
Database Technology
Database Architectures

Heiko Paulheim

03/27/19 Heiko Paulheim 2

Today

• So far, we have treated Database Systems as a “black box”

– We can define a schema

– ...and write data into it…

– ...and read data from it

• Today

– Opening the “black box”

– How is data stored?

– Architectures for larger database systems

03/27/19 Heiko Paulheim 3

Physical Data Storage

• A manifold of options

– Hard disks, flash memory, magnetic tape, CDs, DVDs, BluRays, …

• Considerations

– Speed with which data can be accessed

– Cost per unit of data

– Reliability

• data loss on power failure or system crash

• physical failure of the storage device

– Can differentiate storage into:

• volatile storage: loses contents when power is switched off

• non-volatile storage:
– Contents persist even when power is switched off

– secondary & tertiary storage, battery backed up main-memory

03/27/19 Heiko Paulheim 4

Storage Hierarchy
low

er co st per unit of d ata

hi
gh

er
 s

pe
ed

 o
f

ac
ce

ss

03/27/19 Heiko Paulheim 5

Storage Hierarchy

• primary storage: Fastest media but volatile (cache, main memory)

– data on which the processor operates

• secondary storage: next level in hierarchy, non-volatile,
moderately fast access time

– also called on-line storage

– e.g., flash memory, magnetic disks

– needs to be loaded in memory for processing

• tertiary storage: lowest level in hierarchy, non-volatile, slow access
time

– also called off-line storage

– e.g., magnetic tape, optical storage

– typically used for backup

03/27/19 Heiko Paulheim 6

Physical Storage

• Cache

– fastest and most costly form of storage; volatile; managed by the
computer system hardware

• Main memory

– fast access (10s to 100s of nanoseconds (1 ns = 10–9 seconds)

– generally too small (or too expensive) to store the entire database

• typically: gigabyte capacity

• capacities have gone up and per-byte costs have decreased
steadily and rapidly (roughly factor of 2 every 2 to 3 years)

– Volatile — contents of main memory are usually lost
if a power failure or system crash occurs.

03/27/19 Heiko Paulheim 7

Physical Storage

• Flash memory

– Data survives power failure

– Data can be written at a location only once, but location can be erased
and written to again

• Can support only a limited number (10K – 1M) of write/erase cycles

• Erasing of memory has to be done to an entire bank of memory

– Reads are roughly as fast as main memory

– But writes are slow (few microseconds), erase is slower

– Widely used in embedded devices
such as digital cameras, phones, and USB keys

03/27/19 Heiko Paulheim 8

Physical Storage

• Magnetic disk (hard disk)
– Data is stored on spinning disk, and read/written magnetically

– Primary medium for the long-term storage of data

– typically stores entire database

– Data must be moved from disk to main memory for access, and written back for
storage

• Much slower access than main memory

– direct-access – possible to read data on disk in any order, unlike magnetic tape

– terabyte sized

• Much larger capacity and and lower cost/byte than (flash) memory

• Growing constantly and rapidly with technology improvements
(factor of 2 to 3 every 2 years)

– Survives power failures and system crashes

• disk failure can destroy data, but is rare

03/27/19 Heiko Paulheim 9

Physical Storage

• Optical storage

– non-volatile, data is read optically from a spinning disk using a laser

– CD-ROM (640 MB), DVD (4.7 to 17 GB), Blu-ray (27 to 54 GB)

– Write-once, read-many (WORM) optical disks for archival storage

• Multiple write versions also available (CD-RW, DVD-RW, DVD+RW,
and DVD-RAM)

– Reads and writes are slower than with magnetic disk

• Juke-box systems

– for storing large volumes of data

– large numbers of removable disks

– a few drives

– mechanism for automatic loading/unloading
of disks

03/27/19 Heiko Paulheim 10

Physical Storage

• Tape storage

– non-volatile, used primarily for backup (to recover from disk failure), and
for archival data

– sequential access – much slower than disk

– very high capacity (terabyte scale)

– tape can be removed from drive

• storage costs much cheaper than disk, but drives are expensive

– Tape jukeboxes available
for storing massive amounts of data

03/27/19 Heiko Paulheim 11

Physical Storage

• Modern, experimental and exotic trends

• Molecular memory

– bits are stored as charge of single molecules

– using polymer molecules for storage

– experimental state (NASA, Hewlett Packard…)

