 MANNHEIM

Database Technology
SQL Part 1

Heiko Paulheim

Outline

* Today
— Overview of The SQL Query Language
— Basic Query Structure
— Set Operations
— Join Operators
— Null Values
— Aggregate Functions
— Nested Subqueries

* Next week
— Data Definition
— Data Types in SQL
— Modifications of the database
— Views
— Integrity Constraints
— Roles & Rights

02/20/19 Heiko Paulheim

Recap: Database Systems
e

[nﬁaive users J application } sophisticated [database
. . . (tellers, agents, s administrators
* Users and applications interact koot i i i

use write use use

with databases
— By issuing queries @D @9 - @D

— Data definition (DDL): T T __________

defining, altering, deleting tables ’ |

compiler and | .

DML queries DDL interpreter

I
|

/ linker = |

] I

application |
program DML compiler '

l

|

I

I

I

|
|
|
|
i object code and organizer
|
|
|
|
|
|

— Data manipulation (DML):

reading from & writing to tables | ,Lqueryeﬁg:aﬁm il :
+ SQL is both a DDL and a DML AR Lok
— The language that most DBMS speak | [femmase ety | | mamger

/ storage manager

disk storage

data dictionary

statistical data

02/20/19 Heiko Paulheim

History

* IBM SEQUEL language developed as part of System R project
at the IBM San Jose Research Laboratory

— Structured English QUEry Language
* Renamed Structured Query Language (SQL)

* ANSI and ISO standard SQL;
- SQL-86 ANSI

— SAL-69 ~ Naming becameg

- saLe? 2K compliant! - 150 Pt
— SQL:1999 N52Z8 Standardization

— SQL:2003
* Commercial + free systems offer most, if not all, SQL-92 features

— plus varying feature sets from later standards and special proprietary
features

— Not all examples here may work on your particular system!

02/20/19 Heiko Paulheim

Parts of SQL: The Big Picture
e

SQL
Commands

DDL DML DCL TCL

CREATE SELECT GRANT COMMIT
ALTER INSERT REVOKE ROLLBACK
DROP UPDATE SAVEPOINT
TRUNCATE DELETE SET TRANSACTION
COMMENT MERGE
RENAME CALL

EXPLAIN PLAN

LOCK TABLE

Source: https://www.w3schools.in/mysql/ddI-dml-dcl/

02/20/19

Heiko Paulheim

Reading Data
-

* The select clause lists the attributes desired in the result of a query

* Example: find the names of all instructors:
select name
from instructor

* Inrelational algebra:
— name (instructor)

02/20/19 Heiko Paulheim

A Note on Case Sensitivity
e

* SQL is completely case insensitive
— select = SELECT = SelLeCt
 Also for names of relations and attributes

— instructor = Instructor = INSTRUCTOR
— name = NAME = nAmE

* Each relation / attribute can only exist once

— Hence, two relations named instructor and Instructor
would not be feasible

* Case sensitivity does not apply to values!
— i.e., “Einstein” and “einstein” are different values!

02/20/19 Heiko Paulheim

Renaming Columns in a Select
S

* Columns can be renamed during selection
* select name, salary as payment from instructor

* Inrelational algebra
— a composition of projection and renaming:

P payment— salary (Hname,salary (inStrUCtOI’))

02/20/19 Heiko Paulheim

The Select Clause
e

 An asterisk in the select clause denotes “all attributes”
select * from instructor
* An attribute can be a literal with no from clause, possibly renamed

select ‘437’ FOO
select ‘437’ as FOO 437

* An attribute can be a literal with from clause name role
select name, ‘Instructor’ as role from instructor Sl Instructor
Einstein Instructor

union

select name, ‘Student’ as role from student
Johnson Student

02/20/19 Heiko Paulheim

Duplicates
e

* Difference to relational algebra
— Sets do not contain duplicates!

* SQL allows duplicates in relations as well as in query results

* To force the elimination of duplicates, insert the keyword distinct
after select.
* Find the department names of all instructors, and remove duplicates

select distinct dept name
from instructor

02/20/19 Heiko Paulheim

Arithmetics in the Selection
e

* The select clause can contain arithmetic expressions involving the
operation, +, —, *, and /, and operating on constants or attributes of
tuples

— Here, we leave relational algebra!

