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Previously on Database Technology

• Last week, we have seen different algorithms for query processing

– plus their best/worst case cost estimates

• Today

– how to come up with an efficient query execution plan



4/10/19 Heiko Paulheim 3 

Agenda

• Introduction 

• Transformation of Relational Expressions

• Catalog Information for Cost Estimation

• Statistical Information for Cost Estimation

• Cost-based optimization

• Dynamic Programming for Choosing Evaluation Plans 
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Introduction

• SELECT name, title 
FROM instructor, teaches, course
WHERE instructor.inst_ID = teaches.inst_ID
AND course.dept_name = instructor.dept_name
AND dept_name=”Music”
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Introduction

• Alternative ways of evaluating a given query

– Equivalent expressions

– Different algorithms for each operation
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Evaluation Plans

• An evaluation plan defines exactly what algorithm is used for each 
operation, and how the execution of the operations is coordinated
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Cost-based Query Optimization

• Cost difference between evaluation plans for a query can be 
enormous

– e.g., seconds vs. days in some cases

• Steps in cost-based query optimization

– Generate logically equivalent expressions using equivalence rules

– Annotate resultant expressions to get alternative query plans

– Choose the cheapest plan based on estimated cost

• Estimation of plan cost based on:

– Statistical information about relations. Examples:

• number of tuples, number of distinct values for an attribute

– Statistics estimation for intermediate results

• to compute cost of complex expressions

– Cost formulae for algorithms, computed using statistics
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Equivalence of Relational Algebra Expressions

• Two relational algebra expressions are said to be equivalent if the 
two expressions generate the same set of tuples on every legal 
database instance

– order of tuples is irrelevant

– they may yield different results on databases that violate 
integrity constraints

• Equivalent results must not be a result of chance, e.g.

– SELECT name FROM employee WHERE id=“12345” 
→ “Smith”

– SELECT name FROM employee WHERE birthday=“30.10.1974” 
→ “Smith”

• Those results could be different on a different database instance
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Equivalence of Relational Algebra Expressions

• In SQL, inputs and outputs are multisets of tuples

– i.e., they may contain duplicates

– two expressions in the multiset version of the relational algebra are 
said to be equivalent 

• if the two expressions generate the same multiset of tuples on 
every legal database instance

• for each duplicate result, the same number of duplicates must 
appear in the results

• An equivalence rule says that expressions of two forms are equivalent

– Can replace expression of first form by second, or vice versa

– Successive application of equivalence rules generates alternative 
query formulations
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Equivalence Rules

● (1) Conjunctive selection operations can be deconstructed into a 
sequence of individual selections.

• SELECT name, title 
FROM instructor
WHERE dept_name=”Music”
AND salary>50000

• SELECT name,title FROM (
SELECT name,title FROM instructor
WHERE dept_name=”Music”)

WHERE salary>50000

σθ1∧θ2(E )=σ θ
1
(σ θ

2
(E ))

Note: SQL statements in these
slides are solely illustrative!
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Equivalence Rules

● (2) Selection operations are commutative.

• SELECT name,title FROM (
SELECT name,title FROM instructor
WHERE dept_name=”Music”)

WHERE salary>50000

• SELECT name,title FROM (
SELECT name,title FROM instructor
WHERE salary>50000)

WHERE dept_name=”Music”

))(())((
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Equivalence Rules

● (3) Only the last in a sequence of projection operations is needed, 
the others can be omitted.

