
Database Technology
Query Optimization

Heiko Paulheim

4/10/19 Heiko Paulheim 2

Previously on Database Technology

• Last week, we have seen different algorithms for query processing

– plus their best/worst case cost estimates

• Today

– how to come up with an efficient query execution plan

4/10/19 Heiko Paulheim 3

Agenda

• Introduction

• Transformation of Relational Expressions

• Catalog Information for Cost Estimation

• Statistical Information for Cost Estimation

• Cost-based optimization

• Dynamic Programming for Choosing Evaluation Plans

4/10/19 Heiko Paulheim 4

Introduction

• SELECT name, title
FROM instructor, teaches, course
WHERE instructor.inst_ID = teaches.inst_ID
AND course.dept_name = instructor.dept_name
AND dept_name=”Music”

4/10/19 Heiko Paulheim 5

Introduction

• Alternative ways of evaluating a given query

– Equivalent expressions

– Different algorithms for each operation

4/10/19 Heiko Paulheim 6

Evaluation Plans

• An evaluation plan defines exactly what algorithm is used for each
operation, and how the execution of the operations is coordinated

4/10/19 Heiko Paulheim 7

Cost-based Query Optimization

• Cost difference between evaluation plans for a query can be
enormous

– e.g., seconds vs. days in some cases

• Steps in cost-based query optimization

– Generate logically equivalent expressions using equivalence rules

– Annotate resultant expressions to get alternative query plans

– Choose the cheapest plan based on estimated cost

• Estimation of plan cost based on:

– Statistical information about relations. Examples:

• number of tuples, number of distinct values for an attribute

– Statistics estimation for intermediate results

• to compute cost of complex expressions

– Cost formulae for algorithms, computed using statistics

4/10/19 Heiko Paulheim 8

Equivalence of Relational Algebra Expressions

• Two relational algebra expressions are said to be equivalent if the
two expressions generate the same set of tuples on every legal
database instance

– order of tuples is irrelevant

– they may yield different results on databases that violate
integrity constraints

• Equivalent results must not be a result of chance, e.g.

– SELECT name FROM employee WHERE id=“12345”
→ “Smith”

– SELECT name FROM employee WHERE birthday=“30.10.1974”
→ “Smith”

• Those results could be different on a different database instance

4/10/19 Heiko Paulheim 9

Equivalence of Relational Algebra Expressions

• In SQL, inputs and outputs are multisets of tuples

– i.e., they may contain duplicates

– two expressions in the multiset version of the relational algebra are
said to be equivalent

• if the two expressions generate the same multiset of tuples on
every legal database instance

• for each duplicate result, the same number of duplicates must
appear in the results

• An equivalence rule says that expressions of two forms are equivalent

– Can replace expression of first form by second, or vice versa

– Successive application of equivalence rules generates alternative
query formulations

4/10/19 Heiko Paulheim 10

Equivalence Rules

● (1) Conjunctive selection operations can be deconstructed into a
sequence of individual selections.

• SELECT name, title
FROM instructor
WHERE dept_name=”Music”
AND salary>50000

• SELECT name,title FROM (
SELECT name,title FROM instructor
WHERE dept_name=”Music”)

WHERE salary>50000

σθ1∧θ2(E)=σ θ
1
(σ θ

2
(E))

Note: SQL statements in these
slides are solely illustrative!

4/10/19 Heiko Paulheim 11

Equivalence Rules

● (2) Selection operations are commutative.

• SELECT name,title FROM (
SELECT name,title FROM instructor
WHERE dept_name=”Music”)

WHERE salary>50000

• SELECT name,title FROM (
SELECT name,title FROM instructor
WHERE salary>50000)

WHERE dept_name=”Music”

))(())((
1221
EE qqqq ssss =

4/10/19 Heiko Paulheim 12

Equivalence Rules

● (3) Only the last in a sequence of projection operations is needed,
the others can be omitted.

