
Database Technology
Recovery

Heiko Paulheim

05/14/19 Heiko Paulheim 2

Flashback to First Lecture

• We already stumbled upon transactions

Prof. Smith
Dr. Stevens
Prof. Miller

Dr. Hawkins
Prof. Brown
Prof. Wilson

File: active lecturers File: retired lecturers

Delete from file: active lecturers

Add to file: retired lecturers

Computer crashes here

05/14/19 Heiko Paulheim 3

Recap: ACID Properties

• Atomicity: Either all operations of the transaction are properly
reflected in the database, or none

• Consistency: Execution of a full transaction preserves the
consistency of the database

• Isolation: Although multiple transactions may execute concurrently,
each transaction must be unaware of other concurrently executing
transactions

– Intermediate transaction results must be hidden from other concurrently
executed transactions

– i.e., for every pair of transactions Ti and Tj, it appears to Ti that either Tj,
finished execution before Ti started, or Tj started execution after Ti
finished

• Durability: After a transaction completes successfully, the changes it
has made to the database persist, even if there are system failures

05/14/19 Heiko Paulheim 4

Outline

• Failure Classification

• Storage Structure

• Recovery and Atomicity

• Log-Based Recovery

• Recovery Algorithm

• Remote Backup Systems

05/14/19 Heiko Paulheim 5

Failure Classification

• Transaction failure :

– Logical errors: transaction cannot complete due to some internal error
condition

– System errors: the database system must terminate an active transaction
due to an error condition (e.g., deadlock)

• System crash: a power failure or other hardware or software failure
causes the system to crash.

– Fail-stop assumption: non-volatile storage contents are assumed to not
be corrupted as result of a system crash

• Database systems have numerous integrity checks to prevent
corruption of disk data

• Disk failure: a head crash or similar disk failure destroys all or part of
disk storage

– Destruction is assumed to be detectable: disk drives use checksums to
detect failures

05/14/19 Heiko Paulheim 6

Recovery Algorithms

• Consider a transaction that transfers $50 from account A to account B
– Two updates: subtract 50 from A and add 50 to B

• Transaction requires updates to A and B to be output to the database
– A failure may occur after one of these modifications have been made

• but before both of them are made

– not ensuring that the transaction will commit
may leave the database in an inconsistent state

– not modifying the database may result in lost updates if failure occurs just
after transaction commits

• Recovery algorithms have two parts
– Actions taken during normal transaction processing to ensure enough

information exists to recover from failures

– Actions taken after a failure to recover the database contents to a state
that ensures atomicity, consistency and durability

05/14/19 Heiko Paulheim 7

Storage Structure

• Volatile storage:

– does not survive system crashes

– examples: main memory, cache memory

• Nonvolatile storage:

– survives system crashes

– examples: disk, tape, flash memory,
 non-volatile (battery backed up) RAM

– but may still fail, losing data

• Stable storage:

– a mythical form of storage that survives all failures

– approximation: maintaining multiple copies on distinct nonvolatile media

05/14/19 Heiko Paulheim 8

Stable Storage Approximation

• Maintain multiple copies of each block on separate disks

– copies can be at remote sites to protect against disasters such as fire or flooding

• Failure during data transfer can still result in inconsistent copies:

– Block transfer can result in

• Successful completion

• Partial failure: destination block has incorrect information

• Total failure: destination block was never updated

• Protecting storage media from failure during data transfer (one solution):

– Execute output operation as follows (assuming two copies of each block):

1) Write the information onto the first physical block

2) When the first write successfully completes, write the same information onto
the second physical block

3) The output is completed only after the second write successfully completes

05/14/19 Heiko Paulheim 9

Stable Storage Approximation

● Protecting storage media from failure during data transfer (cont.):
● Copies of a block may differ due to failure during output operation.