• SELECT name, title
FROM (

SELECT name,title,salary,dept_name FROM instructor
WHERE dept_name=”Music”
AND salary>50000

)

• SELECT name,title FROM instructor
WHERE dept_name=”Music”
AND salary>50000

)())))((((
121
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Equivalence Rules

● (4) Selections can be combined with Cartesian products and theta 
joins.

sq(E1 X E2) =  E1     q E2 

sq1(E1     q2 E2) =  E1     q1 q2 E2 

• SELECT name, building
FROM instructor, department
WHERE instructor.dept_name = department.dept_name
AND salary>50000

• SELECT name, building FROM(
SELECT name,building FROM instructor,department)

WHERE instructor.dept_name = department.dept_name
AND SALARY>50000
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Equivalence Rules

● (5) Theta-join operations (and natural joins) are commutative
E1      q  E2 = E2     q  E1

• SELECT name, building
FROM instructor, department
WHERE instructor.dept_name = department.dept_name
AND salary>50000

• SELECT name, building
FROM department, instructor
WHERE instructor.dept_name = department.dept_name
AND salary>50000
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Equivalence Rules (ctd.)

● (6a) Natural join operations are associative

 (E1      E2)    E3 = E1      (E2     E3)

• SELECT * FROM instructor, (
SELECT * FROM teaches, course
WHERE teaches.course_ID = course.course_ID) AS joined

WHERE instructor.inst_ID = joined.inst_ID

• SELECT * FROM course, (
SELECT * FROM instructor,teaches WHERE
WHERE instructor.inst_ID = teaches.inst_ID) AS joined

WHERE course.course_ID = joined.course_ID
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Equivalence Rules (ctd.)

● (6b) Theta joins are associative in the following manner
 (E1       q1 E2)     q2 q3 E3 = E1        q1 q3 (E2     q2 E3)  

     where q2 involves attributes from only E2 and E3.

• SELECT * FROM instructor, (
SELECT * FROM teaches, course
WHERE teaches.course_ID = course.course_ID) AS joined

WHERE instructor.inst_ID = joined.inst_ID
AND salary>50000

• SELECT * FROM course, (
SELECT * FROM instructor,teaches WHERE
WHERE instructor.inst_ID = teaches.inst_ID) AS joined

WHERE course.course_ID = joined.course_ID
AND salary>50000
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Example: Join Ordering

• For all relations r1, r2, and r3,

(r1    r2)    r3  = r1    (r2    r3 )

(Rule 6a)

• If r2    r3  is quite large and r1    r2 is small, we choose

 (r1    r2)    r3 

so that we compute and store a smaller temporary relation
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Example: Join Ordering (ctd.)

• Consider the expression

SELECT name, title FROM instructor, teaches, course
WHERE instructor.inst_ID = teaches.inst_ID
AND teaches.course_ID = course.course_ID
AND instructor.dept_name = “Music”

• Could compute teaches     course_id, title (course) first, and join with 
 sdept_name= “Music” (instructor) 

but  the result of the first join is likely to be a large relation

• Only a small fraction of the university’s instructors are likely to be from the 
Music department

→ it is better to compute

         sdept_name= “Music” (instructor)     teaches 

         first
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Equivalence Rules (ctd.)

● (7) The selection operation distributes over the theta join operation 
under the following two conditions:
(a)  If all the attributes in q0  involve only the attributes of one 
       of the expressions (E1) being joined

                sq0E1     q E2) = (sq0(E1))    q E2 

(b) If q1 involves only the attributes of E1 and q2  involves  
      only the attributes of E2.

                  sq1q E1    q E2) =  (sq1(E1))    q (sq (E2))
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Equivalence Rules (ctd.)

● (7) The selection operation distributes over the theta join operation... 

• SELECT *
FROM instructor, department
WHERE instructor.dept_name = department.dept_name
AND salary>50000

• SELECT * FROM (
SELECT * FROM instructor 
WHERE salary>50000) AS R1, (
SELECT * FROM department) AS R2

WHERE R1.dept_name = R2.dept_name
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Equivalence Rules: Graphical Visualization
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Example: Pushing Selection

• Query:  Find the names of all instructors in the Music department, 
along with the titles of the courses that they teach

name, title(sdept_name= “Music”

(instructor     (teaches          course_id, title (course)))

• Transformation using rule 7a

name, title((sdept_name= “Music”(instructor))     
               (teaches          course_id, title (course)))

• Performing the selection as early as possible reduces the size of 
the relation to be joined 
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Example with Multiple Expressions