* The query

select ID, name, salary/12 from instructor

would return a relation that is the same as the instructor relation,
except that the value of the attribute salary is divided by 12

* Combined with renaming:
— select ID, name, salary/12 as monthly salary

02/20/19 Heiko Paulheim

Reading Parts of a Relation
e

* So far, we have always read an entire relation
* Usually, we are interested only in a small portion
* The where clause restricts which parts of the table to read

* To find all instructors in Comp. Sci. dept
select name

from instructor
where dept name = Comp. Sci.'

* In relational algebra: combination of selection and projection

Tcname(Gdept_name = ‘Comp. Sci.’(r))

02/20/19 Heiko Paulheim

Reading Parts of a Relation
e

* Comparison results can be combined using the logical connectives
and, or, and not

select name
from instructor
where dept _name = ‘Comp. Sci.' and salary > 90000

Tcname(Gdept_name = ‘Comp. Sci.” A salary>90000(r))

* Can be combined with results of arithmetic expressions

select name, salary/12 as monthly salary
from instructor
where dept _name = ‘Comp. Sci.' and monthly salary > 7500

02/20/19 Heiko Paulheim

Reading Data from Multiple Tables
-

Example: find all insrtuctors and the courses they teach

select * from instructor, teaches
— this generates the cartesian product, i.e., instructor x teaches

— result: generates every possible ingtructor — teaches pair, with all
attributes from both relations

-
Common attributes (e.g., ID), the attributes>he resulting table are
renamed using the relation name

— e.q., instructor.ID, teaches.ID

< but is that useful?

Relational algebra notation:

= Pinstructor.ID ID(inStrUCtor) X Preaches.ID « ID(teaCheS)

02/20/19 Heiko Paulheim

Cartesian Product
e

instructor teaches

ID name dept_name salary ID | course_id | sec_id | semester | year
10101 | Srinivasan| Comp. Sci. [65000 10101 | CS-101 1 Fall 2009
12121 | Wu Finance 90000 10101 | CS-315 1 Spring 2010
15151) . 2009
29999 || I#stID| name dept_name|salary | teaches.ID| course_id |sec_id| semester| year 2010
32343 |1 10101 |Srinivasan|Comp. Sci| 65000 10101 |CS-101 | 1 | Fall |2009| | 2010
nnnnn 10101 |Srinivasan|Comp. Sci| 65000 10101 CS-315 1 Spring |2010] | 2009

10101 [Srinivasan|Comp. Sci| 65000 | 10101 C5-347 1 Fall 2009

10101 |Srinivasan|Comp. Sci| 65000 | 12121 FIN-201 1 Spring [2010

10101 |Srinivasan|Comp. Sci| 65000 15151 |MU-199 | 1 Spring | 2010

10101 [Srinivasan|Comp. Sci| 65000| 22222 PHY-101 | 1 Fall 2009

12121 |Wu Finance [90000| 10101 [CS-101 1 Fall 2009

12121 |Wu Finance [90000| 10101 [|CS-315 1 Spring | 2010

12121 |Wu Pinance [90000| 10101 |CS-347 1 Fall 2009

12121 |Wu Pinance 90000 12121 FIN-201 1 Spring [2010

12121 |Wu Finance 90000 | 15151 MU-199 1 Spring | 2010

12121 |Wu Pinance |90000| 22222 |PHY-101| 1 Fall 2009

02/20/19

Heiko Paulheim

Cartesian Products with Selection
e

* Find the names of all instructors who have taught some course and
the course id

select name, course id
from instructor , teaches
where instructor.ID = teaches.ID

* Relational algebra:

ﬂname, course_id (Ginstructor. ID=teaches.ID (pinstructor. ID ID((I n Str UCtOf) X Preaches.ID ID(tea Ch €es))))

02/20/19 Heiko Paulheim

Cartesian Product

02/20/19

Heiko Paulheim

instructor teaches

ID name dept_name salary ID | course_id | sec_id | semester | year
10101 | Srinivasan| Comp. Sci. [65000 10101 | CS-101 1 Fall 2009
12121 | Wu Finance 90000 10101 | CS-315 1 Spring 2010
15151) . 2009
29999 || I#stID| name dept_name|salary | teaches.ID| course_id |sec_id| semester| year 2010
32343 |1 10101 |Srinivasan|Comp. Sci| 65000 10101 |CS-101 | 1 | Fall |2009| | 2010
nnnnn 10101 |Srinivasan|Comp. Sci| 65000 10101 CS-315 1 Spring |2010] | 2009