• DNA storage

– idea: DNA stores information
(i.e.: genetic instructions)

– synthesizing DNA for data storage

– in theory, 1g of DNA can store 215 PB

03/27/19 Heiko Paulheim 12

Anatomy of a Hard Disk Drive

• Schematic view

– sectors are the
smallest unit
to be read
or written

– also called blocks

• Goal for storage

– minimize number
of blocks
transferred

03/27/19 Heiko Paulheim 13

File Organization

• The database is stored as a collection of files

– each file is a sequence of records

– each record is a sequence of fields

• Simple approach:

– assume record size is fixed

– each file has records of one particular type only

– different files are used for different relations

– This case is easiest to implement; will consider variable length records
later

03/27/19 Heiko Paulheim 14

File Organization

• Simple approach:

– Store record i starting from byte n  (i – i – 1), where n is the size of each
record

– Record access is simple but records may cross disk blocks

• Modification: do not allow records to cross block boundaries

• Deletion of record i:
alternatives:

– move records i + 1, . . ., n
to i, . . . , n – 1

– move record n to i

– do not move records, but
link all free records on a
free list

03/27/19 Heiko Paulheim 15

Record Deletion – Compacting

03/27/19 Heiko Paulheim 16

Record Deletion – Moving Last Record

03/27/19 Heiko Paulheim 17

Record Deletion – Free Lists

• Store the address of the first deleted record in the file header

• Use this first record to store the address of the second deleted
record, and so on

• Can think of these stored addresses as pointers since they “point” to
the location of a record

• More space efficient
representation:
– reuse space for normal

attributes of free records
to store pointers

• Insertion:
– find last deleted record

and fill in data there

– remove previous pointer

03/27/19 Heiko Paulheim 18

Storing Variable Length Records

• Variable-length records arise in database systems in several ways:

– e.g., storage of multiple record types in a file

– e.g., record types that allow variable lengths for one or more fields such
as strings (varchar)

• Attributes are stored in order

• Variable length attributes represented by fixed size (offset, length),
with actual data stored after all fixed length attributes

• Null values represented by null-value bitmap

03/27/19 Heiko Paulheim 19

Storing Variable Length Records

• Slotted page header contains:

– number of record entries

– end of free space in the block

– location and size of each record

• Records can be moved around within a page

– to keep them contiguous with no empty space between them

– entry in the header must be updated

• Pointers (e.g., foreign keys) should not point directly to record,
but to entry for the record in header

03/27/19 Heiko Paulheim 20

Organization of Records in Files

• Heap

– a record can be placed anywhere in the file where there is space

• Sequential

– store records in sequential order, based on the value of the search key of
each record

– requires re-organizations

• Hashing

– a hash function computed on some attribute(s) of each record

– the result specifies in which block of the file the record should be placed

• Records of different relations

– stored either in separate files

– or: store related relations in one file (called: multitable clustering file
organization)

• Motivation: store related records on the same block to minimize I/O

03/27/19 Heiko Paulheim 21

Sequential File Organization

• Suitable for applications that require sequential processing of the
entire file

• The records in the file are ordered by a search-key

03/27/19 Heiko Paulheim 22

Sequential File Organization

• Deletion – use pointer chains

• Insertion –locate the position where the record is to be inserted

– if there is free space insert there

– if no free space, insert the record in an overflow block

– In either case, pointer chain
must be updated

• Need to reorganize the file
from time to time to restore
sequential order

03/27/19 Heiko Paulheim 23

Multitable Clustering File Organization

● Store several relations in one file using a multitable clustering file
organization

department

instructor

multitable clustering
of department and
instructor

03/27/19 Heiko Paulheim 24

Multitable Clustering File Organization

• good for queries

– involving department instructor

– involving one single department (and its instructors)

– involving only the instructor relation

• bad for queries involving only the department relation

• results in variable size records

• can add pointer chains to link records of a particular relation

03/27/19 Heiko Paulheim 25

Data Dictionary Storage

The Data dictionary (also called system catalog) stores metadata; that is, data
about data, such as