• Query: Find the names of all instructors in the Music department who have 
taught a course in 2009, along with the titles of the courses that they taught

name, title(sdept_name= “Music”year = 2009

    (instructor     (teaches       course_id, title (course))))

• Transformation using join associatively (Rule 6a):

name, title(sdept_name= “Music”year = 2009

    ((instructor     teaches)       course_id, title (course)))

• Transformed expression provides an opportunity to apply the 
“perform selections early” rule (7b), resulting in

name, title ((sdept_name = “Music” (instructor)     s year = 2009 (teaches))     
       course_id, title (course))
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Example with Multiple Expressions
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Equivalence Rules (ctd.)

● (8)The projection operation distributes over the theta join operation 
as follows:

(a) if q involves only attributes from L1  L2:

(b) Consider a join E1      q E2

– Let L1 and L2 be sets of attributes from E1 and E2, respectively

– Let L3 be attributes of E1 that are involved in join condition q, but 
are not in L1  L2, and

– Let L4 be attributes of E2 that are involved in join condition q, but 
are not in L1  L2

))(())(()( 2121 2121
EEEE LLLL =  qq

)))(())((()( 2121 42312121
EEEE LLLLLLLL  = qq
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Equivalence Rules (ctd.)

● (8)The projection operation distributes over the theta join operation…

• SELECT name,salary,building
FROM instructor, department
WHERE instructor.dept_name = department.dept_name

• SELECT name,salary,building FROM (
SELECT name,salary,dept_name FROM instructor) AS R1,
SELECT building,dept_name FROM department) AS R2

WHERE R1.dept_name = R2.dept_name
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Example: Pushing Projections

• Consider the query:

SELECT name, title FROM instructor, teaches, course
WHERE instructor.inst_ID = teaches.inst_ID
AND teaches.course_ID = course.course_ID
AND instructor.dept_name = “Music”

 

• If we compute

(sdept_name = “Music” (instructor     teaches)

we obtain a relation whose schema is:
(ID, name, dept_name, salary, course_id, sec_id, semester, year)

• Push projections using equivalence rules 8a and 8b; 
eliminate unneeded attributes from intermediate results to get:
      name, title(name, course_id (
                             sdept_name= “Music” (instructor)     teaches)) 
                        course_id, title (course))))

• Performing the projection as early as possible reduces the size of the relation to be 
joined
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Pusing Selection and Projection

• Pushing selection to earlier steps

– Leads to joining shorter tables (less rows)

• Pushing projection to earlier steps

– Leads to joining narrower tables (less columns)

• In each case

– Make intermediate results smaller

– Reduce amount of cache needed

– Make subsequent steps faster

projection

se
le

ct
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n
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Equivalence Rules (ctd.)

● (9) The set operations union and intersection are commutative 
E1  E2  = E2  E1 
E1  E2  = E2  E1 

(but: set difference is not commutative)
● (10) Set union and intersection are associative

                 (E1  E2)  E3 = E1  (E2  E3)

              (E1  E2)  E3 = E1  (E2  E3)
● (11) The selection operation distributes over ,  and –. 

                  sq (E1  –  E2) = sq (E1) –  sq(E2)

                     and similarly for  and  in place of  –

Also:           sq (E1  –  E2) = sq(E1) –  E2

                          and similarly for  in place of  –, but not for 
● (12) The projection operation distributes over union

                       L(E1  E2) = (L(E1))  (L(E2)) 
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Enumeration of Equivalent Expressions

• Query optimizers use equivalence rules to systematically generate 
expressions equivalent to the given expression

• Can generate all equivalent expressions as follows: 

Repeat

apply all applicable equivalence  rules on every subexpression of 
every equivalent expression found so far

add newly generated expressions to the set of equivalent 
expressions 

Until no new equivalent expressions are generated above

• The above approach is very expensive in space and time

• Two approaches
– Optimized plan generation based on transformation rules

– Special case approach for queries with only selections, projections and 
joins
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Transformation based Optimization

