

Data and Web Science Group Prof. Dr. Heiko Paulheim B6,26 – B1.16 68159 Mannheim

Database Technology– FSS 2018

Exercise 5: Normal Forms

5.1. Functional Dependencies

a. List all functional dependencies satisfied by the following relation:

А	В	С
A1	B1	C1
A1	B1	C2
A2	B1	C1
A2	B1	C3

b. Check if the following FDs hold for the following table:

- a. A->B
- b. B->C
- c. C->A
- d. AB -> C
- e. AC->B
- f. BC->A

А	В	С
10	B1	C1
10	B2	C2
11	B4	C1
12	B3	C4
13	B1	C1
14	B3	C1

c. Given the database schema R(a, b, c), and a relation r on the schema R, write an SQL query to test whether the functional dependency b → c holds on relation r. Also write an SQL assertion that enforces the functional dependency. Assume that no null values are present.

UNIVERSITÄT Mannheim

5.2. Multiple Choise

When is a relation in 1NF?

- o A relation is always in 1NF
- $\circ~$ A relation is in 1 NF if every attribute of the relation has atomic content
- o A relation is not always in 1NF

When is a relation in 2NF (assuming it is already in 1NF)?

- If the primary key of a relation consist of exactly one attribute and all other attributes depend on it
- o If all non-prime attributes depend fully on the primary key
- If a relation has at most as many attributes as keys

When is a relation in 3NF (assuming it is already in 1NF)?

- o If a relation has only one non-prime attribute and it is fully dependend on the primary key
- No non-prime attribute transitively dependent on the primary key
- If the primary key of a relation consists of exactly one attribute and all other attributes depend on it

In which relations are the normalforms?

- \circ ~ Is a relation in 3NF, it is also in 2NF
- Is a relation in 2NF, it is also in 3NF
- 2NF and 3NF do not depend on each other

5.3. Anomalies

StudentID	Name	SectionID	CourseID	CourseTitle	Room	Day
512874	Coen Piper	1	CS 460	Database Technology	115	Monday
554867	Reilly Harvey	2	IE661	Text Analytics	104	Tuesday
512874	Coen Piper	2	IE661	Text Analytics	104	Tuesday
457214	Elina Burn	3	IE661	Text Analytics	219	Friday

- a. Given the following relation there are three types of anomalies (insert/delete/update). Find an example for each of these anomalies.
- b. Normalise the relation to 1NF and write it down in relational form
- c. Write down all functional dependencies
- d. Normalise the relation to 2NF
- e. Normalise the relation to 3NF

UNIVERSITÄT Mannheim

5.4. Supermarket

We have a database for supermarkets and their stores together with the city and the average income per person for each city.

Store_ID	Street	City	Income
4711	Schuchardstraße	64283 Darmstadt	40440
4712	An der Hauptwache 5	60313 Frankfurt	24984
4713	D3 3	68159 Mannheim	22970
4714	E2 16	68159 Mannheim	22970

- a. Normalise the relation to 1NF
- b. Write down all functional dependencies
- c. Normalise the relation to 2NF
- d. Normalise the relation to 3NF