10101 [Srinivasan|Comp. Sci| 65000 | 10101 CS-347 1 Fall 2009

TUTUTL STITTIvasdarT CUMLP. STt OHUUY 2424 THN=20T T Splillé FAVERY,

TUTUT STITTveasaTT CULL[P. St 5le10]01V) 5151 N9 T SPLiué 2616

-0 SHRivasaRCoRPS S50 022222 0], Eall 2004

212 TWor Firrerree—90000 T HOH0+— €516 % Fartt 2069

T2 Firrarree—T90000T 16164 5315 t Sprivg—126+6

T2V Pirarree—90000 00— C5-34F + Falt 2669

12121 |Wu Pinance 90000 12121 FIN-201 1 Spring [2010

24— Einanee 98066-—+5+54+ ATH59 . Sprire—20+0

iy L Pinemee— 55600 —22222— P01t Eall 2000

Cartesian Products with Selection
e

* Find the names of all instructors in the Finance department who
have taught some course and the course _id
select name, course id

from instructor , teaches
where instructor.ID = teaches.ID and instructor. dept name = ‘Finance’

ﬂname, course_id(ainstructor. ID=teaches.ID dept_name=’Finance’(pinstructor. ID /D(

(inStrUCtOr) X pteaches.lD — ID(teaCheS))))

02/20/19 Heiko Paulheim

Cartesian Product
e

instructor teaches
ID name dept_name salary ID | course_id | sec_id | semester | year

10101 | Srinivasan| Comp. Sci. [65000 10101 | CS-101 1 Fall 2009
12121 | Wu Finance 90000 10101 | C5-315 1 Spring 2010
15151 . . 2009

Inst.ID| name dept_name|salary | teaches.ID| course_id |sec_id| semester| year
22272 - - = 2010
32343 | g S G eSS SRR —CS el angg | | 2010
""""" 1oa0a LGt canlC o Catl caoal 10101 falello T~ 1 Corin aYaXila) 2009

TUIrur (s \._,\JLLLIJ- (i~ e MO L WAV LY) TULTOUT | TR e I ul-' lllb pan v sy

oo Seindvasan comp-Seb 650000 S5-347 + Fedh 20

TUTUTL STITTIvasdarT CUMLP. STt OHUUY 2424 THN=20T T Splillé FAVERY,

TUTUT STITTveasaTT CULL[P. St 5le10]01V) 5151 N9 T SPLiué 2616

S eriasantcemp-S el-65000—2222 22— RE 1011 Eall 2009

A~ X AT i B P A A A Pt o et | A I _11 laFATATA

TZTZT vV d T It res %UUU TUTUT IO T T Crr Favive

W IAT S TR W 0. N2 A0 0 Vit Gl e I el e | (@ z laFata VA

TZIZL [vv o Tiltalree SO TUTUL AT e s g T TS T

A~y AT 1 FAVAWAVAWAN A 01 01 Fal Gl W i | .11 aYATATE

i) i B ¥y ul 1 IITCil . Uy 1V oSS L 1ol e LN S

12121 |Wu Pinance 90000 12121 FIN-201 1 Spring [2010

471 A AL, Llian oon o FaVvavavalal 12151 AATT 100 a | C“Fiv\ 2010

12121 vy ol T T LCIT IR JUUOY P s s o Vi T 1 X ul-' lllb e wis m vy

Amana LIAT D:ﬁaﬁ-ﬁn fa¥aVaVa¥al islalalals) DLIN 101 1 .11 20

Lo Ldm L ¥y P S p, PAVIVIVAY) = o I 1rii 1A I L rr i LS

02/20/19 Heiko Paulheim

Cartesian Product of a Table with Itself
e

* Find the names of all instructors who have a higher salary than
some instructor in ‘Comp. Sci'.

— We need the same table twice
— So, we have to use it under different names

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept name = ‘Comp. Sci.’

Tt T,name (GT.sa/ary>S.sa/ary A S.dept_name="Comp. Sci.’ (,0 T(I n StrU Ctor) X Ps (I n StrU CtO I’)))

* What happens if we omit the distinct here?