● To recover from failure:
● First find inconsistent blocks

● Expensive solution: Compare the two copies of every disk block.
● Better solution:

● Record in-progress disk writes on non-volatile storage
(Non-volatile RAM or special area of disk)

● Use this information during recovery to find blocks that may be inconsistent,
and only compare copies of these

● Used in hardware RAID systems
● If either copy of an inconsistent block is detected to have an error (bad checksum)

● overwrite it by the other copy
● If both have no error, but are different

● overwrite the second block by the first block

05/14/19 Heiko Paulheim 10

Data Access and Buffering

• Physical blocks are those blocks residing on the disk

• System buffer blocks are the blocks residing temporarily in main
memory

• Block movements between disk and main memory are initiated
through the following two operations:

– input(B) transfers the physical block B to main memory

– output(B) transfers the buffer block B to the disk, and replaces the
appropriate physical block there

• Simplifying assumption:

– each data item fits in, and is stored inside, a single block

05/14/19 Heiko Paulheim 11

Data Access and Buffering

• Each transaction Ti has its private work-area in which local copies of all
data items accessed and updated by it are kept

– Ti's local copy of a data item X is denoted by xi.

– BX denotes block containing X

• Transferring data items between system buffer blocks and its private work-
area done by:

– read(X) assigns the value of data item X to the local variable xi

– write(X) assigns the value of local variable xi to data item {X} in the buffer block

• Transactions

– Must perform input(X) before accessing X for the first time (subsequent reads
can be from local copy)

– The write(X) can be executed at any time before the transaction commits

• Note that output(BX) need not immediately follow write(X)

– system can perform the output operation when it deems fit

05/14/19 Heiko Paulheim 12

Data Access and Buffering

X

Y

A

B

x1

y1

buffer
Buffer Block A

Buffer Block B

input(A)

output(B)

read(X)

disk

work area
of T1

memory

write(Y)

05/14/19 Heiko Paulheim 13

Recovery and Atomicity

• How can we ensure atomicity despite failures?

– first output information describing the modification to stable storage

– then modify the database itself

• This is called a log-based recovery mechanism

• For the moment, we assume serial execution for simplicity

– parallel variants exist

05/14/19 Heiko Paulheim 14

Log-based Recovery

• A log is kept on stable storage

– sequence of log records

– maintains information about update activities on the database

• When transaction Ti starts, it registers itself by writing a record
 <Ti start>

 to the log

• Before Ti executes write(X), a log record is written
 <Ti, X, V1, V2>
where V1 is the value of X before the write (the old value), and V2 is the
value to be written to X (the new value)

• When Ti finishes it last statement, the log record <Ti commit> is written.

• Two approaches using logs

– Immediate database modification

– Deferred database modification

05/14/19 Heiko Paulheim 15

Database Modification

• The immediate modification scheme allows updates of an
uncommitted transaction to be made to the buffer, or the disk itself,
before the transaction commits

– Update log record must be written before a database item is written

• we assume that the log record is output immediately to stable storage

• however, it is possible to postpone log record output to some extent

– Output of updated blocks to disk storage can take place at any time before
or after transaction commit

– Order in which blocks are output can be different from the order in which
they are written

• The deferred modification scheme performs updates to buffer/disk
only at the time of transaction commit

• simplifies some aspects of recovery

• but has overhead of storing local copy

• For the moment, we only consider the immediate modification scheme

05/14/19 Heiko Paulheim 16

Transaction Commit

• A transaction is said to have committed when its commit log record
is output to stable storage

– All previous log records of the transaction must have been output
already

• Writes performed by a transaction may still be in the buffer when
the transaction commits

– and may be output later

05/14/19 Heiko Paulheim 17

Immediate Database Modification Example

Log Write Output

<T0 start>

<T0, A, 1000, 950>
<To, B, 2000, 2050>
 A = 950
 B = 2050

<T0 commit>

<T1 start>
<T1, C, 700, 600>
 C = 600
 BB , BC

<T1 commit>
 BA

• Note: BX denotes block containing X

BC output before
T1 commits

BA output after T0

commits

05/14/19 Heiko Paulheim 18

Undo and Redo Operations

• Undo of a log record <Ti, X, V1, V2> writes the old value V1 to X

• Redo of a log record <Ti, X, V1, V2> writes the new value V2 to X

• Undo and Redo of Transactions

– undo(Ti) restores the value of all data items updated by Ti to their old
values, going backwards from the last log record for Ti

