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Outline

* Today
— Overview of The SQL Query Language
— Basic Query Structure
— Set Operations
— Join Operators
— Null Values
— Aggregate Functions
— Nested Subqueries

* Next week
— Data Definition
— Data Types in SQL
— Modifications of the database
— Views
— Integrity Constraints
— Roles & Rights
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Recap: Database Systems
e
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— Data manipulation (DML):

reading from & writing to tables | ,Lqueryeﬁg:aﬁm il :
+ SQL is both a DDL and a DML AR Lok
— The language that most DBMS speak | [femmase ety | | mamger

/ storage manager

_________________________________________
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data dictionary

statistical data
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History

* IBM SEQUEL language developed as part of System R project
at the IBM San Jose Research Laboratory

— Structured English QUEry Language
* Renamed Structured Query Language (SQL)

* ANSI and ISO standard SQL;
- SQL-86 ANSI

— SAL-69 ~ Naming becameg

- saLe? 2K compliant! - 150 Pt
— SQL:1999 N52Z8 Standardization

— SQL:2003
* Commercial + free systems offer most, if not all, SQL-92 features

— plus varying feature sets from later standards and special proprietary
features

— Not all examples here may work on your particular system!
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Parts of SQL: The Big Picture
e

SQL
Commands

DDL DML DCL TCL

CREATE SELECT GRANT COMMIT
ALTER INSERT REVOKE ROLLBACK
DROP UPDATE SAVEPOINT
TRUNCATE DELETE SET TRANSACTION
COMMENT MERGE
RENAME CALL

EXPLAIN PLAN

LOCK TABLE

Source: https://www.w3schools.in/mysql/ddI-dml-dcl/
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Reading Data
-

* The select clause lists the attributes desired in the result of a query

* Example: find the names of all instructors:
select name
from instructor

* Inrelational algebra:
— name (instructor)
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A Note on Case Sensitivity
e

* SQL is completely case insensitive
— select = SELECT = SelLeCt
 Also for names of relations and attributes

— instructor = Instructor = INSTRUCTOR
— name = NAME = nAmE

* Each relation / attribute can only exist once

— Hence, two relations named instructor and Instructor
would not be feasible

* Case sensitivity does not apply to values!
— i.e., “Einstein” and “einstein” are different values!
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Renaming Columns in a Select
S

* Columns can be renamed during selection
* select name, salary as payment from instructor

* Inrelational algebra
— a composition of projection and renaming:

P payment— salary (Hname,salary (inStrUCtOI’))
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The Select Clause
e

 An asterisk in the select clause denotes “all attributes”
select * from instructor
* An attribute can be a literal with no from clause, possibly renamed

select ‘437’ FOO
select ‘437’ as FOO 437

* An attribute can be a literal with from clause name role
select name, ‘Instructor’ as role from instructor Sl Instructor
Einstein Instructor

union

select name, ‘Student’ as role from student
Johnson Student
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Duplicates
e

* Difference to relational algebra
— Sets do not contain duplicates!

* SQL allows duplicates in relations as well as in query results

* To force the elimination of duplicates, insert the keyword distinct
after select.
* Find the department names of all instructors, and remove duplicates

select distinct dept name
from instructor
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Arithmetics in the Selection
e

* The select clause can contain arithmetic expressions involving the
operation, +, —, *, and /, and operating on constants or attributes of
tuples

— Here, we leave relational algebra!

* The query

select ID, name, salary/12 from instructor

would return a relation that is the same as the instructor relation,
except that the value of the attribute salary is divided by 12

* Combined with renaming:
— select ID, name, salary/12 as monthly salary
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Reading Parts of a Relation
e

* So far, we have always read an entire relation
* Usually, we are interested only in a small portion
* The where clause restricts which parts of the table to read

* To find all instructors in Comp. Sci. dept
select name

from instructor
where dept name = Comp. Sci.'