• Space requirements reduced by sharing common sub-expressions:

– when E1 is generated from E2 by an equivalence rule, usually only the top level of 
the two are different, subtrees below are the same and can be shared using pointers

– E.g. when applying join commutativity

– Same sub-expression may get generated multiple times

– Detect duplicate sub-expressions and share one copy

• Time requirements are reduced by not generating all expressions

– Dynamic programming

– We will study only the special case of dynamic programming for join order 
optimization

E1 E2
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Cost Estimation for Execution Plans

• Cost of each operator computed as described in last chapter

– Need statistics of input relations

• E.g. number of tuples, sizes of tuples

– Inputs can be results of sub-expressions

• Need to estimate statistics of expression results

– To do so, we require additional statistics

– E.g. number of distinct values for an attribute

• More on cost estimation later
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Cost-based Optimization

• Consider finding the best join ordering for r1    r2      . . . rn

• Join is commutative and associative. For n=3, we have

– (r1,r2),r3 ; (r2,r1),r3 ; r3,(r1,r2) ; r3,(r2,r1) ; 
(r1,r3),r2 ; (r3,r1),r2 ; r2,(r1,r3) ; r2,(r3,r1) ; 
(r3,r2),r1 ; (r2,r3),r1 ; r1,(r3,r2) ; r1,(r2,r3) .

• In general, the number is very large

– Mathematically: (2(n – 1))!/(n – 1)! 

– n = 5 →  1,680

– n = 10 → >17 billion!

• No need to generate all the join orders

– Dynamic programming: compute least-cost join order for any subset of 
{r1, r2, . . . rn}

– reduces complexity to O(3n)

Note: factorial 
complexity is even

worse than exponential!
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Choosing a Good Execution Plan

• Naively: for each operation, pick the cheapest algorithm

– given the statistics

– caution: may not yield best overall algorithm!

• Example 1: merge-join may be costlier than hash-join

– but may provide a sorted output which reduces the cost for an outer 
level aggregation

• Example 2: nested-loop join may be a costly variant

– but provides opportunity for pipelining

• Practical query optimizers incorporate elements of the following two 
broad approaches

– Search all the plans and choose the best plan in a cost-based fashion

– Uses heuristics to choose a plan
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Interesting Sort Orders

• Consider the expression (r1     r2)     r3     (with A as common attribute)

• An interesting sort order is a particular sort order of tuples that could 
be useful for a later operation

– Using merge-join to compute r1     r2   may be costlier than hash join 

• but generates result sorted on A

– Which in turn may make merge-join with r3 cheaper

• which may reduce cost of join with r3 and minimizing overall cost 

– Sort order may also be useful for result ordering and aggregation

• Not sufficient to find the best join order for each subset of the set of n 
given relations

– must find the best join order for each subset, for each interesting sort order

• extension of dynamic programming algorithms

– Usually, number of interesting orders is quite small 

• does not affect time/space complexity significantly
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Heuristic Optimization

• Cost-based optimization is expensive, even with dynamic 
programming

• Alternative: use heuristics to reduce the number of choices that 
must be made in a cost-based fashion

– may miss the best solution, but yields a good solution

• Heuristic optimization transforms the query tree by using a set of 
rules that typically improve execution performance:

– Perform selection early (reduces the number of tuples)

– Perform projection early (reduces the number of attributes)

– Perform most restrictive selection and join operations 
(i.e. with smallest result size) before other similar operations

• Some systems use only heuristics, others combine heuristics with 
partial cost-based optimization
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Practical Query Optimizers

• Many optimizers consider only left-deep join orders

– Plus heuristics to push selections and projections down the query tree

– Reduces optimization complexity and generates plans amenable to 
pipelined evaluation

• Intricacies of SQL complicate query optimization

– e.g. nested subqueries
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Practical Query Optimizers

• Savings vs. overhead

– Large search space can lead to severe overhead

• Mixed approach: heuristics for cheap queries, exhaustive search for expensive query

