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Data Base Management Systems (DBMS)

• DBMS contains information about a particular enterprise

– Collection of interrelated data

– Set of programs to access the data 

– An environment that is both convenient and efficient to use

• Database Applications:

– Banking: transactions

– Airlines: reservations, schedules

– Universities:  registration, grades

– Sales: customers, products, purchases

– Online retailers: order tracking, customized recommendations

– Manufacturing: production, inventory, orders, supply chain

– Human resources:  employee records, salaries, tax deductions

• Databases can be very large

• Databases touch all aspects of our lives
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University Database Example

• Application program examples

– Add new students, instructors, and courses

– Register students for courses, and generate time tables

– Assign grades to students, compute grade point averages (GPA) and 
generate transcripts

• In the early days, database applications were built directly on top of 
file systems

Data Files

Application
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Drawbacks of Using File Systems to Store Data

• Data redundancy and inconsistency

– Multiple file formats, duplication of information in different files

• Difficulty in accessing data 

– Need to write a new program to carry out each new task

• Data isolation 

– Multiple files and formats

• Integrity problems

– Integrity constraints  (e.g., GPA > 0) become “buried” in program code 
rather than being stated explicitly

– Hard to add new constraints or change existing ones
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Drawbacks of Using File Systems to Store Data

• Atomicity of updates

– Failures may leave database in an inconsistent state with partial 
updates carried out

– Example: Transfer of funds from one account to another should either 
complete or not happen at all

• Concurrent access by multiple users

– Concurrent access needed for performance

– Uncontrolled concurrent accesses can lead to inconsistencies

– Example: Two people reading a balance (say 100) and updating it by 
withdrawing money (say 50 each) at the same time

• Security problems

– Hard to provide user access to some, but not all, data
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Data Consistency: Example

• File system: one file per lecture

• Change of E-Mail address

– Needs to be changed in all the files

– If we forget one, the data becomes inconsistent

• Problem: E-Mail is stored redundantly

– i.e., once per lecture

Lecture: Database Technology
Instructor: Heiko Paulheim
E-Mail: heiko@informatik.uni-mannheim.de
...
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Data Integrity: Example

• Example: ZIP code has to be a five digit number

• As a developer, would you prefer

– Adding a single check in each part of the application
where a ZIP code is entered

• student applications

• contracts with employees

• travel reimbursement

• …

– Adding the check at a single point 
(i.e., before the data is written into the database)
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Atomicity of Updates: Example

• Example piece of (pseudo) code: retiring a lecturer

Prof. Smith
Dr. Stevens
Prof. Miller

Dr. Hawkins
Prof. Brown
Prof. Wilson

File: active lecturers File: retired lecturers

Delete from file: active lecturers

Add to file: retired lecturers

Computer crashes here
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Concurrency: Example

• Example: register for a course if there are places left

Read num_current_participants 
from file

If num_current_participants 
< limit

Then
add participant to file

Read num_current_participants 
from file

If num_current_participants 
< limit

Then
add participant to file

User 1

User 2
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Idea of Database Management Systems

• Introduce a level of abstraction

• Handle issues of…

– consistency

– integrity

– transaction atomicity

– concurrency

– security

– …

• ...in a centralized fashion

Data Files

Application

DBMS
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Levels of Abstraction

• Physical level: describes how a record (e.g., instructor) is stored

• Logical level: describes data stored in database, and the 
relationships among the data

type instructor = record

ID : string;
name : string;
dept_name : string;
salary : integer;

end;

• View level: application programs hide details of data types

– Views can also hide information (such as an employee’s salary) for 
security purposes
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Levels of Abstraction

• Architecture of a Database Management System

– Applications interact with different views

• Decoupling

– Physical level may be changed without changing the application

Physical Level

Logical Level

View Level

View 1 View 2 View n...
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Data Models

• A collection of tools for describing 

– Data 

– Data relationships

– Data semantics

– Data constraints

• Relational model

• Entity-Relationship data model (mainly for database design) 

• Object-based data models (Object-oriented and Object-relational)

• Semistructured data model  (XML)

• Other older models:

– Network model  

– Hierarchical model
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The Relational Model

• All data is stored in tables
Columns

Rows



2/12/20 Heiko Paulheim 16 

The Relational Model

• A database consists of multiple tables
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Data Definition Language (DDL)

• Specification notation for defining the database schema

Example: create table instructor (
                             ID                char(5),
                             name           varchar(20),
                             dept_name  varchar(20),
                             salary           numeric(8,2))

• DDL compiler generates a set of table templates stored in a data dictionary

• Data dictionary contains metadata (i.e., data about data)

– Database schema 

– Integrity constraints

– Primary key (ID uniquely identifies instructors)

– Authorization

• Who can access what
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Data Manipulation Language (DML)

• Language for accessing and manipulating the data organized by the 
appropriate data model

– DML also known as query language

• Two classes of languages 

– Pure – used for proving properties about computational power and for 
optimization

• Relational Algebra

• Tuple relational calculus

• Domain relational calculus

– Commercial – used in commercial systems

• SQL is the most widely used commercial language
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Structured Query Language (SQL)

• The most widely used commercial language

• SQL is NOT a Turing machine equivalent language

• To be able to compute complex functions, SQL is usually 
embedded in some higher-level language

• Application programs generally access databases through one of

– Language extensions to allow embedded SQL

– Application program interfaces (e.g., ODBC/JDBC) which allow SQL 
queries to be sent to a database
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Database Design

• Logical Design –  Deciding on the database schema

• Database design requires that we find a “good” collection of relation 
schemas

– Business decision – What attributes should we record in the database?