* In relational algebra: combination of selection and projection

Tcname(Gdept_name = ‘Comp. Sci.’(r))
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Reading Parts of a Relation
e

* Comparison results can be combined using the logical connectives
and, or, and not

select name
from instructor
where dept _name = ‘Comp. Sci.' and salary > 90000

Tcname(Gdept_name = ‘Comp. Sci.” A salary>90000(r))

* Can be combined with results of arithmetic expressions

select name, salary/12 as monthly salary
from instructor
where dept _name = ‘Comp. Sci.' and monthly salary > 7500
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Reading Data from Multiple Tables
-

Example: find all insrtuctors and the courses they teach

select * from instructor, teaches
— this generates the cartesian product, i.e., instructor x teaches

— result: generates every possible ingtructor — teaches pair, with all
attributes from both relations

-
Common attributes (e.g., ID), the attributes&gthe resulting table are
renamed using the relation name

— e.q., instructor.ID, teaches.ID

< but is that useful?

Relational algebra notation:

= Pinstructor.ID ID(inStrUCtor) X Preaches.ID « ID(teaCheS)
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Cartesian Product
e

instructor teaches

ID name dept_name salary ID | course_id | sec_id | semester | year
10101 | Srinivasan| Comp. Sci. [ 65000 10101 | CS-101 1 Fall 2009
12121 | Wu Finance 90000 10101 | CS-315 1 Spring 2010
15151 ) . 2009
29999 || I#stID| name dept_name|salary | teaches.ID| course_id |sec_id| semester| year 2010
32343 |1 10101 |Srinivasan|Comp. Sci| 65000 10101 |CS-101 | 1 | Fall  |2009| | 2010
nnnnn 10101 |Srinivasan|Comp. Sci| 65000 10101 CS-315 1 Spring |2010] | 2009

10101 [Srinivasan|Comp. Sci| 65000 | 10101 C5-347 1 Fall 2009

10101 |Srinivasan|Comp. Sci| 65000 | 12121 FIN-201 1 Spring [ 2010

10101 |Srinivasan|Comp. Sci| 65000 15151 |MU-199 | 1 Spring | 2010

10101 [Srinivasan|Comp. Sci| 65000| 22222 PHY-101 | 1 Fall 2009

12121 |Wu Finance [90000| 10101 [CS-101 1 Fall 2009

12121 |Wu Finance [90000| 10101 [|CS-315 1 Spring | 2010

12121 |Wu Pinance [90000| 10101 |CS-347 1 Fall 2009

12121 |Wu Pinance 90000 12121 FIN-201 1 Spring [ 2010

12121 |Wu Finance 90000 | 15151 MU-199 1 Spring | 2010

12121 |Wu Pinance |90000| 22222 |PHY-101| 1 Fall 2009
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Cartesian Products with Selection
e

* Find the names of all instructors who have taught some course and
the course id

select name, course id
from instructor , teaches
where instructor.ID = teaches.ID

* Relational algebra:

ﬂname, course_id (Ginstructor. ID=teaches.ID (pinstructor. ID ID( ( I n Str UCtOf ) X Preaches.ID ID(tea Ch €es ) ) ))
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Cartesian Product
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instructor teaches

ID name dept_name salary ID | course_id | sec_id | semester | year
10101 | Srinivasan| Comp. Sci. [ 65000 10101 | CS-101 1 Fall 2009
12121 | Wu Finance 90000 10101 | CS-315 1 Spring 2010
15151 ) . 2009
29999 || I#stID| name dept_name|salary | teaches.ID| course_id |sec_id| semester| year 2010
32343 |1 10101 |Srinivasan|Comp. Sci| 65000 10101 |CS-101 | 1 | Fall  |2009| | 2010
nnnnn 10101 |Srinivasan|Comp. Sci| 65000 10101 CS-315 1 Spring |2010] | 2009

10101 [Srinivasan|Comp. Sci| 65000 | 10101 CS-347 1 Fall 2009
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Cartesian Products with Selection
e

* Find the names of all instructors in the Finance department who
have taught some course and the course _id
select name, course id

from instructor , teaches
where instructor.ID = teaches.ID and instructor. dept name = ‘Finance’

ﬂname, course_id(ainstructor. ID=teaches.ID dept_name=’Finance’(pinstructor. ID /D(

(inStrUCtOr) X pteaches.lD — ID(teaCheS))))
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Cartesian Product
e

instructor teaches
ID name dept_name salary ID | course_id | sec_id | semester | year

10101 | Srinivasan| Comp. Sci. [ 65000 10101 | CS-101 1 Fall 2009
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Cartesian Product of a Table with Itself
e

* Find the names of all instructors who have a higher salary than
some instructor in ‘Comp. Sci'.