• Strategies of practical optimizers (e.g., MS SQL Server) include

– Optimization cost budget to stop optimization early 

• e.g.: found a plan is less than cost of optimization

– Plan caching to reuse previously computed plan if query is resubmitted

• Even with different constants in query  
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Statistical Information for Cost Estimation

• nr:  number of tuples in a relation r

• br: number of blocks containing tuples of r

• fr: blocking factor of r (number of tuples of r that fit into one block)

• If tuples of r are stored together physically in a file, then: 

• lr: size of a tuple of r

• V(A, r): number of distinct values that appear in r for attribute A; 
same as the size of A(r)
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Statistical Information for Cost Estimation

● Running example: student      takes
● Catalog information for join examples:

– nstudent = 5,000.

– fstudent  = 50, which implies that 

bstudent =5000/50 = 100.

– ntakes = 10,000.

– ftakes   = 25, which implies that 

btakes = 10000/25 = 400.

• V(ID, takes) = 2500

– on avg., each student who has taken a course has taken four courses

– Attribute ID in takes is a foreign key referencing student

• V(ID, student) = 5000 (primary key!)
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Selection Size Estimates

• Given a selection criterion, c is the estimated number of matching tuples

• sA=v(r)

– if A is a key attribute: c = 1

– if A is a non-key attribute: c = nr / V(A,r)

• sAV(r) (case of sA  V(r) is symmetric)

– In absence of statistical information: c = nr / 2.

– If min(A,r) and max(A,r) are available in catalog

• c = 0 if v < min(A,r)

• c = 

– Further refinement possible using histograms

nr .
v−min (A , r )

max (A , r )−min ( A , r )
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Example for Selection Size Estimation

• Estimate for age18

– without statistics (nr = 176): c = nr / 2 = 88

– with min=1, max=25: c =                                     = 125

– using histogram: c = 48 + 35 +25 + 50*2/5 = 128
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Size Estimation for Complex Selections

• The selectivity of a condition qi is the probability that a tuple in the 
relation r satisfies qi

• If si  is the number of satisfying tuples in r, the selectivity of  qi is si /nr

• Conjunction:  sq1 q2. . .  qn (r).  Assuming independence, estimate of 
 

tuples in the result is:

• Disjunction:sq1 q2 . . .  qn (r).   Estimated number of tuples:

• Negation:  sq(r).  Estimated number of tuples:
nr – size(sq(r))
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Estimating the Size of Joins

• The Cartesian product r  x s contains nr  * ns tuples

– each tuple occupies sr + ss bytes.

• If R  S = , then r     s is the same as r x s

• If R  S is a key for R, then a tuple of s will join with at most one 
tuple from r

– therefore, the number of tuples in r     s is no greater than the number of 
tuples in s

• If R  S in S is a foreign key in S referencing R, then the number of 
tuples in r     s is exactly the same as the number of tuples in s.

– The case for R  S being a foreign key referencing S is symmetric.

– In the example query student     takes, ID in takes is a foreign key 
referencing student

– hence, the result has exactly ntakes tuples, which is 10,000
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Estimating the Size of Joins

• If R  S = {A} is not a key for R or S
If we assume that every tuple t in R produces tuples in R    S, the number of 
tuples in R     S is estimated to be:

If the reverse is true, the estimate obtained will be:

The lower of these two estimates is probably the more accurate one, 
i.e., we ultimately use

min (                 ,                  )

• Can improve on above if histograms are available

– Use formulas similar to above, for each cell of histograms on the two relations 

nr∗ns
V (A , s )

nr∗ns
V (A ,r )

nr∗ns
V (A ,s )

nr∗ns
V (A , r )
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Estimating the Size of Joins

• If R  S = {A} is not a key for R or S

• Example: computing student    takes without join information

→ The minimum of the two is 10,000

nstudent∗ntakes
V ( ID , takes)

=5000∗10000
2500

=20000
nstudent∗nstudent
V ( ID ,takes )