• Information about relations

– names of relations

– names, types and lengths of attributes of each relation

– names and definitions of views

– integrity constraints

• User and accounting information, including passwords

• Statistical and descriptive data

– number of tuples in each relation

• Physical file organization information

– How relation is stored (sequential/hash/…)

– Physical location of relation

– Information about indices

03/27/19 Heiko Paulheim 26

Data Dictionary Storage

• Many RDBMS use
relations also for
the data dictionary

• Those relations are
typically held
in memory for fast
access

• Details may vary

03/27/19 Heiko Paulheim 27

Storage Access

• A database file is partitioned into fixed-length storage units called
blocks

– blocks are units of both storage allocation and data transfer

• Database system seeks to minimize the number of block transfers
between the disk and memory

– simple: by keeping as many blocks as possible in main memory

– advanced: planning which blocks to keep in memory

• Buffer – portion of main memory available to store copies of disk
blocks

• Buffer manager – subsystem responsible for allocating buffer
space in main memory

03/27/19 Heiko Paulheim 28

Buffer Manager

• Programs call on the buffer manager when they need a block from
disk
– If the block is already in the buffer, buffer manager returns the

address of the block in main memory
– If the block is not in the buffer, the buffer manager

• Allocates space in the buffer for the block

• Replaces (i.e., removes) some other block,
if required, to make space for the new block

– If replaced block was changed: write back to disk

– Read the block from the disk to the buffer

– return the address of the block in main memory to requester

Potential for optimization

03/27/19 Heiko Paulheim 29

Buffer Replacement Strategies

• Most operating systems replace the block least recently used
(LRU strategy):

– use past pattern of block references as a predictor of future references

• Queries have well-defined access patterns (such as sequential
scans), and a database system can use the information in a user’s
query to predict future references

– LRU can be a bad strategy for certain access patterns involving
repeated scans of data

• Example: when computing the join of 2 relations r and s by a nested
loops
 for each tuple tr of r do
 for each tuple ts of s do
 if the tuples tr and ts match …

– Mixed strategy with hints on replacement strategy provided
by the query optimizer is preferable

03/27/19 Heiko Paulheim 30

Buffer Replacement Strategies

• Pinned block – memory block that is not allowed to be replaced

• Toss-immediate strategy – frees the space occupied by a block as
soon as the final tuple of that block has been processed

• Most recently used (MRU) strategy – system must pin the block
currently being processed

– After processing the final tuple, the block is unpinned

– and it becomes the most recently used block.

• Buffer manager can use statistical information regarding the
probability that a request will reference a particular relation

– e.g., the data dictionary is frequently accessed.
Heuristic: keep data-dictionary blocks in main memory buffer

• Buffer managers also support forced output of blocks for the
purpose of recovery (coming back to this in a few weeks)

03/27/19 Heiko Paulheim 31

Database System Architectures

• Variants for creating a database system

– Centralized and Client-Server Systems

– Server System Architectures

– Parallel Systems

– Distributed Systems

03/27/19 Heiko Paulheim 32

Centralized Systems

• Run on a single computer system

– and do not interact with other computer systems

• General-purpose computer system

– one to a few CPUs and a number of device controllers

– shared memory

• Single-user system

– e.g., personal computer or workstation

– desk-top unit, single user, usually one CPU and one or two hard disks

• Multi-user system

– more disks, more memory, multiple CPUs

– serve a large number of users, usually connected to the system via
terminals

– also called server systems

03/27/19 Heiko Paulheim 33

Centralized Systems

• Simplified Architecture

03/27/19 Heiko Paulheim 34

Client Server Systems

• Server systems satisfy requests generated at m client systems

• They are connected to the server via a network

– local or internet

– LAN or WIFI

– ...

…

03/27/19 Heiko Paulheim 35

Client Server Systems

• Database functionality can be divided into:

– Back-end: manages access structures, query evaluation and
optimization, concurrency control and recovery

– Front-end: consists of tools such as forms, report-writers, and graphical
user interface facilities

• The interface between the front-end and the back-end is through
SQL or through an application program interface.