02/20/19 Heiko Paulheim

Join Operations
e

* Join operations

— take two relations

— return as new relation as their result
* Ajoin operation

— is a Cartesian product

— requires that tuples in the two relations match (under some
condition)

— specifies the attributes that are present in the result of the join

* The join operations are typically used as subquery expressions in
the from clause

02/20/19 Heiko Paulheim

Join Operations
e

* Recap: We have already seen a form of joins:
* Ajoin operation
— is a Cartesian product

— requires that|tuples in the two relations match (under some
condition)

— specifies the attributes that are present in the result of the join

* Find the names|of all instructors who have taught some course and

the course _id

select namejcourse id
from instructor, teach
where instructor.ID = teaches.ID

02/20/19 Heiko Paulheim

Outer Joins

Consider the two relations below

Desired:

— List all courses with their prerequisites

— Note: course CS-315 has no prerequisites

02/20/19

course_id title dept_name | credits
BIO-301 | Genetics Biology 4
CS5-190 [Game Design| Comp. Sci. 4
(CS-315 |Robotics Comp. Sci. 3
course_id | prereq_id
BIO-301 | BIO-101
C5-190 C5-101
CS-347 CS-101

Heiko Paulheim

Outer Joins
e

* List all courses with their prerequisites

select C.course _id, C.title, C.credits, C.dept_name, P.course_id
from course as C, prereq as P
where C.course id = P.course_id

course_id title dept_name | credits course_id | prereq_id

BIO-301 | Genetics Biology 4 BIO-301 | BIO-101

CS-190 | Game Design| Comp. Sci. 4 CS-190 | CS-101

CS-315 |Robotics Comp. Sci. 3 CS-347 CS-101
C.course _id C.title C.credits C.dept_name P.course id
Bl1O-301 Genetics 4 Biology BlIO-101
CS-190 Game Design 4 Comp. Sci. CS-101

02/20/19 Heiko Paulheim

Outer Joins
e

* List all courses with their prerequisites

select C.course _id, C.title, C.credits, C.dept_name, P.prereq _id
from course as C left outer join prereq as P
on C.course id = P.course _id

course_id title dept_name | credits course_id | prereq_id

BIO-301 | Genetics Biology 4 BIO-301 | BIO-101

CS-190 | Game Design| Comp. Sci. 4 CS-190 CS-101

CS-315 |Robotics Comp. Sci. 3 Cs-347 | CS-101
C.course_id C.title C.credits C.dept_name P.prereqg_id
Bl1O-301 Genetics 4 Biology BlIO-101
CS-190 Game Design 4 Comp. Sci. CS-101
CS-315 Robotics 3 Comp. Sci. null

02/20/19 Heiko Paulheim

Join Operations

Join type — defines how tuples in each relation that do not match

any tuple in the other relation (based on the join condition) are
treated

~ for the moment:
keyword for “a blank cell”

— inner join: ignore
= . . . >
— outer join: fill with null values™

Join condition — defines which tuples in the two relations match,
and what attributes are present in the result of the join

— explicit: on clause
— implicit: natural keyword

Join types Join Conditions
inner join natural

left outer join on <predicate>
right outer join using (A, Ay, ..., A))
full outer join

02/20/19 Heiko Paulheim

Outer Joins
e

* List all courses with their prerequisites
select C.course _id, C.title, C.credits, C.dept_name, P.prereq _id

from course as C right outer join prereq as P
on C.course id = P.course _id

course_id title dept_name | credits course_id | prereq_id
BIO-301 | Genetics Biology 4 BIO-301 | BIO-101

CS-190 | Game Design| Comp. Sci. 4 CS-190 | CS-101

CS-315 |Robotics Comp. Sci. 3 Cs-347 | CS-101
C.course_id C.title C.credits C.dept_name P.prereqg_id
Bl1O-301 Genetics 4 Biology BlIO-101
CS-190 Game Design 4 Comp. Sci. CS-101
CS-347 null null null CS-101

02/20/19

Heiko Paulheim

Outer Joins
e

* List all courses with their prerequisites

select C.course _id, C.title, C.credits, C.dept_name, P.prereq _id
from course as C full outer join prereq as P
on C.course id = P.course _id

course_id title dept_name | credits course_id | prereq_id

BIO-301 | Genetics Biology 4 BIO-301 | BIO-101

CS-190 | Game Design| Comp. Sci. 4 CS-190 | CS-101

CS-315 |Robotics Comp. Sci. 3 Cs-347 | CS-101
C.course_id C.title C.credits C.dept_name P.prereqg_id
B1O-301 Genetics 4 Biology BIO-101
CS-190 Game Design 4 Comp. Sci. CS-101
CS-347 null null null CS-101
CS-315 Robotics 3 Comp. Sci. null