— We need the same table twice
— So, we have to use it under different names

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept name = ‘Comp. Sci.’

Tt T,name (GT.sa/ary>S.sa/ary A S.dept_name="Comp. Sci.’ (,0 T(I n StrU Ctor) X Ps (I n StrU CtO I’)))

* What happens if we omit the distinct here?

02/20/19 Heiko Paulheim




Join Operations
e

* Join operations

— take two relations

— return as new relation as their result
* Ajoin operation

— is a Cartesian product

— requires that tuples in the two relations match (under some
condition)

— specifies the attributes that are present in the result of the join

* The join operations are typically used as subquery expressions in
the from clause
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Join Operations
e

* Recap: We have already seen a form of joins:
* Ajoin operation
— is a Cartesian product

— requires that|tuples in the two relations match (under some
condition)

— specifies the attributes that are present in the result of the join

* Find the names|of all instructors who have taught some course and

the course _id

select namejcourse id
from instructor, teach
where instructor.ID = teaches.ID
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Outer Joins

Consider the two relations below

Desired:

— List all courses with their prerequisites

— Note: course CS-315 has no prerequisites

02/20/19

course_id title dept_name | credits
BIO-301 | Genetics Biology 4
CS5-190 [ Game Design| Comp. Sci. 4
(CS-315 |Robotics Comp. Sci. 3
course_id | prereq_id
BIO-301 | BIO-101
C5-190 C5-101
CS-347 CS-101
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Outer Joins
e

* List all courses with their prerequisites

select C.course _id, C.title, C.credits, C.dept_name, P.course_id
from course as C, prereq as P
where C.course id = P.course_id

course_id title dept_name | credits course_id | prereq_id

BIO-301 | Genetics Biology 4 BIO-301 | BIO-101

CS-190 | Game Design| Comp. Sci. 4 CS-190 | CS-101

CS-315 |Robotics Comp. Sci. 3 CS-347 CS-101
C.course _id C.title C.credits C.dept_name P.course id
Bl1O-301 Genetics 4 Biology BlIO-101
CS-190 Game Design 4 Comp. Sci. CS-101
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Outer Joins
e

* List all courses with their prerequisites

select C.course _id, C.title, C.credits, C.dept_name, P.prereq _id
from course as C left outer join prereq as P
on C.course id = P.course _id

course_id title dept_name | credits course_id | prereq_id

BIO-301 | Genetics Biology 4 BIO-301 | BIO-101

CS-190 | Game Design| Comp. Sci. 4 CS-190 CS-101

CS-315 |Robotics Comp. Sci. 3 Cs-347 | CS-101
C.course_id  C.title C.credits C.dept_name P.prereqg_id
Bl1O-301 Genetics 4 Biology BlIO-101
CS-190 Game Design 4 Comp. Sci. CS-101
CS-315 Robotics 3 Comp. Sci. null
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Join Operations

Join type — defines how tuples in each relation that do not match

any tuple in the other relation (based on the join condition) are
treated

~ for the moment:
keyword for “a blank cell”

— inner join: ignore
= . . . >
— outer join: fill with null values™

Join condition — defines which tuples in the two relations match,
and what attributes are present in the result of the join

— explicit: on clause
— implicit: natural keyword

Join types Join Conditions
inner join natural

left outer join on <predicate>
right outer join using (A, Ay, ..., A))
full outer join
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Outer Joins
e

* List all courses with their prerequisites
select C.course _id, C.title, C.credits, C.dept_name, P.prereq _id

from course as C right outer join prereq as P
on C.course id = P.course _id

course_id title dept_name | credits course_id | prereq_id
BIO-301 | Genetics Biology 4 BIO-301 | BIO-101

CS-190 | Game Design| Comp. Sci. 4 CS-190 | CS-101

CS-315 |Robotics Comp. Sci. 3 Cs-347 | CS-101
C.course_id  C.title C.credits C.dept_name P.prereqg_id
Bl1O-301 Genetics 4 Biology BlIO-101
CS-190 Game Design 4 Comp. Sci. CS-101
CS-347 null null null CS-101
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Outer Joins
e