=5000∗10000
5000

=10000
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Estimating the Size of Joins

• Left/right outer join:  

– Estimated size of r        s  = size of  r      s  + size of r

– Case of right outer join is symmetric

• Full outer join:

– Estimated size of r          s  = size of r      s + size of r + size of s

• Note: These are pessimistic estimates

– i.e. upper bounds

• In our example: not all students have to take courses

– hence, computing student        takes make sense

• Estimated upper bound: 10,000 + 5,000 = 15,000
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Size Estimation for Other Operations

• Projection:  estimated size of A(r)   =   V(A,r)

• Aggregation : estimated size of AgF(r)   = V(A,r)

• Set operations

– For unions/intersections of selections on the same relation: rewrite and 
use size estimate for selections

• E.g. sq1 (r)  sq2 (r)  can be rewritten as sq1 ˅ q2 (r)

– For operations on different relations:

• estimated size of r  s  = size of r + size of s

• estimated size of r  s  = minimum (size of r, size of s)

• estimated size of r – s   = r

• All the three estimates may be quite inaccurate
– but provide reliable upper bounds on the sizes
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Estimating the Number of Distinct Values

Selections: sq (r) 

• If q forces A to take a specified value: V(A,sq (r)) = 1.

– e.g., A = 3

• If q forces A to take on one of a specified set of values: 
        V(A,sq (r)) = number of specified values.

– e.g., (A = 1 v A = 3 v A = 4 ) 

• If the selection condition q is of the form A < r
estimated V(A,sq (r)) = V(A.r) * s

– where s is the selectivity of the selection

• In all other cases: use approximate estimate of
 min(V(A,r), nsq (r) )

– more accurate estimate can be got using probability theory 

– but this one works fine generally

analogous for
>, ≤, ≥
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Joins: r      s

• If all attributes in A are from r
     estimated  V(A, r     s) = min (V(A,r), n r    s)

• If A contains attributes A1 from r and A2 from s, then estimated 

V(A,r     s) = min(V(A1,r)*V(A2 – A1,s), V(A1 – A2,r)*V(A2,s), nr     s)

• Again: 

– more accurate estimate can be got using probability theory

– but this one works fine generally

Estimating the Number of Distinct Values
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Optimizing Nested Subqueries

• In the part about SQL, we have learned about nested subqueries
– A useful tool, but can lead to complex & expensive queries

• Consider:
– select name

from instructor
where exists (select *

                from teaches
                where instructor.ID = teaches.ID and teaches.year = 2007)

• SQL conceptually treats nested subqueries in the where clause as 
functions
– Parameters are variables from outer level query, called correlation 

variables

• Conceptually, nested subquery is executed once for each tuple in the 
cross-product generated by the outer level from clause

– Such evaluation is called correlated evaluation
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Optimizing Nested Subqueries

• Correlated evaluation may be quite inefficient since 
– a large number of calls may be made to the nested query 

– may lead to many additional I/O operations (block seek/transfer) as a result

• SQL optimizers attempt to transform nested subqueries to joins where 
possible, enabling use of efficient join techniques
– E.g.: earlier nested query can be rewritten as 

select  name
from   instructor, teaches
where instructor.ID = teaches.ID and teaches.year = 2007

• Note: the two queries generate different numbers of duplicates (why?)
– teaches can have duplicate IDs

– Can be modified to handle duplicates correctly as we will see

• In general, it is not possible/straightforward to move the entire nested 
subquery from clause into the outer level query from clause

• A temporary relation is created instead, and used in body of outer level query
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Optimizing Nested Subqueries

In general, SQL queries of the form below can be rewritten as shown

Rewrite:  select …
                from L1

                         where P1 and exists ( select *
                                 from L2

                                           where P2)

To:           create table t1 as
                select distinct V
                from L2

                where P21

            select …
                 from L1, t1 
                 where P1 and P22

• P21 contains predicates in P2 that do not involve any correlation variables

• P22  reintroduces predicates involving correlation variables, with 
relations renamed appropriately

• V contains all attributes used in predicates with correlation variables
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Optimizing Nested Subqueries

• In our example, the original nested query would be transformed to
    create table t1 as 
         select distinct ID
         from teaches
         where year = 2007
    
    select name
    from instructor, t1

     where t1.ID = instructor.ID

• Replacing a nested query by a query with a join (possibly with a temporary 
relation) is called decorrelation.