• SELECT name, title
FROM (

SELECT name,title,salary,dept_name FROM instructor
WHERE dept_name=”Music”
AND salary>50000

)

• SELECT name,title FROM instructor
WHERE dept_name=”Music”
AND salary>50000

)())))((((
121
EE LLnLL = 

4/10/19 Heiko Paulheim 13

Equivalence Rules

● (4) Selections can be combined with Cartesian products and theta
joins.

sq(E1 X E2) = E1 q E2

sq1(E1 q2 E2) = E1 q1 q2 E2

• SELECT name, building
FROM instructor, department
WHERE instructor.dept_name = department.dept_name
AND salary>50000

• SELECT name, building FROM(
SELECT name,building FROM instructor,department)

WHERE instructor.dept_name = department.dept_name
AND SALARY>50000

4/10/19 Heiko Paulheim 14

Equivalence Rules

● (5) Theta-join operations (and natural joins) are commutative
E1 q E2 = E2 q E1

• SELECT name, building
FROM instructor, department
WHERE instructor.dept_name = department.dept_name
AND salary>50000

• SELECT name, building
FROM department, instructor
WHERE instructor.dept_name = department.dept_name
AND salary>50000

4/10/19 Heiko Paulheim 15

Equivalence Rules (ctd.)

● (6a) Natural join operations are associative

 (E1 E2) E3 = E1 (E2 E3)

• SELECT * FROM instructor, (
SELECT * FROM teaches, course
WHERE teaches.course_ID = course.course_ID) AS joined

WHERE instructor.inst_ID = joined.inst_ID

• SELECT * FROM course, (
SELECT * FROM instructor,teaches WHERE
WHERE instructor.inst_ID = teaches.inst_ID) AS joined

WHERE course.course_ID = joined.course_ID

4/10/19 Heiko Paulheim 16

Equivalence Rules (ctd.)

● (6b) Theta joins are associative in the following manner
 (E1 q1 E2) q2 q3 E3 = E1 q1 q3 (E2 q2 E3)

 where q2 involves attributes from only E2 and E3.

• SELECT * FROM instructor, (
SELECT * FROM teaches, course
WHERE teaches.course_ID = course.course_ID) AS joined

WHERE instructor.inst_ID = joined.inst_ID
AND salary>50000

• SELECT * FROM course, (
SELECT * FROM instructor,teaches WHERE
WHERE instructor.inst_ID = teaches.inst_ID) AS joined

WHERE course.course_ID = joined.course_ID
AND salary>50000

4/10/19 Heiko Paulheim 17

Example: Join Ordering

• For all relations r1, r2, and r3,

(r1 r2) r3 = r1 (r2 r3)

(Rule 6a)

• If r2 r3 is quite large and r1 r2 is small, we choose

 (r1 r2) r3

so that we compute and store a smaller temporary relation

4/10/19 Heiko Paulheim 18

Example: Join Ordering (ctd.)

• Consider the expression

SELECT name, title FROM instructor, teaches, course
WHERE instructor.inst_ID = teaches.inst_ID
AND teaches.course_ID = course.course_ID
AND instructor.dept_name = “Music”

• Could compute teaches course_id, title (course) first, and join with
 sdept_name= “Music” (instructor)

but the result of the first join is likely to be a large relation

• Only a small fraction of the university’s instructors are likely to be from the
Music department

→ it is better to compute

 sdept_name= “Music” (instructor) teaches

 first

4/10/19 Heiko Paulheim 19

Equivalence Rules (ctd.)

● (7) The selection operation distributes over the theta join operation
under the following two conditions:
(a) If all the attributes in q0 involve only the attributes of one
 of the expressions (E1) being joined

 sq0E1 q E2) = (sq0(E1)) q E2

(b) If q1 involves only the attributes of E1 and q2 involves
 only the attributes of E2.

 sq1q E1 q E2) = (sq1(E1)) q (sq (E2))

4/10/19 Heiko Paulheim 20

Equivalence Rules (ctd.)

● (7) The selection operation distributes over the theta join operation...

• SELECT *
FROM instructor, department
WHERE instructor.dept_name = department.dept_name
AND salary>50000

• SELECT * FROM (
SELECT * FROM instructor
WHERE salary>50000) AS R1, (
SELECT * FROM department) AS R2

WHERE R1.dept_name = R2.dept_name

4/10/19 Heiko Paulheim 21

Equivalence Rules: Graphical Visualization

4/10/19 Heiko Paulheim 22

Example: Pushing Selection

• Query: Find the names of all instructors in the Music department,
along with the titles of the courses that they teach

name, title(sdept_name= “Music”

(instructor (teaches course_id, title (course)))

• Transformation using rule 7a

name, title((sdept_name= “Music”(instructor))
 (teaches course_id, title (course)))

