
Database Technology
Introduction

Heiko Paulheim

2/12/20 Heiko Paulheim 2

Outline

• The Need for Databases

• Data Models

• Relational Databases

• Database Design

• Storage Manager

• Query Processing

• Transaction Manager

• Introduction to the Relational Model

2/12/20 Heiko Paulheim 3

Data Base Management Systems (DBMS)

• DBMS contains information about a particular enterprise

– Collection of interrelated data

– Set of programs to access the data

– An environment that is both convenient and efficient to use

• Database Applications:

– Banking: transactions

– Airlines: reservations, schedules

– Universities: registration, grades

– Sales: customers, products, purchases

– Online retailers: order tracking, customized recommendations

– Manufacturing: production, inventory, orders, supply chain

– Human resources: employee records, salaries, tax deductions

• Databases can be very large

• Databases touch all aspects of our lives

2/12/20 Heiko Paulheim 4

University Database Example

• Application program examples

– Add new students, instructors, and courses

– Register students for courses, and generate time tables

– Assign grades to students, compute grade point averages (GPA) and
generate transcripts

• In the early days, database applications were built directly on top of
file systems

Data Files

Application

2/12/20 Heiko Paulheim 5

Drawbacks of Using File Systems to Store Data

• Data redundancy and inconsistency

– Multiple file formats, duplication of information in different files

• Difficulty in accessing data

– Need to write a new program to carry out each new task

• Data isolation

– Multiple files and formats

• Integrity problems

– Integrity constraints (e.g., GPA > 0) become “buried” in program code
rather than being stated explicitly

– Hard to add new constraints or change existing ones

2/12/20 Heiko Paulheim 6

Drawbacks of Using File Systems to Store Data

• Atomicity of updates

– Failures may leave database in an inconsistent state with partial
updates carried out

– Example: Transfer of funds from one account to another should either
complete or not happen at all

• Concurrent access by multiple users

– Concurrent access needed for performance

– Uncontrolled concurrent accesses can lead to inconsistencies

– Example: Two people reading a balance (say 100) and updating it by
withdrawing money (say 50 each) at the same time

• Security problems

– Hard to provide user access to some, but not all, data

2/12/20 Heiko Paulheim 7

Data Consistency: Example

• File system: one file per lecture

• Change of E-Mail address

– Needs to be changed in all the files

– If we forget one, the data becomes inconsistent

• Problem: E-Mail is stored redundantly

– i.e., once per lecture

Lecture: Database Technology
Instructor: Heiko Paulheim
E-Mail: heiko@informatik.uni-mannheim.de
...

2/12/20 Heiko Paulheim 8

Data Integrity: Example

• Example: ZIP code has to be a five digit number

• As a developer, would you prefer

– Adding a single check in each part of the application
where a ZIP code is entered

• student applications

• contracts with employees

• travel reimbursement

• …

– Adding the check at a single point
(i.e., before the data is written into the database)

2/12/20 Heiko Paulheim 9

Atomicity of Updates: Example

• Example piece of (pseudo) code: retiring a lecturer

Prof. Smith
Dr. Stevens
Prof. Miller

Dr. Hawkins
Prof. Brown
Prof. Wilson

File: active lecturers File: retired lecturers

Delete from file: active lecturers

Add to file: retired lecturers

Computer crashes here

2/12/20 Heiko Paulheim 10

Concurrency: Example

• Example: register for a course if there are places left

Read num_current_participants
from file

If num_current_participants
< limit

Then
add participant to file

Read num_current_participants
from file

If num_current_participants
< limit

Then
add participant to file

User 1

User 2

2/12/20 Heiko Paulheim 11

Idea of Database Management Systems

• Introduce a level of abstraction

• Handle issues of…

– consistency

– integrity

– transaction atomicity

– concurrency

– security

– …

• ...in a centralized fashion

Data Files

Application

DBMS

2/12/20 Heiko Paulheim 12

Levels of Abstraction

• Physical level: describes how a record (e.g., instructor) is stored

• Logical level: describes data stored in database, and the
relationships among the data

type instructor = record

ID : string;
name : string;
dept_name : string;
salary : integer;

end;

• View level: application programs hide details of data types

– Views can also hide information (such as an employee’s salary) for
security purposes

2/12/20 Heiko Paulheim 13

Levels of Abstraction

• Architecture of a Database Management System

– Applications interact with different views

• Decoupling

– Physical level may be changed without changing the application

Physical Level

Logical Level

View Level

View 1 View 2 View n...