– Computer Science decision –  What relation schemas should we have 
and how should the attributes be distributed among the various relation 
schemas?

• Physical Design – Deciding on the physical layout of the database
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Database Design

• Is there any problem with this relation?
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Database Engines

• Essential building blocks of database engines

– Storage manager

– Query processor

– Transaction manager
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Storage Management

• Provides the interface between the low-level data stored in the 
database and the application programs and queries submitted to 
the system

• Tasks 

– Interaction with the OS file manager 

– Efficient storing, retrieving, 
and updating of data

• Issues:

– Storage access

– File organization

– Indexing and hashing

Data Files

Application

DBMS

Storage Management
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Query Processor

● Tasks
● Parsing and translation
● Optimization
● Evaluation



2/12/20 Heiko Paulheim 25 

Query Processor

• Alternative ways of evaluating a given query

– Evaluation order

– Equivalent expressions

– Different algorithms for each operation

• Cost difference between a good and a bad way of evaluating a 
query can be enormous

• Need to estimate the cost of operations

– Depends critically on statistical information about relations which the 
database must maintain

– Need to estimate statistics for intermediate results to compute cost of 
complex expressions
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Transaction Management

• What if the system fails?

• What if more than one user is concurrently updating the same data?

• Transaction
– a collection of operations

– that performs a single logical function in a database application

• Transaction management component 
– ensures that the database remains in a consistent (correct) state 

– despite system failures (e.g., power failures and system crashes) 

– transaction failures

• Concurrency control manager 
– controls the interaction among the concurrent transactions

– ensures the consistency of the database
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Database Users

• “Naive” users

– Use program interfaces, e.g., university portal

• Application programmers

– Write application programs

• Sophisticated users (e.g., analysts)

– Use query tools

– Create custom reports

• Database administrators

– Use administration tools

– May alter the database structure

– May grant and revoke rights
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Database System Internals

• Various levels of abstraction

– Users interact with tools

– Query processor interacts
with storage manager

– Storage manager interacts
with disk storage



2/12/20 Heiko Paulheim 29 

Database Architecture

● Design decisions of a database system and application:

– Centralized

– Client-server

– Parallel (multi-processor)

– Distributed     

• Each of those comes with its own requirements

• Needs different solutions, e.g., for security, concurrency handling, 
etc.
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History of Database Systems

• 1950s and early 1960s:

– Data processing using magnetic tapes for storage

– Tapes provided only sequential access

– Punched cards for input

• Late 1960s and 1970s:

– Hard disks allowed direct access to data

– Network and hierarchical data models in widespread use

– Ted Codd defines the relational data model

– Would win the ACM Turing Award for this work

– IBM Research begins System R prototype

– UC Berkeley begins Ingres prototype

– High-performance (for the era) transaction processing
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History of Database Systems

• 1980s:

– Research relational prototypes evolve into commercial systems

– SQL becomes industrial standard

– Parallel and distributed database systems

– Object-oriented database systems

• 1990s:

– Large decision support and data-mining applications

– Large multi-terabyte data warehouses

– Emergence of Web commerce

• Early 2000s:

– XML and XQuery standards

– Automated database administration

• Later 2000s:

– Giant data storage systems

– Google BigTable, Yahoo PNuts, Amazon, ..
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The Relational Model

• Recent past: much research on novel models

– graph databases, key value stores (NoSQL), …

– the relational model is still the most prevalent
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The Relational Model

• Recap: all data is stored in tables
Columns

Rows
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Attribute Values

• The set of allowed values for each attribute is called the domain of the 
attribute

• Attribute values are (normally) required to be atomic
– i.e., indivisible

– e.g., break down address into street, number, ZIP code, city, ...

• The special value null is a member of every domain
– indicates that the value is “unknown”

– The null value causes complications in the definition of many operations
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Atomic vs. Non-atomic Values

• Are the following attributes of a person atomic?