02/20/19 Heiko Paulheim

Join Types at a Glance

SELECT <select_list> SELECT <schect_list=
FROM TableA A FROM TableA A
LEFT JOIN TableB B RIGHT JOIN Tableh B
O AKey = B.Key O™ AKey = B.Key
SELECT <sclect_lisy>
FROM TablcA A
INMNER JOIN TablcB B
OM A Key = B Key
SELECT <sclect list> SELECT <select_list=>
FROM TableA A FROM TableA A

LEFT JOIN TakleB B
OMN A Key = B.Key
WHERE B.Eey IS NULL

RIGHT JOHIMN TableB B
O AKey = B.Key
WHERE A.Kev 15 NULL

SELECT <schoet_list>
SELECT <sclect list> FROM TableA A

FROM Tablea A FULL OUTER JOIN TablcB B
FULL OUTER JOIN TableB B O™ AKey = B.Key

ON AKey = B.Eey WHERLE .A..Hr::.' I's MLUILL

SCL Mo, 2002 OR B.Key 15 NULL

https://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

02/20/19 Heiko Paulheim

Searching in Texts
S

* So far, we have handled exact equality in selections

* Sometimes, we want to search differently
— All books that contain “database”
— All authors starting with “S”

* In SQL: comparing with like and two special characters:
— = any arbitrary character
— % = any number of arbitrary characters
— masking with backslash
select ... where fitle like ‘%database%’
select ... where author like ‘S%’
select ... where amount like ‘100\%’

02/20/19 Heiko Paulheim

Ordering Results
e

* Recap: Relational Algebra works on sets
— i.e., it does not have orderings

* For database applications, ordering is often useful, e.g.,

— list students ordered by names
select id,name
from student
order by name

— list instructors ordered by department first, then by name
select id,name,dept _name
from instructor
order by dept name, name

02/20/19 Heiko Paulheim

Limiting Results
S

* Find the three lecturers with the highest salaries

select id,name,salary
from instructor
order by salary desc
limit 3;

* Note: the desc keyword creates a descending ordering

* asc also exists and creates an ascending ordering
— also the default when not specifiying the direction

02/20/19 Heiko Paulheim

Paging with LIMIT and OFFSET
e

* Applications, e.g., Web applications, often offer a paged view
* Example:

— Display student list on pages of 100 students

— with navigation (next page, previous page)

select id,name
from student
order by name
limit 100
offset 100;

* offset 100 means: skip the first 100 entries
— i.e., this query would create the second page
* Note: offset should only be used with order by

— otherwise, the results are not deterministic

02/20/19 Heiko Paulheim

Set Operations

* All courses that are offered in HWS 2017 and FSS 2018

(select course_id from section where sem = ‘HWS’ and year = 2017)
intersect
(select course_id from section where sem = ‘FSS’ and year = 2018)

ﬂcourse_id(asemeWS’ A year=201 7(SeCti on)) a ﬂcourse_id(asemfFSS’ A year=201 8(SeCti on))

* All courses that are offered in HWS 2017 but not in FSS 2018

(select course_id from section where sem = ‘HWS’ and year = 2017)
except
(select course_id from section where sem = ‘FSS’ and year = 2018)

ﬂcourse_id(asemeWS’ A year=201 7(SeCti on)) - ﬂcourse_id(asemfFSS’ A year=201 8(SeCti on))

02/20/19 Heiko Paulheim

Set Operations

* All courses that are offered in HWS 2017 or FSS 2018

(select course_id from section where sem = ‘HWS’ and year = 2017)
union
(select course_id from section where sem = ‘FSS’ and year = 2018)

ﬂcourse_id(asemeWS’ A year=201 7(SeCti on)) % ﬂcourse_id(asemfFSS’ A year=201 8(SeCti on))

* Alternative solution

(select course_id from section where
((sem = "HWS’ and year = 2017) or (sem = ‘FSS’ and year = 2018))

ﬂcourse_id(a(semeWS’/\ year=2017) v (sem="FSSS’ A year=2018)) (SeCtlon))

02/20/19 Heiko Paulheim

Aggregate Functions — Examples
-

Find the average salary of instructors in the Computer Science
department

— select avg (salary)
from instructor
where dept_name='Comp. Sci.’;

Find the number of tuples in the course relation

— select count (*)
from course;

Find the total number of instructors who teach a course in the
Spring 2010 semester

— select count (distinct ID) = = <
from teaches
where semester = 'Spring’ and year = 2010;

Why do we need
distinct here?