2/12/20 Heiko Paulheim 14

Data Models

• A collection of tools for describing

– Data

– Data relationships

– Data semantics

– Data constraints

• Relational model

• Entity-Relationship data model (mainly for database design)

• Object-based data models (Object-oriented and Object-relational)

• Semistructured data model (XML)

• Other older models:

– Network model

– Hierarchical model

2/12/20 Heiko Paulheim 15

The Relational Model

• All data is stored in tables
Columns

Rows

2/12/20 Heiko Paulheim 16

The Relational Model

• A database consists of multiple tables

2/12/20 Heiko Paulheim 17

Data Definition Language (DDL)

• Specification notation for defining the database schema

Example: create table instructor (
 ID char(5),
 name varchar(20),
 dept_name varchar(20),
 salary numeric(8,2))

• DDL compiler generates a set of table templates stored in a data dictionary

• Data dictionary contains metadata (i.e., data about data)

– Database schema

– Integrity constraints

– Primary key (ID uniquely identifies instructors)

– Authorization

• Who can access what

2/12/20 Heiko Paulheim 18

Data Manipulation Language (DML)

• Language for accessing and manipulating the data organized by the
appropriate data model

– DML also known as query language

• Two classes of languages

– Pure – used for proving properties about computational power and for
optimization

• Relational Algebra

• Tuple relational calculus

• Domain relational calculus

– Commercial – used in commercial systems

• SQL is the most widely used commercial language

2/12/20 Heiko Paulheim 19

Structured Query Language (SQL)

• The most widely used commercial language

• SQL is NOT a Turing machine equivalent language

• To be able to compute complex functions, SQL is usually
embedded in some higher-level language

• Application programs generally access databases through one of

– Language extensions to allow embedded SQL

– Application program interfaces (e.g., ODBC/JDBC) which allow SQL
queries to be sent to a database

2/12/20 Heiko Paulheim 20

Database Design

• Logical Design – Deciding on the database schema

• Database design requires that we find a “good” collection of relation
schemas

– Business decision – What attributes should we record in the database?

– Computer Science decision – What relation schemas should we have
and how should the attributes be distributed among the various relation
schemas?

• Physical Design – Deciding on the physical layout of the database

2/12/20 Heiko Paulheim 21

Database Design

• Is there any problem with this relation?

2/12/20 Heiko Paulheim 22

Database Engines

• Essential building blocks of database engines

– Storage manager

– Query processor

– Transaction manager

2/12/20 Heiko Paulheim 23

Storage Management

• Provides the interface between the low-level data stored in the
database and the application programs and queries submitted to
the system

• Tasks

– Interaction with the OS file manager

– Efficient storing, retrieving,
and updating of data

• Issues:

– Storage access

– File organization

– Indexing and hashing

Data Files

Application

DBMS

Storage Management

2/12/20 Heiko Paulheim 24

Query Processor

● Tasks
● Parsing and translation
● Optimization
● Evaluation

2/12/20 Heiko Paulheim 25

Query Processor

• Alternative ways of evaluating a given query

– Evaluation order

– Equivalent expressions

– Different algorithms for each operation

• Cost difference between a good and a bad way of evaluating a
query can be enormous

• Need to estimate the cost of operations

– Depends critically on statistical information about relations which the
database must maintain

– Need to estimate statistics for intermediate results to compute cost of
complex expressions

2/12/20 Heiko Paulheim 26

Transaction Management

• What if the system fails?

• What if more than one user is concurrently updating the same data?