• Decorrelation is more complicated if

– the nested subquery uses aggregation

– the result of the nested subquery is used to test for equality / comparison

– the condition linking the nested subquery to the other 
query is not exists

– ...
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A Note on Subqueries

• In the part about SQL, we have learned that there’s many variants
select distinct course_id
from section
where semester = ’Fall’ and year= 2009 and 

course_id in (select course_id from section
where semester = ’Spring’ and year= 2010);

• vs.

select course_id
   from section as S
   where semester = ’Fall’ and year = 2009 and 
               exists (select *
                            from section as T
                            where semester = ’Spring’ and year= 2010 
                                        and S.course_id = T.course_id);

• vs.

select course_id
from section as s1, section as s2
where s1.semester = ’Fall’ and s1.year= 2009
and s2.semester = ’Fall’ and s2.year= 2009 and s1.course_id = s2.course_id
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A Note on Subqueries

• For the RDBMS, joins are easier to optimize than subqueries

• Details may differ from RDBMS to RDBMS

• Rule of thumb: 

– if in doubt, use a join rather than a subquery

• That they are equivalent does not mean 
that they have the same performance!
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Top-k Queries

• Top k queries are quite frequent, e.g.,

– display first 20 records in a user interface, sorted by name

– search for top selling books

– list most recent entries in a  log table

– …

• Query:

select * 
from r, s
where r.B = s.B
order by r.A ascending
limit 10

• Alternative 1: Indexed nested loops join with r as outer

• Alternative 2: estimate highest r.A value in result 

– add selection (and r.A <= H) to where clause  

– if < 10 results, retry with larger H
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Join Minimization

• Consider

select r.A, r.B 
from r, s
where r.B = s.B

• Check if join with s is redundant, if yes, drop it 

• Examples for redundant joins:

– join condition is on foreign key from r to s, r.B is declared not 
null

– no selection from s
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Multiquery Optimization

• Example

– Q1: select * from (r natural join t) natural join s

– Q2: select * from (r natural join u) natural join s

• Both queries share common subexpression (r natural join s)

– May be useful to compute (r natural join s) once and use it in 
both queries

– May be more expensive in some situations

– e.g. (r natural join s) may be expensive, plans as shown in 
queries may be cheaper

• Multiquery optimization: find best overall plan for a set of queries, 
exploiting sharing of common subexpressions between queries 
where it is useful
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Parametric Query Optimization

• Example 
select * 
from r natural join s
where r.a < $1

– value of parameter $1 not known at compile time

– known only at run time

– Different plans may be optimal for different values of $1

• Solution 1: optimize at run time, each time query is submitted

• can be expensive 
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Parametric Query Optimization

• Example 
select * 
from r natural join s
where r.a < $1

• Solution 2: Parametric Query Optimization:

– optimizer generates a set of plans, optimal for different values of $1

– set of optimal plans usually small for 1 to 3 parameters

– Key issue: how to do find set of optimal plans efficiently

• best one from this set is chosen at run time when $1 is known

• Solution 3: Query Plan Caching

– If optimizer decides that same plan is likely to be optimal for all parameter 
values, it caches plan and reuses it, else reoptimize each time

– Implemented in many database systems
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Summary

• Queries can be expressed in multiple forms

– equivalent in terms of results

– but different in terms of performance

• Query Optimization

– pick best execution plan

– estimate time/memory consumption for an execution plan

– based on statistical information

• A widely researched area

– e.g., exploiting advanced statistics about datasets

– e.g., exploiting log files and histories

– etc.



4/10/19 Heiko Paulheim 63 

Questions?
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