02/20/19 Heiko Paulheim

Aggregate Functions with Group By

* Find the average salary of instructors in each department

— select dept_name, avg (salary) as avg_salary
from instructor
group by dept name;

depl_name

avg_éalaury

Biology 72000
Comp. Sci. | 77333
Elec. Eng. | 80000
Finance 85000
History 61000
Music 40000
Physics 91000

ID name dept_name | salary
76766 | Crick Biology 72000
45565 | Katz Comp. Sci. | 75000
10101 | Srinivasan | Comp. Sci. | 65000
83821 |Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. | 80000
12121 [Wu Finance 90000
76543 | Singh Finance 80000
32343 | El Said History 60000
58583 | Califieri History 62000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
22222 |Einstein Physics 95000

02/20/19

Heiko Paulheim

Aggregate Functions with Group By

* Attributes in select clause outside of aggregate functions must

appear in group by list T e -
/* erroneous query */ Wh@
select dept_name, ID, avg (salary)

from instructor
group by dept name;

| ID | name | dept_name | salary |

76766 | Crick Biology 72000 dept_name avg_salary
45565 | Katz Comp. Sci. | 75000 ;

10101 | Srinivasan | Comp. Sci. | 65000](BZIOIOgYS _ 72000
83821 | Brandt Comp. Sci. | 92000 omp. 5CL | 77333
98345 | Kim Elec. Eng. | 80000 Elec. Eng. | 80000
12121 |Wu Finance 90000 Finance 85000
76543 | Singh Finance 80000 History 61000
32343 |EI Said History | 60000 .

58583 | Califieri | History | 62000 LA 40000
15151 |Mozart | Music 40000 Physics | 91000
33456 [Gold Physics | 87000

22222 | Einstein Physics 95000

02/20/19 Heiko Paulheim

Conditions on Aggregate Values
e

* Find the names and average salaries of all departments whose
average salary is greater than 42000

— select dept _name, avg (salary) as avg _ salary i
from instructor V 4
group by dept _name
where avg _salary > 42000;

* Problem:
— Aggregation is performed after selection and projection

— Hence, the variable avg salary is not available
when the where clause is evaluated

— The above query will not work

02/20/19 Heiko Paulheim

Conditions on Aggregate Values
e

* Find the names and average salaries of all departments whose
average salary is greater than 42000

— select dept _name, avg (salary) as avg_salary
from instructor
group by dept _name
having avg_salary > 42000;

* The having clause is evaluated after the aggregation
* Hence, it is different from the where clause

* Rule of thumb
— Conditions on aggregate values can only be defined using having

02/20/19 Heiko Paulheim

NULL Values
e

* null signifies an unknown value or that a value does not exist

* ltis possible for tuples to have a null value, denoted by null, for
some of their attributes

— can be forbidden by a not null constraint
— keys can never be null!

* The result of any arithmetic expression involving null is null
 Example: 5 + null returns null

* The predicate is null can be used to check for null values
* Example: Find all instructors whose salary is null.

select name
from instructor
where salary is null

02/20/19 Heiko Paulheim

NULL Values and Three Valued Logic
e

* Three values — frue, false, unknown
* Any comparison with null returns unknown

— Example: 5 <null or null <>null or null =null

* Three-valued logic using the value unknown:

— OR: (unknown or true) = true,
(unknown or false) = unknown
(unknown or unknown) = unknown

— AND: (true and unknown) = unknown,
(false and unknown) = false,
(unknown and unknown) = unknown

— NOT: (not unknown) = unknown
* “P is unknown” evaluates to true if predicate P evaluates to unknown

* Result of where clause predicate is treated as false if it evaluates to
unknown

02/20/19 Heiko Paulheim

Aggregates and NULL Values
-

* Total all salaries

select sum (salary)
from instructor

— Above statement ignores null amounts
— Result is null if there is no non-null amount

* All aggregate operations except count(*) ignore tuples with null

values on the aggregated attributes [ID [name | dept_name | salary |
. . . 76766 | Crick Biology 72000
What if collection has only null values? 565 | Koz Comp. Sci. | 75000

10101 | Srinivasan | Comp. Sci. | null

— count returns O 33871 | Brandt Comp. Sci. | 92000

— all other aggregates return null 98345 | Kim Elec. Eng. | 80000
12121 |Wu Finance null
76543 | Singh Finance 80000

32343 | El Said History 60000
58583 | Califieri History null
15151 | Mozart Music 40000
33456 | Gold Physics 87000
22222 | Einstein Physics null

02/20/19 Heiko Paulheim 43

Subqueries
e

SQL provides a mechanism for the nesting of subqueries. A subquery is a
select-from-where expression that is nested within another query.