• Transaction
– a collection of operations

– that performs a single logical function in a database application

• Transaction management component
– ensures that the database remains in a consistent (correct) state

– despite system failures (e.g., power failures and system crashes)

– transaction failures

• Concurrency control manager
– controls the interaction among the concurrent transactions

– ensures the consistency of the database

2/12/20 Heiko Paulheim 27

Database Users

• “Naive” users

– Use program interfaces, e.g., university portal

• Application programmers

– Write application programs

• Sophisticated users (e.g., analysts)

– Use query tools

– Create custom reports

• Database administrators

– Use administration tools

– May alter the database structure

– May grant and revoke rights

2/12/20 Heiko Paulheim 28

Database System Internals

• Various levels of abstraction

– Users interact with tools

– Query processor interacts
with storage manager

– Storage manager interacts
with disk storage

2/12/20 Heiko Paulheim 29

Database Architecture

● Design decisions of a database system and application:

– Centralized

– Client-server

– Parallel (multi-processor)

– Distributed

• Each of those comes with its own requirements

• Needs different solutions, e.g., for security, concurrency handling,
etc.

2/12/20 Heiko Paulheim 30

History of Database Systems

• 1950s and early 1960s:

– Data processing using magnetic tapes for storage

– Tapes provided only sequential access

– Punched cards for input

• Late 1960s and 1970s:

– Hard disks allowed direct access to data

– Network and hierarchical data models in widespread use

– Ted Codd defines the relational data model

– Would win the ACM Turing Award for this work

– IBM Research begins System R prototype

– UC Berkeley begins Ingres prototype

– High-performance (for the era) transaction processing

2/12/20 Heiko Paulheim 31

History of Database Systems

• 1980s:

– Research relational prototypes evolve into commercial systems

– SQL becomes industrial standard

– Parallel and distributed database systems

– Object-oriented database systems

• 1990s:

– Large decision support and data-mining applications

– Large multi-terabyte data warehouses

– Emergence of Web commerce

• Early 2000s:

– XML and XQuery standards

– Automated database administration

• Later 2000s:

– Giant data storage systems

– Google BigTable, Yahoo PNuts, Amazon, ..

2/12/20 Heiko Paulheim 32

The Relational Model

• Recent past: much research on novel models

– graph databases, key value stores (NoSQL), …

– the relational model is still the most prevalent

2/12/20 Heiko Paulheim 33

The Relational Model

• Recap: all data is stored in tables
Columns

Rows

2/12/20 Heiko Paulheim 34

Attribute Values

• The set of allowed values for each attribute is called the domain of the
attribute

• Attribute values are (normally) required to be atomic
– i.e., indivisible

– e.g., break down address into street, number, ZIP code, city, ...

• The special value null is a member of every domain
– indicates that the value is “unknown”

– The null value causes complications in the definition of many operations

2/12/20 Heiko Paulheim 35

Atomic vs. Non-atomic Values

• Are the following attributes of a person atomic?

– Address

– Name

– Age

– Birth date

– Birth place

– Height

– Salary

– E-Mail address

• Typical database design question:

– Would you rather store the birth date, the age, or both?

2/12/20 Heiko Paulheim 36

Relation Schema and Instance

• A1, A2, …, An are attributes

• R = (A1, A2, …, An) is a relation schema

• Example:

 instructor = (ID, name, dept_name, salary)

• Formally, given domains D1, D2, …. Dn, a relation r is a subset of

 D1 x D2 x … x Dn

• Thus, a relation is a set of n-tuples (a1, a2, …, an)

where each ai  Di

• The current values (relation instance) of a relation are specified by a table

• An element t of r is a tuple, represented by a row in a table

2/12/20 Heiko Paulheim 37

Order of Tuples

• We consider relations as sets

– i.e., order of tuples is irrelevant (may be stored in an arbitrary order)

• Example: instructor relation with unordered tuples

2/12/20 Heiko Paulheim 38

Keys

• Let K  R

• K is a superkey of R if values for K are sufficient to identify a unique
tuple of each possible relation r(R)

– Example: {ID} and {ID,name} are both superkeys of instructor.

• Superkey K is a candidate key if K is minimal

– Example: {ID} is a candidate key for Instructor

• One of the candidate keys is selected to be the primary key.

– which one?