• Each time a data item X is restored to its old value V a special log
record (called redo-only) <Ti , X, V> is written out

• When undo of a transaction is complete, a log record
<Ti abort> is written out (to indicate that the undo was completed)

– redo(Ti) sets the value of all data items updated by Ti to the new values,
going forward from the first log record for Ti

• No logging is done in this case

05/14/19 Heiko Paulheim 19

Undo and Redo Operations

• undo and redo operations are used in several different
circumstances:

• undo is used

– for transaction rollback during normal operation (in case a transaction
cannot complete its execution due to some logical error)

• undo and redo operations are used during recovery from failure

– We need to deal with the case where during recovery from failure,
another failure occurs prior to the system having fully recovered

05/14/19 Heiko Paulheim 20

Transaction Rollback

• Let Ti be the transaction to be rolled back

• Scan log backwards from the end, and for each log record of Ti of
the form <Ti, Xj, V1, V2>

– Perform the undo by writing V1 to Xj,

– Write a log record <Ti , Xj, V1>

• such log records are called compensation log records

• Once the record <Ti start> is found stop the scan and write the log
record <Ti abort>

05/14/19 Heiko Paulheim 21

Recovering from Failure

• When recovering after failure:

– Transaction Ti needs to be undone if the log

• contains the record <Ti start>,

• but does not contain either the record <Ti commit> or <Ti abort>

– Transaction Ti needs to be redone if the log

• contains the records <Ti start>

• and contains the record <Ti commit> or <Ti abort>

• Why redo transaction Ti if the case of <Ti abort>?

– for <Ti abort>, there are also redo-only records for the undo operation

– the end result will be to undo Ti 's modifications in this case

– redo all original actions including the steps that restored the old value

• known as repeating history

– simplifies the recovery algorithm, enables faster overall recovery time

05/14/19 Heiko Paulheim 22

Examples for Immediate Recovery

● Below we show the log as it appears at three instances of time:

● Recovery actions in each case above are:

(a) undo (T0): B is restored to 2000 and A to 1000, and log records
<T0, B, 2000>, <T0, A, 1000>, <T0, abort> are written out

(b) redo (T0) and undo (T1): A and B are set to 950 and 2050 and C is restored
to 700. Log records <T1, C, 700>, <T1, abort> are written out

(c) redo (T0) and redo (T1): A and B are set to 950 and 2050
respectively. Then C is set to 600

05/14/19 Heiko Paulheim 23

Checkpoints

• Redoing/undoing all transactions recorded in the log can be very slow
– Processing the entire log is time-consuming if the system has run for a

long time

– We might unnecessarily redo transactions which have already output their
updates to the database

• Streamline recovery procedure by periodically performing
checkpointing
– All updates are stopped while doing checkpointing

• Output all log records currently residing in main memory onto stable
storage

• Output all modified buffer blocks to the disk

• Write a log record <checkpoint L> onto stable storage where L is a list
of all transactions active at the time of checkpoint

05/14/19 Heiko Paulheim 24

Checkpoints

• During recovery we need to consider only the most recent
transaction Ti that started before the checkpoint, and transactions
that started after Ti

– Scan backwards from end of log to find the most recent <checkpoint L>
record

– Only transactions that are in L or started after the checkpoint need to be
redone or undone

• Transactions that committed or aborted before the checkpoint
already have all their updates output to stable storage

– Some earlier part of the log may be needed for undo operations

– Continue scanning backwards till a record <Ti start> is found for every
transaction Ti in L

– Parts of log prior to earliest <Ti start> record above are not needed for
recovery, and can be erased whenever desired

•

•

05/14/19 Heiko Paulheim 25

Checkpoints

• T1 can be ignored

– updates have already been output to disk due to checkpoint

• T2 and T3 are redone

• T4 is undone

Tc
Tf

T1

T2

T3

T4

checkpoint system failure

05/14/19 Heiko Paulheim 26

The Recovery Algorithm

• Logging (during normal operation):