The nesting can be done in the following SQL query

select A, A,, ..., A,
fromr, 1, ..., Iy,
where P

as follows:
A; can be replaced be a subquery that generates a single value
r; can be replaced by any valid subquery
P can be replaced with an expression of the form:
B <operation> (subquery)
Where B is an attribute and <operation> to be defined later

02/20/19 Heiko Paulheim 44

Subqueries in the WHERE Clause
e

* A common use of subqueries is to perform tests:
— for set membership
— for set comparisons
— for set cardinality

02/20/19 Heiko Paulheim

Test for Set Membership

e
* Find courses offered in Fall 2009 and in Spring 2010

select distinct course id
from section
where semester = 'Fall’ and year= 2009 and
course_id in (select course _id from section
where semester = 'Spring’ and year= 2010);

* Find courses offered in Fall 2009, but not in Spring 2010

select distinct course id
from section
where semester = 'Fall’ and year= 2009 and
course_id not in (select course id from section
where semester = 'Spring’ and year= 2010);

02/20/19 Heiko Paulheim

Test for Set Membership
e

* Find the total number of (distinct) students who have taken course
sections taught by the instructor with /D 10101

select count (distinct /D)
from takes
where (course _id, sec_id, semester, year) in
(select course _id, sec_id, semester, year
from teaches
where teaches.ID= 10101);

* Note: in all of those cases,
other (sometimes much simpler) solutions are possible

— In SQL, there are often different ways to solve a problem
— A question of personal taste
— But also: a question of performance...

02/20/19 Heiko Paulheim

Test for Set Membership
e

* Find the total number of (distinct) students who have taken course

sections taught by the instructor with /D 10101

select count (distinct /D) creates a
from takes
where (course _id, sec_id, semester, year) in @ ®
(select course_?d, sec _id, semester, year
from teaches
where teaches.ID= 10101);

select count (distinct fakes.ID)
from takes, teaches_
where takes.course id = teacges.course_id and feaches.ID = 10101;

@

computes
Cartesian
product

02/20/19 Heiko Paulheim

Set Comparison with SOME
e

* Find names of instructors with salary greater than
that of some (at least one) instructor in the Biology department

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept name = 'Biology’;

* Same query using > some clause

select name
from instructor
where salary > some (select salary
from instructor
where dept name = 'Biology’);

02/20/19 Heiko Paulheim

Set Comparison with ALL
e

« Find names of instructors with salary greater than
that of all instructors in the Biology department

select name
from instructor
where salary > all (select salary
from instructor
where dept name = 'Biology’);

* Note: we could also achieve this with MIN and MAX aggregates in the
subqueries

02/20/19 Heiko Paulheim

Definition: Comparisons with SOME
e

* F <comp>some r < 3t e r such that (F <comp>t)
Where <comp> can be: <, <, >, =, #

0
(b<some | § |)=true
6 (read: 5 <some tuple in the relation)
0
(5<some | § |)=Tfalse
0
(O=some| 5 |)=true
0
(5#some | S |)=true (since 0 # 5)

(= some) =in
However, (= some)/aé not in

02/20/19 Heiko Paulheim

Definition: Comparisons with ALL
e

* F<comp>allr< Vi er (F<comp>)

0

(b<all | 5 |)=Tfalse
6
6

(5<all |[10Q]|)=true
4

(o=all| 5 |)="false
4

(5#all| 6 |)=true (since 5+ 4 and 5 # 6)

(= all) = not in
However, (= all) £ in

02/20/19 Heiko Paulheim

Existential Quantification in Subqueries
-

* Yet another way of specifying the query “Find all courses taught in
both the Fall 2009 semester and in the Spring 2010 semester”

select course _id
from section as S
where semester = 'Fall’ and year = 2009 and
exists (select *
from sectionas T
where semester = 'Spring’ and year= 2010
and S.course _id = T.course_id);