* List all courses with their prerequisites

select C.course _id, C.title, C.credits, C.dept_name, P.prereq _id
from course as C full outer join prereq as P
on C.course id = P.course _id

course_id title dept_name | credits course_id | prereq_id

BIO-301 | Genetics Biology 4 BIO-301 | BIO-101

CS-190 | Game Design| Comp. Sci. 4 CS-190 | CS-101

CS-315 |Robotics Comp. Sci. 3 Cs-347 | CS-101
C.course_id  C.title C.credits C.dept_name P.prereqg_id
B1O-301 Genetics 4 Biology BIO-101
CS-190 Game Design 4 Comp. Sci. CS-101
CS-347 null null null CS-101
CS-315 Robotics 3 Comp. Sci. null
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Join Types at a Glance

SELECT <select_list> SELECT <schect_list=
FROM TableA A FROM TableA A
LEFT JOIN TableB B RIGHT JOIN Tableh B
O AKey = B.Key O™ AKey = B.Key
SELECT <sclect_lisy>
FROM TablcA A
INMNER JOIN TablcB B
OM A Key = B Key
SELECT <sclect list> SELECT <select_list=>
FROM TableA A FROM TableA A

LEFT JOIN TakleB B
OMN A Key = B.Key
WHERE B.Eey IS NULL

RIGHT JOHIMN TableB B
O AKey = B.Key
WHERE A.Kev 15 NULL

SELECT <schoet_list>
SELECT <sclect list> FROM TableA A

FROM Tablea A FULL OUTER JOIN TablcB B
FULL OUTER JOIN TableB B O™ AKey = B.Key

ON AKey = B.Eey WHERLE .A..Hr::.' I's MLUILL

SCL Mo, 2002 OR B.Key 15 NULL

https://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins
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Searching in Texts
S

* So far, we have handled exact equality in selections

* Sometimes, we want to search differently
— All books that contain “database”
— All authors starting with “S”

* In SQL: comparing with like and two special characters:
— = any arbitrary character
— % = any number of arbitrary characters
— masking with backslash
select ... where fitle like ‘%database%’
select ... where author like ‘S%’
select ... where amount like ‘100\%’
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Ordering Results
e

* Recap: Relational Algebra works on sets
— i.e., it does not have orderings

* For database applications, ordering is often useful, e.g.,

— list students ordered by names
select id,name
from student
order by name

— list instructors ordered by department first, then by name
select id,name,dept _name
from instructor
order by dept name, name
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Limiting Results
S

* Find the three lecturers with the highest salaries

select id,name,salary
from instructor
order by salary desc
limit 3;

* Note: the desc keyword creates a descending ordering

* asc also exists and creates an ascending ordering
— also the default when not specifiying the direction
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Paging with LIMIT and OFFSET
e

* Applications, e.g., Web applications, often offer a paged view
* Example:

— Display student list on pages of 100 students

— with navigation (next page, previous page)

select id,name
from student
order by name
limit 100
offset 100;

* offset 100 means: skip the first 100 entries
— i.e., this query would create the second page
* Note: offset should only be used with order by

— otherwise, the results are not deterministic
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Set Operations

* All courses that are offered in HWS 2017 and FSS 2018

(select course_id from section where sem = ‘HWS’ and year = 2017)
intersect
(select course_id from section where sem = ‘FSS’ and year = 2018)

ﬂcourse_id(asemeWS’ A year=201 7(SeCti on )) a ﬂcourse_id(asemfFSS’ A year=201 8(SeCti on ))

* All courses that are offered in HWS 2017 but not in FSS 2018

(select course_id from section where sem = ‘HWS’ and year = 2017)
except
(select course_id from section where sem = ‘FSS’ and year = 2018)

ﬂcourse_id(asemeWS’ A year=201 7(SeCti on )) - ﬂcourse_id(asemfFSS’ A year=201 8(SeCti on ))
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Set Operations

* All courses that are offered in HWS 2017 or FSS 2018

(select course_id from section where sem = ‘HWS’ and year = 2017)
union
(select course_id from section where sem = ‘FSS’ and year = 2018)

ﬂcourse_id(asemeWS’ A year=201 7(SeCti on )) % ﬂcourse_id(asemfFSS’ A year=201 8(SeCti on ))