<Ti start> at transaction start

<Ti, Xj, V1, V2> for each update, and

<Ti commit> at transaction end

• Transaction rollback (during normal operation)

– Let Ti be the transaction to be rolled back

– Scan log backwards from the end, and for each log record of Ti of the
form <Ti, Xj, V1, V2>

• perform the undo by writing V1 to Xj,

• write a log record <Ti , Xj, V1>

• such log records are called compensation log records

– Once the record <Ti start> is found

• stop the scan and write the log record <Ti abort>

05/14/19 Heiko Paulheim 27

The Recovery Algorithm

• Recovery from failure: Two phases

– Redo phase: replay updates of all transactions, whether they
committed, aborted, or are incomplete

– Undo phase: undo all incomplete transactions

05/14/19 Heiko Paulheim 28

The Recovery Algorithm

• Redo phase:

– Find last <checkpoint L> record, and set undo-list to L.

– Scan forward from above <checkpoint L> record

• Whenever a record <Ti, Xj, V1, V2> is found,
– redo it by writing V2 to Xj

• Whenever a log record <Ti start> is found

– add Ti to undo-list

• Whenever a log record <Ti commit> or <Ti abort> is found

– remove Ti from undo-list

05/14/19 Heiko Paulheim 29

The Recovery Algorithm

• Undo phase:

– Scan log backwards from end

– When a log record <Ti, Xj, V1, V2> is found where Ti is in undo-list

• perform same actions as for transaction rollback:
– perform undo by writing V1 to Xj.

– write a log record <Ti , Xj, V1>

– When a log record <Ti start> is found where Ti is in undo-list

• Write a log record <Ti abort>

• Remove Ti from undo-list

– Stop when undo-list is empty
– i.e.,<Ti start> has been found for every transaction in undo-list

• After undo phase completes, normal transaction processing can
commence

05/14/19 Heiko Paulheim 30

Recovery Example

05/14/19 Heiko Paulheim 31

Log Record Buffering

• Log record buffering:

– log records are buffered in main memory

– instead of of being output directly to stable storage

• Log records are output to stable storage

– when a block of log records in the buffer is full

– or a log force operation is executed

• Log force is performed to commit a transaction

– by forcing all its log records (including the commit record) to stable
storage

– Several log records can thus be output using a single output operation,
reducing the I/O cost

05/14/19 Heiko Paulheim 32

Log Record Buffering & Write-Ahead Logging

• The rules below must be followed if log records are buffered:

– Log records are output to stable storage in the order of creation

– Transaction Ti enters the commit state only when the log record
<Ti commit> has been output to stable storage

– Before a block of data in main memory is output to the database, all log
records pertaining to data in that block must have been output to stable
storage

• This rule is called the write-ahead logging or WAL rule

05/14/19 Heiko Paulheim 33

Fuzzy Checkpointing

• To avoid long interruption of normal processing during checkpointing,
allow updates to happen during checkpointing

• Fuzzy checkpointing is done as follows:
– Temporarily stop all updates by transactions

– Write a <checkpoint L> log record and force log to stable storage

– Note list M of modified buffer blocks

– Now permit transactions to proceed with their actions

– Output to disk all modified buffer blocks in list M

• blocks should not be updated while being output

• Follow WAL: all log records pertaining to a block must be output
before the block is output

– Store a pointer to the checkpoint record in a fixed position last_checkpoint
on disk

05/14/19 Heiko Paulheim 34

Fuzzy Checkpointing

• When recovering using a fuzzy checkpoint, start scan from the
checkpoint record pointed to by last_checkpoint

– Log records before last_checkpoint have their updates
reflected in database on disk, and need not be redone

– Incomplete checkpoints, where system had crashed while
performing checkpoint, are handled safely

……
<checkpoint L>

…..
<checkpoint L>

…..