• Performing the selection as early as possible reduces the size of
the relation to be joined

4/10/19 Heiko Paulheim 23

Example with Multiple Expressions

• Query: Find the names of all instructors in the Music department who have
taught a course in 2009, along with the titles of the courses that they taught

name, title(sdept_name= “Music”year = 2009

 (instructor (teaches course_id, title (course))))

• Transformation using join associatively (Rule 6a):

name, title(sdept_name= “Music”year = 2009

 ((instructor teaches) course_id, title (course)))

• Transformed expression provides an opportunity to apply the
“perform selections early” rule (7b), resulting in

name, title ((sdept_name = “Music” (instructor) s year = 2009 (teaches))
 course_id, title (course))

4/10/19 Heiko Paulheim 24

Example with Multiple Expressions

4/10/19 Heiko Paulheim 25

Equivalence Rules (ctd.)

● (8)The projection operation distributes over the theta join operation
as follows:

(a) if q involves only attributes from L1  L2:

(b) Consider a join E1 q E2

– Let L1 and L2 be sets of attributes from E1 and E2, respectively

– Let L3 be attributes of E1 that are involved in join condition q, but
are not in L1  L2, and

– Let L4 be attributes of E2 that are involved in join condition q, but
are not in L1  L2

))(())(()(2121 2121
EEEE LLLL =  qq

)))(())((()(2121 42312121
EEEE LLLLLLLL  = qq

4/10/19 Heiko Paulheim 26

Equivalence Rules (ctd.)

● (8)The projection operation distributes over the theta join operation…

• SELECT name,salary,building
FROM instructor, department
WHERE instructor.dept_name = department.dept_name

• SELECT name,salary,building FROM (
SELECT name,salary,dept_name FROM instructor) AS R1,
SELECT building,dept_name FROM department) AS R2

WHERE R1.dept_name = R2.dept_name

4/10/19 Heiko Paulheim 27

Example: Pushing Projections

• Consider the query:

SELECT name, title FROM instructor, teaches, course
WHERE instructor.inst_ID = teaches.inst_ID
AND teaches.course_ID = course.course_ID
AND instructor.dept_name = “Music”

• If we compute

(sdept_name = “Music” (instructor teaches)

we obtain a relation whose schema is:
(ID, name, dept_name, salary, course_id, sec_id, semester, year)

• Push projections using equivalence rules 8a and 8b;
eliminate unneeded attributes from intermediate results to get:
 name, title(name, course_id (
 sdept_name= “Music” (instructor) teaches))
 course_id, title (course))))

• Performing the projection as early as possible reduces the size of the relation to be
joined

4/10/19 Heiko Paulheim 28

Pusing Selection and Projection

• Pushing selection to earlier steps

– Leads to joining shorter tables (less rows)

• Pushing projection to earlier steps

– Leads to joining narrower tables (less columns)

• In each case

– Make intermediate results smaller

– Reduce amount of cache needed

– Make subsequent steps faster

projection

se
le

ct
io

n

4/10/19 Heiko Paulheim 29

Equivalence Rules (ctd.)

● (9) The set operations union and intersection are commutative
E1  E2 = E2  E1
E1  E2 = E2  E1

(but: set difference is not commutative)
● (10) Set union and intersection are associative

 (E1  E2)  E3 = E1  (E2  E3)

 (E1  E2)  E3 = E1  (E2  E3)
● (11) The selection operation distributes over ,  and –.

 sq (E1 – E2) = sq (E1) – sq(E2)

 and similarly for  and  in place of –

Also: sq (E1 – E2) = sq(E1) – E2

 and similarly for  in place of –, but not for 
● (12) The projection operation distributes over union

 L(E1  E2) = (L(E1))  (L(E2))

4/10/19 Heiko Paulheim 30

Enumeration of Equivalent Expressions

• Query optimizers use equivalence rules to systematically generate
expressions equivalent to the given expression

• Can generate all equivalent expressions as follows:

Repeat

apply all applicable equivalence rules on every subexpression of
every equivalent expression found so far

add newly generated expressions to the set of equivalent
expressions

Until no new equivalent expressions are generated above

• The above approach is very expensive in space and time

• Two approaches
– Optimized plan generation based on transformation rules

– Special case approach for queries with only selections, projections and
joins

4/10/19 Heiko Paulheim 31

Transformation based Optimization

• Space requirements reduced by sharing common sub-expressions:

– when E1 is generated from E2 by an equivalence rule, usually only the top level of
the two are different, subtrees below are the same and can be shared using pointers

– E.g. when applying join commutativity

– Same sub-expression may get generated multiple times

– Detect duplicate sub-expressions and share one copy

• Time requirements are reduced by not generating all expressions

– Dynamic programming

– We will study only the special case of dynamic programming for join order
optimization

E1 E2

4/10/19 Heiko Paulheim 32

Cost Estimation for Execution Plans

• Cost of each operator computed as described in last chapter

– Need statistics of input relations

• E.g. number of tuples, sizes of tuples

– Inputs can be results of sub-expressions

• Need to estimate statistics of expression results

– To do so, we require additional statistics

– E.g. number of distinct values for an attribute

• More on cost estimation later

4/10/19 Heiko Paulheim 33

Cost-based Optimization

• Consider finding the best join ordering for r1 r2 . . . rn

• Join is commutative and associative. For n=3, we have

– (r1,r2),r3 ; (r2,r1),r3 ; r3,(r1,r2) ; r3,(r2,r1) ;
(r1,r3),r2 ; (r3,r1),r2 ; r2,(r1,r3) ; r2,(r3,r1) ;
(r3,r2),r1 ; (r2,r3),r1 ; r1,(r3,r2) ; r1,(r2,r3) .

• In general, the number is very large

– Mathematically: (2(n – 1))!/(n – 1)!

– n = 5 → 1,680

– n = 10 → >17 billion!

• No need to generate all the join orders

– Dynamic programming: compute least-cost join order for any subset of
{r1, r2, . . . rn}

– reduces complexity to O(3n)

Note: factorial
complexity is even

worse than exponential!

4/10/19 Heiko Paulheim 34

Choosing a Good Execution Plan

• Naively: for each operation, pick the cheapest algorithm

– given the statistics

– caution: may not yield best overall algorithm!

• Example 1: merge-join may be costlier than hash-join

– but may provide a sorted output which reduces the cost for an outer
level aggregation

• Example 2: nested-loop join may be a costly variant

– but provides opportunity for pipelining

• Practical query optimizers incorporate elements of the following two
broad approaches

– Search all the plans and choose the best plan in a cost-based fashion

– Uses heuristics to choose a plan

4/10/19 Heiko Paulheim 35

Interesting Sort Orders

• Consider the expression (r1 r2) r3 (with A as common attribute)

• An interesting sort order is a particular sort order of tuples that could
be useful for a later operation

– Using merge-join to compute r1 r2 may be costlier than hash join

• but generates result sorted on A

– Which in turn may make merge-join with r3 cheaper

• which may reduce cost of join with r3 and minimizing overall cost

– Sort order may also be useful for result ordering and aggregation

• Not sufficient to find the best join order for each subset of the set of n
given relations

– must find the best join order for each subset, for each interesting sort order

• extension of dynamic programming algorithms

– Usually, number of interesting orders is quite small

• does not affect time/space complexity significantly

4/10/19 Heiko Paulheim 36

Heuristic Optimization

• Cost-based optimization is expensive, even with dynamic
programming

• Alternative: use heuristics to reduce the number of choices that
must be made in a cost-based fashion

– may miss the best solution, but yields a good solution

• Heuristic optimization transforms the query tree by using a set of
rules that typically improve execution performance:

– Perform selection early (reduces the number of tuples)

– Perform projection early (reduces the number of attributes)

– Perform most restrictive selection and join operations
(i.e. with smallest result size) before other similar operations

• Some systems use only heuristics, others combine heuristics with
partial cost-based optimization

4/10/19 Heiko Paulheim 37

Practical Query Optimizers

• Many optimizers consider only left-deep join orders

– Plus heuristics to push selections and projections down the query tree

– Reduces optimization complexity and generates plans amenable to
pipelined evaluation

• Intricacies of SQL complicate query optimization

– e.g. nested subqueries

4/10/19 Heiko Paulheim 38

Practical Query Optimizers

• Savings vs. overhead

– Large search space can lead to severe overhead

• Mixed approach: heuristics for cheap queries, exhaustive search for expensive query