* Alternative solution

(select course_id from section where
((sem = "HWS’ and year = 2017) or (sem = ‘FSS’ and year = 2018))

ﬂcourse_id(a(semeWS’/\ year=2017) v (sem="FSSS’ A year=2018)) (SeCtlon ))
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Aggregate Functions — Examples
-

Find the average salary of instructors in the Computer Science
department

— select avg (salary)
from instructor
where dept_name='Comp. Sci.’;

Find the number of tuples in the course relation

— select count (*)
from course;

Find the total number of instructors who teach a course in the
Spring 2010 semester

— select count (distinct ID) = = <
from teaches
where semester = 'Spring’ and year = 2010;

Why do we need
distinct here?
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Aggregate Functions with Group By

* Find the average salary of instructors in each department

— select dept_name, avg (salary) as avg_salary
from instructor
group by dept name;

depl_name

avg_éalaury

Biology 72000
Comp. Sci. | 77333
Elec. Eng. | 80000
Finance 85000
History 61000
Music 40000
Physics 91000

ID name dept_name | salary
76766 | Crick Biology 72000
45565 | Katz Comp. Sci. | 75000
10101 | Srinivasan | Comp. Sci. | 65000
83821 |Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. | 80000
12121 [Wu Finance 90000
76543 | Singh Finance 80000
32343 | El Said History 60000
58583 | Califieri History 62000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
22222 |Einstein Physics 95000
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Aggregate Functions with Group By

* Attributes in select clause outside of aggregate functions must

appear in group by list T e -
/* erroneous query */ Wh@
select dept_name, ID, avg (salary)

from instructor
group by dept name;

| ID | name | dept_name | salary |

76766 | Crick Biology 72000 dept_name avg_salary
45565 | Katz Comp. Sci. | 75000 ;

10101 | Srinivasan | Comp. Sci. | 65000 ](BZIOIOgYS _ 72000
83821 | Brandt Comp. Sci. | 92000 omp. 5CL | 77333
98345 | Kim Elec. Eng. | 80000 Elec. Eng. | 80000
12121 |Wu Finance 90000 Finance 85000
76543 | Singh Finance 80000 History 61000
32343 |EI Said History | 60000 .

58583 | Califieri | History | 62000 LA 40000
15151 |Mozart | Music 40000 Physics | 91000
33456 [Gold Physics | 87000

22222 | Einstein Physics 95000
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Conditions on Aggregate Values
e

* Find the names and average salaries of all departments whose
average salary is greater than 42000

— select dept _name, avg (salary) as avg _ salary i
from instructor V 4
group by dept _name
where avg _salary > 42000;

* Problem:
— Aggregation is performed after selection and projection

— Hence, the variable avg salary is not available
when the where clause is evaluated

— The above query will not work
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Conditions on Aggregate Values
e

* Find the names and average salaries of all departments whose
average salary is greater than 42000

— select dept _name, avg (salary) as avg_salary
from instructor
group by dept _name
having avg_salary > 42000;

* The having clause is evaluated after the aggregation
* Hence, it is different from the where clause

* Rule of thumb
— Conditions on aggregate values can only be defined using having
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NULL Values
e

* null signifies an unknown value or that a value does not exist

* ltis possible for tuples to have a null value, denoted by null, for
some of their attributes

— can be forbidden by a not null constraint
— keys can never be null!

* The result of any arithmetic expression involving null is null
 Example: 5 + null returns null

* The predicate is null can be used to check for null values
* Example: Find all instructors whose salary is null.

select name
from instructor
where salary is null
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NULL Values and Three Valued Logic
e

* Three values — frue, false, unknown
* Any comparison with null returns unknown

— Example: 5 <null or null <>null or null =null

* Three-valued logic using the value unknown:

— OR: (unknown or true) = true,
(unknown or false) = unknown
(unknown or unknown) = unknown

— AND: (true and unknown) = unknown,
(false and unknown) = false,
(unknown and unknown) = unknown

— NOT: (not unknown) = unknown
* “P is unknown” evaluates to true if predicate P evaluates to unknown

* Result of where clause predicate is treated as false if it evaluates to
unknown
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Aggregates and NULL Values
-