Log

last_checkpoint

05/14/19 Heiko Paulheim 35

Failure with Loss of Non-volatile Storage

• So far we assumed no loss of non-volatile storage

• Technique similar to checkpointing used to deal with loss of non-volatile
storage

– Periodically dump the entire content of the database to stable
storage

– No transaction may be active during the dump procedure

– a procedure similar to checkpointing must take place

• Output all log records currently in main memory onto stable storage

– Output all buffer blocks onto the disk

– Copy the contents of the database to stable storage

– Output a record <dump> to log on stable storage

05/14/19 Heiko Paulheim 36

Recovery from Failure of Non-volatile Storage

• To recover from disk failure

– restore database from most recent dump

– consult the log and redo all transactions that committed after the
dump

• Can be extended to allow transactions to be active during dump;
known as fuzzy dump or online dump

– Similar to fuzzy checkpointing

05/14/19 Heiko Paulheim 37

Remote Backup Systems

• Risk minimization:

– allowing transaction processing to continue even if the primary site is
destroyed

05/14/19 Heiko Paulheim 38

Remote Backup Systems

• Detection of failure:
– Backup site must detect when primary site has failed

– to distinguish primary site failure from link failure:
maintain several communication links in between

– Heart-beat messages

• Transfer of control:
– To take over control backup site first performs recovery using its copy of

the database and all the log records it has received from the primary

• i.e., completed transactions are redone and incomplete transactions
are rolled back

– When the backup site takes over processing it becomes the new primary

– To transfer control back to old primary when it recovers

• old primary must receive redo logs from the old backup and apply all
updates locally

05/14/19 Heiko Paulheim 39

Remote Backup Systems

• Time to recover – reduce delay in takeover
– backup site periodically processes the redo log records

• i.e., performs recovery from previous database state

– performs a checkpoint, and can then delete earlier parts of the log

• Hot-Spare configuration permits very fast takeover:
– Backup continually processes redo log records as they arrive

• applying the updates locally

– When failure of the primary is detected

• the backup rolls back incomplete transactions

• and is ready to process new transactions

• Alternative to remote backup: distributed database with replicated
data
– Remote backup is faster and cheaper, but less tolerant to failure

05/14/19 Heiko Paulheim 40

Remote Backup Systems

• Ensure durability of updates by delaying transaction commit
– until update is logged at backup

– avoid this delay by permitting lower degrees of durability

• One-safe: commit as soon as transaction’s commit log record is
written at primary
– Problem: updates may not arrive at backup before it takes over

• Two-very-safe: commit when transaction’s commit log record is
written at primary and backup
– Reduces availability since transactions cannot commit if either site fails

• Two-safe: proceed as in two-very-safe if both primary and backup are
active
– If only the primary is active, the transaction commits as soon as is commit

log record is written at the primary

– Better availability than two-very-safe

– avoids problem of lost transactions in one-safe

05/14/19 Heiko Paulheim 41

Concurrency Control and Recovery

• All transactions share a single disk buffer and a single log

– A buffer block can have data items updated by one or more transactions

• Log records of different transactions may be interspersed in the log

• We assume that if a transaction Ti has modified an item, no other
transaction can modify the same item until Ti has committed or
aborted

– i.e. the updates of uncommitted transactions should not be visible to
other transactions

• otherwise, how do we perform undo if T1 updates A, then T2
updates A and commits, and finally T1 has to abort?

– can be ensured by obtaining exclusive locks on updated items and
holding the locks till end of transaction (strict two-phase locking)

05/14/19 Heiko Paulheim 42

Data Access and Buffering (revisited)

X

Y

A

B

x1

y1

buffer
Buffer Block A

Buffer Block B

input(A)

output(B)

read(X)
write(Y)

disk

work area
of T1

work area
of T2

memory

x2

05/14/19 Heiko Paulheim 43

Summary

• Recovery ensures consistency of the database

– handles rollbacks

– takes care of setting the database back to operation after failures

• Mechanisms

– Logs: write ahead (write log first, then write data)

– Checkpoints

• Trade off between normal and recovery performance

– e.g., by using fuzzy checkpoints

• Remote backup

– distribution of risk

• Recovery and Concurrency

05/14/19 Heiko Paulheim 44

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Questions?