• Strategies of practical optimizers (e.g., MS SQL Server) include

– Optimization cost budget to stop optimization early

• e.g.: found a plan is less than cost of optimization

– Plan caching to reuse previously computed plan if query is resubmitted

• Even with different constants in query

4/10/19 Heiko Paulheim 39

Statistical Information for Cost Estimation

• nr: number of tuples in a relation r

• br: number of blocks containing tuples of r

• fr: blocking factor of r (number of tuples of r that fit into one block)

• If tuples of r are stored together physically in a file, then:

• lr: size of a tuple of r

• V(A, r): number of distinct values that appear in r for attribute A;
same as the size of A(r)

ú
ú
ú

ú

ù

ê
ê
ê

ê

é
=
rf
rn

rb

4/10/19 Heiko Paulheim 40

Statistical Information for Cost Estimation

● Running example: student takes
● Catalog information for join examples:

– nstudent = 5,000.

– fstudent = 50, which implies that

bstudent =5000/50 = 100.

– ntakes = 10,000.

– ftakes = 25, which implies that

btakes = 10000/25 = 400.

• V(ID, takes) = 2500

– on avg., each student who has taken a course has taken four courses

– Attribute ID in takes is a foreign key referencing student

• V(ID, student) = 5000 (primary key!)

4/10/19 Heiko Paulheim 41

Selection Size Estimates

• Given a selection criterion, c is the estimated number of matching tuples

• sA=v(r)

– if A is a key attribute: c = 1

– if A is a non-key attribute: c = nr / V(A,r)

• sAV(r) (case of sA  V(r) is symmetric)

– In absence of statistical information: c = nr / 2.

– If min(A,r) and max(A,r) are available in catalog

• c = 0 if v < min(A,r)

• c =

– Further refinement possible using histograms

nr .
v−min (A , r)

max (A , r)−min (A , r)

4/10/19 Heiko Paulheim 42

Example for Selection Size Estimation

• Estimate for age18

– without statistics (nr = 176): c = nr / 2 = 88

– with min=1, max=25: c = = 125

– using histogram: c = 48 + 35 +25 + 50*2/5 = 128

value

fr
eq

ue
nc

y

50

40

30

20

10

1–5 6–10 11–15 16–20 21–25

25

35

48 50

18

assumes uniform
distribution

assumes uniform
distribution within
histogram bars

),min(),max(

),min(
.

rArA

rAv
nr -

-

4/10/19 Heiko Paulheim 43

Size Estimation for Complex Selections

• The selectivity of a condition qi is the probability that a tuple in the
relation r satisfies qi

• If si is the number of satisfying tuples in r, the selectivity of qi is si /nr

• Conjunction: sq1 q2. . .  qn (r). Assuming independence, estimate of

tuples in the result is:

• Disjunction:sq1 q2 . . .  qn (r). Estimated number of tuples:

• Negation: sq(r). Estimated number of tuples:
nr – size(sq(r))

n
r

n
r n

sss
n

*

 . . . 21

÷÷
ø

ö
çç
è

æ
-**-*--*)1(...)1()1(1 21

r

n

rr
r n

s

n

s

n

s
n

4/10/19 Heiko Paulheim 44

Estimating the Size of Joins

• The Cartesian product r x s contains nr * ns tuples

– each tuple occupies sr + ss bytes.

• If R  S = , then r s is the same as r x s

• If R  S is a key for R, then a tuple of s will join with at most one
tuple from r

– therefore, the number of tuples in r s is no greater than the number of
tuples in s

• If R  S in S is a foreign key in S referencing R, then the number of
tuples in r s is exactly the same as the number of tuples in s.

– The case for R  S being a foreign key referencing S is symmetric.

– In the example query student takes, ID in takes is a foreign key
referencing student

– hence, the result has exactly ntakes tuples, which is 10,000

4/10/19 Heiko Paulheim 45

Estimating the Size of Joins

• If R  S = {A} is not a key for R or S
If we assume that every tuple t in R produces tuples in R S, the number of
tuples in R S is estimated to be:

If the reverse is true, the estimate obtained will be:

The lower of these two estimates is probably the more accurate one,
i.e., we ultimately use

min (,)

• Can improve on above if histograms are available

– Use formulas similar to above, for each cell of histograms on the two relations

nr∗ns
V (A , s)

nr∗ns
V (A ,r)

nr∗ns
V (A ,s)

nr∗ns
V (A , r)