* Total all salaries

select sum (salary )
from instructor

— Above statement ignores null amounts
— Result is null if there is no non-null amount

* All aggregate operations except count(*) ignore tuples with null

values on the aggregated attributes [ ID [ name | dept_name | salary |
. . . 76766 | Crick Biology 72000
What if collection has only null values? 565 | Koz Comp. Sci. | 75000

10101 | Srinivasan | Comp. Sci. | null

— count returns O 33871 | Brandt Comp. Sci. | 92000

— all other aggregates return null 98345 | Kim Elec. Eng. | 80000
12121 |Wu Finance null
76543 | Singh Finance 80000

32343 | El Said History 60000
58583 | Califieri History null
15151 | Mozart Music 40000
33456 | Gold Physics 87000
22222 | Einstein Physics null
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Subqueries
e

SQL provides a mechanism for the nesting of subqueries. A subquery is a
select-from-where expression that is nested within another query.

The nesting can be done in the following SQL query

select A, A,, ..., A,
fromr, 1, ..., Iy,
where P

as follows:
A; can be replaced be a subquery that generates a single value
r; can be replaced by any valid subquery
P can be replaced with an expression of the form:
B <operation> (subquery)
Where B is an attribute and <operation> to be defined later
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Subqueries in the WHERE Clause
e

* A common use of subqueries is to perform tests:
— for set membership
— for set comparisons
— for set cardinality
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Test for Set Membership

e
* Find courses offered in Fall 2009 and in Spring 2010

select distinct course id
from section
where semester = 'Fall’ and year= 2009 and
course_id in (select course _id from section
where semester = 'Spring’ and year= 2010);

* Find courses offered in Fall 2009, but not in Spring 2010

select distinct course id
from section
where semester = 'Fall’ and year= 2009 and
course_id not in (select course id from section
where semester = 'Spring’ and year= 2010);
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Test for Set Membership
e

* Find the total number of (distinct) students who have taken course
sections taught by the instructor with /D 10101

select count (distinct /D)
from takes
where (course _id, sec_id, semester, year) in
(select course _id, sec_id, semester, year
from teaches
where teaches.ID= 10101);

* Note: in all of those cases,
other (sometimes much simpler) solutions are possible

— In SQL, there are often different ways to solve a problem
— A question of personal taste
— But also: a question of performance...

02/20/19 Heiko Paulheim




Test for Set Membership
e

* Find the total number of (distinct) students who have taken course

sections taught by the instructor with /D 10101

select count (distinct /D) creates a
from takes
where (course _id, sec_id, semester, year) in @ ®
(select course_?d, sec _id, semester, year
from teaches
where teaches.ID= 10101);

select count (distinct fakes.ID)
from takes, teaches_
where takes.course id = teacges.course_id and feaches.ID = 10101;

@

computes
Cartesian
product
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Set Comparison with SOME
e

* Find names of instructors with salary greater than
that of some (at least one) instructor in the Biology department

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept name = 'Biology’;

* Same query using > some clause

select name
from instructor
where salary > some (select salary
from instructor
where dept name = 'Biology’);
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Set Comparison with ALL
e

« Find names of instructors with salary greater than
that of all instructors in the Biology department

select name
from instructor
where salary > all (select salary
from instructor
where dept name = 'Biology’);

* Note: we could also achieve this with MIN and MAX aggregates in the
subqueries
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Definition: Comparisons with SOME
e

* F <comp>some r < 3t e r such that (F <comp>t)
Where <comp> can be: <, <, >, =, #

0
(b<some | § | )=true
6 (read: 5 <some tuple in the relation)
0
(5<some | § | )=Tfalse
0
(O=some| 5 | )=true
0
(5#some | S | )=true (since 0 # 5)

(= some) =in
However, (= some)/aé not in
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Definition: Comparisons with ALL
e

* F<comp>allr< Vi er (F<comp> )

0

(b<all | 5 | )=Tfalse
6
6

(5<all |[10Q]| )=true
4

(o=all| 5 | )="false
4

(5#all| 6 | )=true (since 5+ 4 and 5 # 6)

(= all) = not in
However, (= all) £ in
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Existential Quantification in Subqueries
-

