 90000

32343 El Said History 60000

Bucket 3

101

110

111

12121 Wu Finance 90000

Bucket 2

22222 Einstein Physics 95000

33456 Gold Physics 87000

Bucket 1000

001

010

011

03/21/18 Heiko Paulheim 63

Extendable Hashing – Example

• After inserting Feinman

100

15151 Mozart Music 40000

Bucket 0

10101 Srinivisan Comp.Sci 90000

32343 El Said History 60000

Bucket 3

101

110

111
12121 Wu Finance 90000

Bucket 2

22222 Einstein Physics 95000

33456 Gold Physics 87000

Bucket 1
000

001

010

011 47035 Feinman Physics 92000

Bucket 1a

Overflow
bucket

03/21/18 Heiko Paulheim 64

Extendable Hashing

• Benefits

– Hash performance does not degrade with growth of file

– Minimal space overhead

• Disadvantages

– Extra level of indirection to find desired record

– Bucket address table may itself become very big (larger than
memory)

• Cannot allocate very large contiguous areas on disk either

• Solution: B+-tree structure to locate desired record in bucket
address table

– Changing size of bucket address table is an expensive operation

03/21/18 Heiko Paulheim 65

Comparison of Indexing and Hashing

• Expected type of queries:

– Hashing is generally better at retrieving records having a
specified value of the key.

– If range queries are common, ordered indices are to be
preferred

• Cost of periodic re-organization

• Relative frequency of insertions and deletions

• Average vs. worst case access time

• Which index type is supported by the DBMS at hand?

03/21/18 Heiko Paulheim 66

Bitmap Indices

• Special type of index designed for efficient querying on multiple
keys

• Records in a relation are assumed to be numbered sequentially
from, say, 0

– Given a number n it must be easy to retrieve record n

• Applicable on attributes that take on a relatively small number of
distinct values

– e.g. gender, country, state, …

– e.g. income-level (income broken up into a small number of
levels such as 0-9999, 10000-19999, 20000-50000, 50000-
infinity)

• A bitmap is simply an array of bits

• CPUs can process them very efficiently (i.e., 32 or 64 bits at once)

03/21/18 Heiko Paulheim 67

Bitmap Indices

• In its simplest form a bitmap index on an attribute has a bitmap for
each value of the attribute
• Bitmap has as many bits as records

• In a bitmap for value v, the bit for a record is 1 if the record has the
value v for the attribute, and is 0 otherwise

03/21/18 Heiko Paulheim 68

Bitmap Indices

• Bitmap indices are useful for queries on multiple attributes

– not particularly useful for single attribute queries

• Queries are answered using bitmap operations

– Intersection (and)

– Union (or)

– Negation (not)

• Each operation takes two bitmaps of the same size and applies the
operation on corresponding bits to get the result bitmap

– Males with income level L1: 10010 AND 10100 = 10000

– People with income level L3 to L5: 00001 OR 00010 OR 00000 = 00011

– Females with income above L1: 01101 AND (NOT 10100) = 01001

• Can then retrieve required tuples

– Counting number of matching tuples is even faster!

03/21/18 Heiko Paulheim 69

Selected Other Index Types

• Tries (also known as Prefix Trees)

03/21/18 Heiko Paulheim 70

Selected Other Index Types

• R-Trees and kd trees

03/21/18 Heiko Paulheim 71

Summary

• Index structures help making queries efficient

– Practically, speedup by many orders of magnitude

• Trading off storage against computationtime

• We’ve got to know different flavors

– Table index

– B+-Tree

– Hash tables

– Bitmap indices

• Choice of an index structure

– Desired queries (single/multi attribute? range or value? counting?)

– Frequency of updates

– Real time requirements

03/21/18 Heiko Paulheim 72

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Indexing Strings
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Questions?