03/27/19 Heiko Paulheim 36

Client-Server Systems

• Advantages of client-server systems over single machine systems:

– better functionality for the cost

– flexibility in locating resources and expanding facilities

– better user interfaces

– easier maintenance

• Server systems can be broadly categorized into two kinds:

– transaction servers (used for RDBMS)

– data servers (used for object-oriented databases)

03/27/19 Heiko Paulheim 37

Transaction Servers

• Also called query server systems or SQL server systems

– Clients send requests to the server

– Transactions are executed at the server

– Results are shipped back to the client

• Requests are specified in SQL, and communicated to the server
through a remote procedure call (RPC) mechanism

• Transactional RPC allows many RPC calls to form a transaction

• Open Database Connectivity (ODBC) is a C language application
program interface standard from Microsoft for connecting to a
server, sending SQL requests, and receiving results

• JDBC standard is similar to ODBC, for Java

– similar implementations exist for Python etc.

03/27/19 Heiko Paulheim 38

Transaction Server Processes

• A typical transaction server consists of multiple processes
accessing data in shared memory

• Server processes

– These receive user queries (transactions), execute them and send
results back

– Processes may be multithreaded, allowing a single process to execute
several user queries concurrently

– Typically multiple multithreaded server processes

• Lock manager process

– More on this later

• Database writer process

– Output modified buffer blocks to disks continually

03/27/19 Heiko Paulheim 39

Transaction Server Processes

• Log writer process

– Server processes simply add log records to log record buffer

– Log writer process outputs log records to stable storage

• Checkpoint process

– Performs periodic checkpoints

• Process monitor process

– Monitors other processes, and takes recovery actions if any of the other
processes fail

– e.g., aborting any transactions being executed by a server process
and restarting it

03/27/19 Heiko Paulheim 40

Transaction Server Processes: Overview

03/27/19 Heiko Paulheim 41

Transaction Server Processes: Overview

• Shared memory contains shared data

– Buffer pool

– Lock table

– Log buffer

– Cached query plans (reused if same query submitted again)

• All database processes can access shared memory

• To avoid concurrency, DBMS implement mutual exclusion using either

– Operating system semaphores

– Atomic instructions such as test-and-set

• To avoid overhead of interprocess communication for lock request/grant

– each database process operates directly on the lock table

– instead of sending requests to lock manager process

• Lock manager process still used for deadlock detection

03/27/19 Heiko Paulheim 42

Parallel Database Systems

• Parallel database systems consist of multiple processors and
multiple disks connected by a fast interconnection network

• A coarse-grain parallel machine consists of a small number of
powerful processors

• A massively parallel or fine grain parallel machine utilizes
thousands of smaller processors

• Two main performance measures:

– throughput – the number of tasks
that can be completed in a given time interval

– response time – the amount of time it takes
to complete a single task from the time it is submitted

03/27/19 Heiko Paulheim 43

Speedup and Scaleup

• Question: how much performance do we gain by enlarging the system?

– Optimum: linear scalability: doubling the system doubles the performance

• Speedup: a fixed-sized problem executing on a small system is given to a
system which is N-times larger

• Measured by:

 speedup = small system elapsed time

 large system elapsed time

• Speedup is linear if equation equals N.

• Scaleup: increase the size of both the problem and the system

– N-times larger system used to perform N-times larger job

• Measured by:

 scaleup = small system small problem elapsed time

 big system big problem elapsed time

• Scale up is linear if equation equals 1.

03/27/19 Heiko Paulheim 44

Speedup

03/27/19 Heiko Paulheim 45

Scaleup

03/27/19 Heiko Paulheim 46

Batch and Transaction Scaleup

• Batch scaleup:

– A single large job

– Use an N-times larger computer on N-times larger problem

• Transaction scaleup:

– Numerous small queries submitted by independent users to a shared
database

– N-times as many users submitting requests (hence, N-times as many
requests) to an N-times larger database, on an N-times larger computer

– Well-suited for parallel execution

03/27/19 Heiko Paulheim 47

Limitation of Speedup and Scaleup

Speedup and scaleup are often sublinear due to:

• Startup costs
– cost of starting up multiple processes may dominate computation time

– esp. if the degree of parallelism is high

• Interference
– processes accessing shared resources (e.g., system bus, disks, or locks)

compete with each other → bottlenecks

– thus spending time waiting on other processes, rather than performing
useful work

• Skew
– Increasing the degree of parallelism increases the variance in service

times of parallely executing tasks

– Overall execution time determined by slowest of parallely executing task

03/27/19 Heiko Paulheim 48

Interconnection Networks

• Bus: does not scale well with increasing parallelism

• Mesh:

– scalability grows with number of links

– but number of hops grows at O((n))

• Hypercube:

– good tradeoff

– number of hops is O(log(n))

03/27/19 Heiko Paulheim 49

Parallel Database Architectures

• Shared memory – processors share a common memory

• Shared disk – processors share a common disk

• Shared nothing – processors share neither a common memory nor
common disk

• Hierarchical – hybrid of the above architectures

03/27/19 Heiko Paulheim 50

Parallel Database Architectures

03/27/19 Heiko Paulheim 51

Shared Memory

• Processors and disks have access to a common memory

– typically via a bus or through an interconnection network

• Extremely efficient communication between processors

– data in shared memory can be accessed by any processor

– without having to move it using software

• Architecture is not scalable beyond 32 or 64 processors

– interconnection network becomes a bottleneck

• Widely used for lower degrees of parallelism (4 to 8)

03/27/19 Heiko Paulheim 52

Shared Disk

• All processors can directly access all disks via an interconnection
network, but the processors have private memories

– i.e., the memory bus is not a bottleneck

• Downside

– bottleneck now occurs at interconnection to the disk subsystem

• Shared-disk systems can scale to a somewhat larger number of
processors, but communication between processors is slower

03/27/19 Heiko Paulheim 53

Shared Nothing

• Each node consists of a processor, memory, and one or more disks

• Node functions as the server for the data on the disk(s) it owns

• Data accessed from local disks (and local memory accesses) do
not pass through interconnection network, thereby minimizing the
interference of resource sharing

• Shared-nothing multiprocessors can be scaled up to thousands of
processors without interference

• Main drawback:

– cost of communication and non-local disk access;

– sending data involves software interaction at both ends

03/27/19 Heiko Paulheim 54

Hierarchical

• Combines characteristics of all three architectures

• Top level is a shared-nothing architecture

– Each node of the system could be a shared-memory system
or a shared-disk system

• Reduce the complexity of programming such systems by
distributed virtual-memory architectures

• Also called non-uniform memory architecture (NUMA)

03/27/19 Heiko Paulheim 55

Distributed Database Systems

• Data spread over multiple machines (also: sites)

• Network interconnects the machines

• Data shared by users on multiple machines

03/27/19 Heiko Paulheim 56

Distributed Database Systems

• Homogeneous distributed databases

– Same software/schema on all sites, data may be partitioned among
sites

– Goal: provide a view of a single database, hiding details of distribution

• Heterogeneous distributed databases

– Different software/schema on different sites

– Goal: integrate existing databases to provide useful functionality

• Differentiate between local and global transactions

– A local transaction accesses data in the single site at which the
transaction was initiated

– A global transaction either accesses data in a site different from the
one at which the transaction was initiated or accesses data in several
different sites

03/27/19 Heiko Paulheim 57

Trade Offs in Distributed Database Systems

• Sharing data

– users at one site able to access the data residing at some other sites

• Autonomy

– each site is able to retain a degree of control over data stored locally

• Higher system availability through redundancy

– data can be replicated at remote sites, and system can function even if
a site fails

• Disadvantage: added complexity required to ensure proper
coordination among sites

– Software development cost

– Greater potential for bugs

– Increased processing overhead

03/27/19 Heiko Paulheim 58

Implementation Issues

• Atomicity needed even for transactions that update data at multiple
sites

• The two-phase commit protocol (2PC) is used to ensure atomicity

– Basic idea: each site executes transaction until just before commit, and
the leaves final decision to a coordinator

– Each site must follow decision of coordinator, even if there is a failure
while waiting for coordinators decision

• 2PC is not always appropriate: other transaction models based on
persistent messaging, and workflows, are also used

• Distributed concurrency control (and deadlock detection) required

• Data items may be replicated to improve data availability

03/27/19 Heiko Paulheim 59

Summary

• Data storage is layered

– trading off cost/byte vs. access speed

• Data organization in files

– trading off disk usage vs. reorganization cost

– minimize block transfer

• Database architectures

– single machine vs. distributed

– scalability of distributed databases (speedup/scaleup)

– design issues of distributed databases

03/27/19 Heiko Paulheim 60

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Questions?