* Yet another way of specifying the query “Find all courses taught in
both the Fall 2009 semester and in the Spring 2010 semester”

select course _id
from section as S
where semester = 'Fall’ and year = 2009 and
exists (select *
from sectionas T
where semester = 'Spring’ and year= 2010
and S.course _id = T.course_id);

* The exists construct returns the value true
if the result of the subquery is not empty

— exists re r2 @
— notexistsr r=0
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Subqueries with NOT EXISTS
e

* Find all students who have taken all courses offered in the Biology
department

select distinct S./D, S.name
from student as S
where not exists ( (select course id
from course
where dept_name = 'Biology’)
except
(select T.course id
from takesas T
where S.ID = T.ID));

— First nested query lists all courses offered in Biology
— Second nested query lists all courses a particular student took

* NotethatX-Y=0 < XcY
* Note: Cannot write this query using = all and its variants
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Test for Duplicate Tuples

 Find all courses that were offered at most once in 2009

select T.course id
from course as T
where unique (select R.course id
from section as R
where T.course id= R.course id
and R.year = 2009);

* The unique construct evaluates to “true” if a given subquery
contains no duplicates

* With not unique, we could query for courses that were offered
more than once
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Subqueries in the FROM Clause
e

* So far, we have considered subqueries in the where clause

* Find the average instructors’ salaries of those departments where
the average salary is greater than $42,000.”

select dept _name, avg salary
from
(select dept_name, avg (salary) as avg_salary
from instructor
group by dept _name)
where avg salary > 42000;

* Note that we do not need to use the having clause
— why?
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Creating Temporary Relations Using WITH

* Find all departments with the maximum budget

with max_budget (value) as

(select max(budget) ~ < ~ this deflnes tm

from department) of the temporary relatlon\j
select department.name ?

: (datatypes are implicit)
from department, max_budget \J\j/

where department.budget = max_budget.value,

* The with clause provides a way of defining a temporary relation
whose definition is available only to the query in which the with
clause occurs

02/20/19 Heiko Paulheim




Creating Temporary Relations Using WITH
-

* A more complex example involving two temporary relations:

— Find all departments where the total salary is greater than the
average of the total salary at all departments
with
dept _total (dept _name, value) as

(select dept name, sum(salary)
from instructor
group by dept _name),
dept _total avg(value) as
(select avg(value)
from dept total)
select dept name
from dept total, dept total avg
where dept total.value > dept total avg.value;
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Scalar Subqueries in the SELECT Part
e

* List all departments along with the number of instructors in each
department

select dept _name,
(select count(™)
from instructor
where
department.dept_name = instructor.dept_name)
as num_instructors
from department;

* Scalar subqueries return a single result
— More specifically: a single tuple
* Runtime error if subquery returns more than one result tuple
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Summary of Subqueries

 SELECT queries are the most often used part of SQL

* Their basic structure is simple, but subqueries are a powerful means
to make them quite expressive
select A, A,, ..., A,
fromr, ..., 1,
where P

* Subqueries in select part (A, A,, ..., A)

— Scalar subqueries (single values, like aggregates)
* Subqueries in from part (ry, 15, ..., I'y)

— Temporary relations (can also be defined using with)
* Subqueries in where part (P)

— Set comparisons, empty sets, test for duplicates

— Universal and existential quantification
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Summary: SQL SELECT at a Glance

* The tool support of SQL varies QD — - ]

* what we have covered here e —— .mm
is standard SQL H

— Supported by most tools

o)

(oroer )»((BY )| ordering term |
h'.

D e e G St
®
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Recap: The Big Picture
S

SQL
Commands
|
|
DDL DML DCL TCL

CREATE GRANT COMMIT
ALTER INSERT REVOKE ROLLBACK
DROP UPDATE SAVEPOINT
TRUNCATE DELETE SET TRANSACTION
COMMENT MERGE
RENAME CALL

EXPLAIN PLAN

LOCK TABLE

Source: https://www.w3schools.in/mysql/ddI-dml-dcl/
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Summary and Take Aways
-

* SQL is a standarized language for relational databases
— DML: Data Manipulation Language

* DML
— Read data from tables using SELECT

* Coming Up:
— Writing data to tables
— Creating and changing tables
— Rights & Roles
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Questions?

o

&
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