* The exists construct returns the value true
if the result of the subquery is not empty

— exists re r2 @
— notexistsr r=0

02/20/19 Heiko Paulheim

Subqueries with NOT EXISTS
e

* Find all students who have taken all courses offered in the Biology
department

select distinct S./D, S.name
from student as S
where not exists ((select course id
from course
where dept_name = 'Biology’)
except
(select T.course id
from takesas T
where S.ID = T.ID));

— First nested query lists all courses offered in Biology
— Second nested query lists all courses a particular student took

* NotethatX-Y=0 < XcY
* Note: Cannot write this query using = all and its variants

02/20/19 Heiko Paulheim

Test for Duplicate Tuples

 Find all courses that were offered at most once in 2009

select T.course id
from course as T
where unique (select R.course id
from section as R
where T.course id= R.course id
and R.year = 2009);

* The unique construct evaluates to “true” if a given subquery
contains no duplicates

* With not unique, we could query for courses that were offered
more than once

02/20/19 Heiko Paulheim

Subqueries in the FROM Clause
e

* So far, we have considered subqueries in the where clause

* Find the average instructors’ salaries of those departments where
the average salary is greater than $42,000.”

select dept _name, avg salary
from
(select dept_name, avg (salary) as avg_salary
from instructor
group by dept _name)
where avg salary > 42000;

* Note that we do not need to use the having clause
— why?

02/20/19 Heiko Paulheim

Creating Temporary Relations Using WITH

* Find all departments with the maximum budget

with max_budget (value) as

(select max(budget) ~ < ~ this deflnes tm

from department) of the temporary relatlon\j
select department.name ?

: (datatypes are implicit)
from department, max_budget \J\j/

where department.budget = max_budget.value,

* The with clause provides a way of defining a temporary relation
whose definition is available only to the query in which the with
clause occurs

02/20/19 Heiko Paulheim

Creating Temporary Relations Using WITH
-

* A more complex example involving two temporary relations:

— Find all departments where the total salary is greater than the
average of the total salary at all departments
with
dept _total (dept _name, value) as

(select dept name, sum(salary)
from instructor
group by dept _name),
dept _total avg(value) as
(select avg(value)
from dept total)
select dept name
from dept total, dept total avg
where dept total.value > dept total avg.value;

02/20/19 Heiko Paulheim

Scalar Subqueries in the SELECT Part
e

* List all departments along with the number of instructors in each
department

select dept _name,
(select count(™)
from instructor
where
department.dept_name = instructor.dept_name)
as num_instructors
from department;

* Scalar subqueries return a single result
— More specifically: a single tuple
* Runtime error if subquery returns more than one result tuple

02/20/19 Heiko Paulheim

Summary of Subqueries

 SELECT queries are the most often used part of SQL

* Their basic structure is simple, but subqueries are a powerful means
to make them quite expressive
select A, A,, ..., A,
fromr, ..., 1,
where P

* Subqueries in select part (A, A,, ..., A)

— Scalar subqueries (single values, like aggregates)
* Subqueries in from part (ry, 15, ..., I'y)

— Temporary relations (can also be defined using with)
* Subqueries in where part (P)

— Set comparisons, empty sets, test for duplicates

— Universal and existential quantification

02/20/19 Heiko Paulheim

Summary: SQL SELECT at a Glance

* The tool support of SQL varies QD — -]

* what we have covered here e —— .mm
is standard SQL H

— Supported by most tools

o)

(oroer)»((BY)| ordering term |
h'.

D e e G St
®

02/20/19 Heiko Paulheim

Recap: The Big Picture
S

SQL
Commands
|
|
DDL DML DCL TCL

CREATE GRANT COMMIT
ALTER INSERT REVOKE ROLLBACK
DROP UPDATE SAVEPOINT
TRUNCATE DELETE SET TRANSACTION
COMMENT MERGE
RENAME CALL

EXPLAIN PLAN

LOCK TABLE

Source: https://www.w3schools.in/mysql/ddI-dml-dcl/

02/20/19

Heiko Paulheim

Summary and Take Aways
-

* SQL is a standarized language for relational databases
— DML: Data Manipulation Language

* DML
— Read data from tables using SELECT

* Coming Up:
— Writing data to tables
— Creating and changing tables
— Rights & Roles

02/20/19 Heiko Paulheim

Questions?

o

&

02/20/19 Heiko Paulheim

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Questions?