– Address

– Name

– Age

– Birth date

– Birth place

– Height

– Salary

– E-Mail address

• Typical database design question:

– Would you rather store the birth date, the age, or both?
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Relation Schema and Instance

• A1, A2, …, An are attributes

• R = (A1, A2, …, An ) is a relation schema

• Example:

     instructor  = (ID,  name, dept_name, salary)

• Formally, given domains D1, D2, …. Dn, a relation r is a subset of 

        D1 x  D2  x … x Dn

• Thus, a relation is a set of n-tuples (a1, a2, …, an) 

where each ai   Di

• The current values (relation instance) of a relation are specified by a table

• An element t of r is a tuple, represented by a row in a table
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Order of Tuples

• We consider relations as sets

– i.e., order of tuples is irrelevant (may be stored in an arbitrary order)

• Example: instructor relation with unordered tuples



2/12/20 Heiko Paulheim 38 

Keys

• Let K  R

• K is a superkey of R if values for K are sufficient to identify a unique 
tuple of each possible relation r(R) 

– Example:  {ID} and {ID,name} are both superkeys of instructor.

• Superkey K is a candidate key if K is minimal

– Example:  {ID} is a candidate key for Instructor

• One of the candidate keys is selected to be the primary key.

– which one?

• Foreign key constraint: Value in one relation must appear in another

– Referencing relation

– Referenced relation

– Example – dept_name in instructor is a foreign key from instructor 
referencing department
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Example University Database
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Relational Query Languages

• Procedural vs. non-procedural, or declarative

• “Pure” languages:

– Relational algebra

– Tuple relational calculus

– Domain relational calculus

• The above 3 pure languages are equivalent in computing power

• We will concentrate on relational algebra

– Not Turing machine equivalent

– consists of six basic operations
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Selection of Rows (Tuples)

• Relation r

• A=B ^ D > 5 (r)
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Projection (Selection of Columns)

• Relation r

• A,C (r)

Remember:
Relations are sets
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Projection with Renaming

• Relation r

• A,D←C (r)
D D



2/12/20 Heiko Paulheim 44 

Union of Two Relations

• Relations r,s

• r  s:
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Set Difference of Two Relations

• Relations r,s

• r – s
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Set Intersection of Two Relations

• Relations r,s

• r  s

• Note: r  s = r – (r – s) = s – (s – r)



2/12/20 Heiko Paulheim 47 

Cartesian Product (Joining Two Relations)

• Relations r,s

• r x s



2/12/20 Heiko Paulheim 48 

Cartesian Product: Naming Issue

• Relations r,s

• r x s

B

r.B s.B
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Renaming Relations

• Allows us to refer to a relation, (say E) by more than one name.

–  x (E) returns the expression E under the name X

• Useful, e.g., for joining a table with itself

• Relation r

• r x  s (r)

α
α
β
β

1
1
2
2

α
β
α
β

1
2
1
2

r.A  r.B  s.A  s.B
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Composition of Operations

• Can build expressions using multiple operations

• Example:  A=C (r x s)

• Relations r,s

• A=C (r x s)
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Natural Join

• Let r and s be relations on schemas R and S respectively. 

• Then,  the “natural join”  of relations R and S is a relation on 
schema R  S obtained as follows:

– Consider each pair of tuples tr  from r and ts from s.  

– If tr and ts have the same value on each of the attributes in R  S, add a 
tuple t  to the result, where

• t has the same value as tr  on r

• t has the same value as ts  on s
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Natural Join

• Relations r,s 

• Natural Join r     s

 A, r.B, C, r.D, E ( r.B = s.B ˄ r.D = s.D  (r x s)))
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Natural Joins

• Natural Joins are frequently used

• e.g., list all instructors with their building
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Notes on the Relational Model

• Each Query input is a table (or set of tables)

• Each query output is a table.

• All data in the output table appears in one of the input tables

• Relational Algebra is not Turing complete

• e.g., we cannot compute

– SUM

– AVG

– MAX

– MIN
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Summary on Relational Algebra Operators

  Symbol (Name)                  Example of Use

  (Selection)                         σ salary > = 85000 (instructor)
σ

Return rows of the input relation that satisfy the predicate.

Π
  (Projection)                          Π ID, salary (instructor)

Output specified attributes from all rows of the input relation.  Remove 
duplicate tuples from the output.

 x
 (Cartesian Product)  instructor x  department

Output all possible combinations of tuples from both relations.

 ∪
 (Union)  Π name (instructor)  ∪  Π name (student)

Output the union of tuples from the two input relations.

 (Natural Join)  instructor ⋈  department

Output pairs of rows from the two input relations that have the same 
value on all attributes that have the same name.

 ⋈

 -
 (Set Difference)  Π name (instructor)  –  Π name (student)

Output the set difference of tuples from the two input relations. 



2/12/20 Heiko Paulheim 56 

Summary

• Database Management Systems are an abstraction layer

• Applications do not have to interact directly with the file system

• DBMS offer services including

– Checking consistency

– Ensuring integrity

– Security

– Handing concurrent data access
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Summary

• Relational databases are composed of tables (relations)

• Tables can be understood as sets

• Sometimes, we need a combination of values from different tables

– e.g., all employees with their building

– e.g., all courses attended by a particular student

• The results of those are tables

– Not necessarily the tables in the database

– But: all values in the result tables are contained in the database

• With relational algebra, we transform tables into new tables

– And hopefully get our results...
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Questions?
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