4/10/19 Heiko Paulheim 46

Estimating the Size of Joins

• If R  S = {A} is not a key for R or S

• Example: computing student takes without join information

→ The minimum of the two is 10,000

nstudent∗ntakes
V (ID , takes)

=5000∗10000
2500

=20000
nstudent∗nstudent
V (ID ,takes)

=5000∗10000
5000

=10000

4/10/19 Heiko Paulheim 47

Estimating the Size of Joins

• Left/right outer join:

– Estimated size of r s = size of r s + size of r

– Case of right outer join is symmetric

• Full outer join:

– Estimated size of r s = size of r s + size of r + size of s

• Note: These are pessimistic estimates

– i.e. upper bounds

• In our example: not all students have to take courses

– hence, computing student takes make sense

• Estimated upper bound: 10,000 + 5,000 = 15,000

4/10/19 Heiko Paulheim 48

Size Estimation for Other Operations

• Projection: estimated size of A(r) = V(A,r)

• Aggregation : estimated size of AgF(r) = V(A,r)

• Set operations

– For unions/intersections of selections on the same relation: rewrite and
use size estimate for selections

• E.g. sq1 (r)  sq2 (r) can be rewritten as sq1 ˅ q2 (r)

– For operations on different relations:

• estimated size of r  s = size of r + size of s

• estimated size of r  s = minimum (size of r, size of s)

• estimated size of r – s = r

• All the three estimates may be quite inaccurate
– but provide reliable upper bounds on the sizes

4/10/19 Heiko Paulheim 49

Estimating the Number of Distinct Values

Selections: sq (r)

• If q forces A to take a specified value: V(A,sq (r)) = 1.

– e.g., A = 3

• If q forces A to take on one of a specified set of values:
 V(A,sq (r)) = number of specified values.

– e.g., (A = 1 v A = 3 v A = 4)

• If the selection condition q is of the form A < r
estimated V(A,sq (r)) = V(A.r) * s

– where s is the selectivity of the selection

• In all other cases: use approximate estimate of
 min(V(A,r), nsq (r))

– more accurate estimate can be got using probability theory

– but this one works fine generally

analogous for
>, ≤, ≥

4/10/19 Heiko Paulheim 50

Joins: r s

• If all attributes in A are from r
 estimated V(A, r s) = min (V(A,r), n r s)

• If A contains attributes A1 from r and A2 from s, then estimated

V(A,r s) = min(V(A1,r)*V(A2 – A1,s), V(A1 – A2,r)*V(A2,s), nr s)

• Again:

– more accurate estimate can be got using probability theory

– but this one works fine generally

Estimating the Number of Distinct Values

4/10/19 Heiko Paulheim 51

Optimizing Nested Subqueries

• In the part about SQL, we have learned about nested subqueries
– A useful tool, but can lead to complex & expensive queries

• Consider:
– select name

from instructor
where exists (select *

 from teaches
 where instructor.ID = teaches.ID and teaches.year = 2007)

• SQL conceptually treats nested subqueries in the where clause as
functions
– Parameters are variables from outer level query, called correlation

variables

• Conceptually, nested subquery is executed once for each tuple in the
cross-product generated by the outer level from clause

– Such evaluation is called correlated evaluation

4/10/19 Heiko Paulheim 52

Optimizing Nested Subqueries

• Correlated evaluation may be quite inefficient since
– a large number of calls may be made to the nested query

– may lead to many additional I/O operations (block seek/transfer) as a result

• SQL optimizers attempt to transform nested subqueries to joins where
possible, enabling use of efficient join techniques
– E.g.: earlier nested query can be rewritten as

select name
from instructor, teaches
where instructor.ID = teaches.ID and teaches.year = 2007

• Note: the two queries generate different numbers of duplicates (why?)
– teaches can have duplicate IDs

– Can be modified to handle duplicates correctly as we will see

• In general, it is not possible/straightforward to move the entire nested
subquery from clause into the outer level query from clause

• A temporary relation is created instead, and used in body of outer level query

4/10/19 Heiko Paulheim 53

Optimizing Nested Subqueries

In general, SQL queries of the form below can be rewritten as shown

Rewrite: select …
 from L1

 where P1 and exists (select *
 from L2

 where P2)

To: create table t1 as
 select distinct V
 from L2

 where P21

 select …
 from L1, t1
 where P1 and P22

• P21 contains predicates in P2 that do not involve any correlation variables

• P22 reintroduces predicates involving correlation variables, with
relations renamed appropriately

• V contains all attributes used in predicates with correlation variables

4/10/19 Heiko Paulheim 54

Optimizing Nested Subqueries

• In our example, the original nested query would be transformed to
 create table t1 as
 select distinct ID
 from teaches
 where year = 2007

 select name
 from instructor, t1

 where t1.ID = instructor.ID

• Replacing a nested query by a query with a join (possibly with a temporary
relation) is called decorrelation.