• Foreign key constraint: Value in one relation must appear in another

– Referencing relation

– Referenced relation

– Example – dept_name in instructor is a foreign key from instructor
referencing department

2/12/20 Heiko Paulheim 39

Example University Database

2/12/20 Heiko Paulheim 40

Relational Query Languages

• Procedural vs. non-procedural, or declarative

• “Pure” languages:

– Relational algebra

– Tuple relational calculus

– Domain relational calculus

• The above 3 pure languages are equivalent in computing power

• We will concentrate on relational algebra

– Not Turing machine equivalent

– consists of six basic operations

2/12/20 Heiko Paulheim 41

Selection of Rows (Tuples)

• Relation r

• A=B ^ D > 5 (r)

2/12/20 Heiko Paulheim 42

Projection (Selection of Columns)

• Relation r

• A,C (r)

Remember:
Relations are sets

2/12/20 Heiko Paulheim 43

Projection with Renaming

• Relation r

• A,D←C (r)
D D

2/12/20 Heiko Paulheim 44

Union of Two Relations

• Relations r,s

• r  s:

2/12/20 Heiko Paulheim 45

Set Difference of Two Relations

• Relations r,s

• r – s

2/12/20 Heiko Paulheim 46

Set Intersection of Two Relations

• Relations r,s

• r  s

• Note: r  s = r – (r – s) = s – (s – r)

2/12/20 Heiko Paulheim 47

Cartesian Product (Joining Two Relations)

• Relations r,s

• r x s

2/12/20 Heiko Paulheim 48

Cartesian Product: Naming Issue

• Relations r,s

• r x s

B

r.B s.B

2/12/20 Heiko Paulheim 49

Renaming Relations

• Allows us to refer to a relation, (say E) by more than one name.

–  x (E) returns the expression E under the name X

• Useful, e.g., for joining a table with itself

• Relation r

• r x  s (r)

α
α
β
β

1
1
2
2

α
β
α
β

1
2
1
2

r.A r.B s.A s.B

2/12/20 Heiko Paulheim 50

Composition of Operations

• Can build expressions using multiple operations

• Example: A=C (r x s)

• Relations r,s

• A=C (r x s)

2/12/20 Heiko Paulheim 51

Natural Join

• Let r and s be relations on schemas R and S respectively.

• Then, the “natural join” of relations R and S is a relation on
schema R  S obtained as follows:

– Consider each pair of tuples tr from r and ts from s.

– If tr and ts have the same value on each of the attributes in R  S, add a
tuple t to the result, where

• t has the same value as tr on r

• t has the same value as ts on s

2/12/20 Heiko Paulheim 52

Natural Join

• Relations r,s

• Natural Join r s

 A, r.B, C, r.D, E ( r.B = s.B ˄ r.D = s.D (r x s)))

2/12/20 Heiko Paulheim 53

Natural Joins

• Natural Joins are frequently used

• e.g., list all instructors with their building

2/12/20 Heiko Paulheim 54

Notes on the Relational Model

• Each Query input is a table (or set of tables)

• Each query output is a table.

• All data in the output table appears in one of the input tables

• Relational Algebra is not Turing complete

• e.g., we cannot compute

– SUM

– AVG

– MAX

– MIN

2/12/20 Heiko Paulheim 55

Summary on Relational Algebra Operators

 Symbol (Name) Example of Use

 (Selection) σ salary > = 85000 (instructor)
σ

Return rows of the input relation that satisfy the predicate.

Π
 (Projection) Π ID, salary (instructor)

Output specified attributes from all rows of the input relation. Remove
duplicate tuples from the output.

 x
 (Cartesian Product) instructor x department

Output all possible combinations of tuples from both relations.

 ∪
 (Union) Π name (instructor) ∪ Π name (student)

Output the union of tuples from the two input relations.

 (Natural Join) instructor ⋈ department

Output pairs of rows from the two input relations that have the same
value on all attributes that have the same name.

 ⋈

 -
 (Set Difference) Π name (instructor) – Π name (student)

Output the set difference of tuples from the two input relations.

2/12/20 Heiko Paulheim 56

Summary

• Database Management Systems are an abstraction layer

• Applications do not have to interact directly with the file system

• DBMS offer services including

– Checking consistency

– Ensuring integrity

– Security

– Handing concurrent data access

2/12/20 Heiko Paulheim 57

Summary

• Relational databases are composed of tables (relations)

• Tables can be understood as sets

• Sometimes, we need a combination of values from different tables

– e.g., all employees with their building

– e.g., all courses attended by a particular student

• The results of those are tables

– Not necessarily the tables in the database

– But: all values in the result tables are contained in the database

• With relational algebra, we transform tables into new tables

– And hopefully get our results...

2/12/20 Heiko Paulheim 58

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Questions?