• Decorrelation is more complicated if

– the nested subquery uses aggregation

– the result of the nested subquery is used to test for equality / comparison

– the condition linking the nested subquery to the other
query is not exists

– ...

4/10/19 Heiko Paulheim 55

A Note on Subqueries

• In the part about SQL, we have learned that there’s many variants
select distinct course_id
from section
where semester = ’Fall’ and year= 2009 and

course_id in (select course_id from section
where semester = ’Spring’ and year= 2010);

• vs.

select course_id
 from section as S
 where semester = ’Fall’ and year = 2009 and
 exists (select *
 from section as T
 where semester = ’Spring’ and year= 2010
 and S.course_id = T.course_id);

• vs.

select course_id
from section as s1, section as s2
where s1.semester = ’Fall’ and s1.year= 2009
and s2.semester = ’Fall’ and s2.year= 2009 and s1.course_id = s2.course_id

4/10/19 Heiko Paulheim 56

A Note on Subqueries

• For the RDBMS, joins are easier to optimize than subqueries

• Details may differ from RDBMS to RDBMS

• Rule of thumb:

– if in doubt, use a join rather than a subquery

• That they are equivalent does not mean
that they have the same performance!

4/10/19 Heiko Paulheim 57

Top-k Queries

• Top k queries are quite frequent, e.g.,

– display first 20 records in a user interface, sorted by name

– search for top selling books

– list most recent entries in a log table

– …

• Query:

select *
from r, s
where r.B = s.B
order by r.A ascending
limit 10

• Alternative 1: Indexed nested loops join with r as outer

• Alternative 2: estimate highest r.A value in result

– add selection (and r.A <= H) to where clause

– if < 10 results, retry with larger H

4/10/19 Heiko Paulheim 58

Join Minimization

• Consider

select r.A, r.B
from r, s
where r.B = s.B

• Check if join with s is redundant, if yes, drop it

• Examples for redundant joins:

– join condition is on foreign key from r to s, r.B is declared not
null

– no selection from s

4/10/19 Heiko Paulheim 59

Multiquery Optimization

• Example

– Q1: select * from (r natural join t) natural join s

– Q2: select * from (r natural join u) natural join s

• Both queries share common subexpression (r natural join s)

– May be useful to compute (r natural join s) once and use it in
both queries

– May be more expensive in some situations

– e.g. (r natural join s) may be expensive, plans as shown in
queries may be cheaper

• Multiquery optimization: find best overall plan for a set of queries,
exploiting sharing of common subexpressions between queries
where it is useful

4/10/19 Heiko Paulheim 60

Parametric Query Optimization

• Example
select *
from r natural join s
where r.a < $1

– value of parameter $1 not known at compile time

– known only at run time

– Different plans may be optimal for different values of $1

• Solution 1: optimize at run time, each time query is submitted

• can be expensive

4/10/19 Heiko Paulheim 61

Parametric Query Optimization

• Example
select *
from r natural join s
where r.a < $1

• Solution 2: Parametric Query Optimization:

– optimizer generates a set of plans, optimal for different values of $1

– set of optimal plans usually small for 1 to 3 parameters

– Key issue: how to do find set of optimal plans efficiently

• best one from this set is chosen at run time when $1 is known

• Solution 3: Query Plan Caching

– If optimizer decides that same plan is likely to be optimal for all parameter
values, it caches plan and reuses it, else reoptimize each time

– Implemented in many database systems

4/10/19 Heiko Paulheim 62

Summary

• Queries can be expressed in multiple forms

– equivalent in terms of results

– but different in terms of performance

• Query Optimization

– pick best execution plan

– estimate time/memory consumption for an execution plan

– based on statistical information

• A widely researched area

– e.g., exploiting advanced statistics about datasets

– e.g., exploiting log files and histories

– etc.

4/10/19 Heiko Paulheim 63

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Questions?

