Database Technology

Intermezzo: Complexity Theory in a Nutshell

Heiko Paulheim
Why?

• Complexity theory
 – essential means of analysis in computer science
 – describes the behavior of an algorithm
 – often not known to non-computer scientists

• Or: what the hell does $O(N^2)$ mean?
What?

• Measure the performance of algorithms
 – how much time does it need? → time complexity
 – how much memory does it need? → memory complexity

• It’s not about *absolute* numbers
 – that would be: it takes 21 seconds

• It’s about *relative* numbers
 – relative to, e.g., no. of rows

• It’s about *scaling*
 – i.e.: what happens if I double the number of rows?
First Example

- Reading N customer records from disk
 - N is a variable
 - each record takes a time t
 - i.e., the total time is $N \times t$

- t may vary
 - e.g., by buying a hard disk twice as fast
 - thus, we usually do not consider t
 - we say: the complexity of reading N customers is $O(N)$

- $O(N) \leftrightarrow \text{linear scaling}$
 - i.e., double the number of customers, double the time
 - the actual hard disk speed does not matter here $\rightarrow O(0.5 \times N) = O(N)$
Second Example

• Storing the pairwise distances between N cities
 – we need to store 0.5*N*N distances
 – each distance needs b bytes → 0.5*b*N

• Again
 – we may tweak the constant factor b
 – e.g., using more/less decimal digits
 – we already know that constant factors do not change the complexity

• $O(N^2) \leftrightarrow$ quadratic complexity
 – twice as many cities → four times as many distances to store
 – that is not affected by 0.5 nor by b!
“Calculating” with Complexities

• Constant factors are neglected
 – \(O(N) = O(2*N) = O(1,000*N) \)

• The highest complexity in a sum dominates the overall complexity
 – \(O(N + N^2) = O(N^2) \)

• \(O(1) \) denotes constant complexity
 – i.e., it is independent of problem size
 – e.g.: add a new record to a table
 • in theory, that should take an equal amount of time
 • irrelevant of the size of the table
Further Notes

• There might be more than one variable
 – e.g., storing a table with N records and C columns uses $O(N \times C)$ memory

• Complexity depends on the solution, not the problem
 – example: storing who is sitting in which office

<table>
<thead>
<tr>
<th>Person</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter</td>
<td>B0.01</td>
</tr>
<tr>
<td>Mary</td>
<td>B0.04</td>
</tr>
<tr>
<td>John</td>
<td>B0.02</td>
</tr>
<tr>
<td>Julia</td>
<td>B0.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Person</th>
<th>B0.01</th>
<th>B0.02</th>
<th>B0.03</th>
<th>B0.04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Mary</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>John</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Julia</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

• Storage and time complexity may be different
 – sometimes, we have to trade them off against each other
Comparison of Complexities

• Complexities can be compared
 – $O(1) < O(\log n) < O(n) < O(n \cdot \log n) < O(n^2) < O(n^c) < O(c^n)$

• Complexity helps analyzing scalability
 – e.g., assessing suitability for larger problems
 – e.g., choosing between different variants
Complexity and Worst Case Behavior

• Complexity describes the worst case behavior
 – think: what happens for very big data?
 – think: what happens in very degraded cases?

• Example for big scales
 – Approach A takes 0.00001*N², approach B takes 10,000*N
 – Unless your N gets very large, you will use A, although O(N²)>O(N)

• Example for degraded cases
 – Storing the ratings of C customers and I items is O(C*I)
 – However, the actual number is much lower
 – Each customer only rates a very small fraction of C
Questions?
Previously on Database Technology

- We can find information in databases
 - e.g., employees by name:

    ```sql
    SELECT * FROM employee WHERE name = 'Brandt'
    ```
 - e.g., employees within a range of salary

    ```sql
    SELECT * FROM employee WHERE salary > 50000
    ```
Finding Information in Databases

• How does that work, actually?
 – SELECT * FROM employee WHERE name = ‘Brandt’

• Naive approach (called *linear search*):
 – Go through the table from top to bottom
 – Find and return all employees with name ‘Brandt’

• Complexity: O(N)
 – Note that even if we find a “Brandt” earlier, we need to search further, since there might be more people named “Brandt”
 • and the query is expected to return them all
Finding Information in Databases

• How does that work, actually?
 – SELECT * FROM employee WHERE name = ‘Brandt’

• Better approach
 – Let’s assume we have sorted the table by name

• We can now apply *binary search*
 – Get element in the middle of the table
 – If the searched element is “smaller”
 • Search the upper half table
 – Else
 • Search the lower half table

<table>
<thead>
<tr>
<th>ID</th>
<th>name</th>
<th>dept_name</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>83821</td>
<td>Brandt</td>
<td>Comp. Sci.</td>
<td>92000</td>
</tr>
<tr>
<td>58583</td>
<td>Califieri</td>
<td>History</td>
<td>62000</td>
</tr>
<tr>
<td>76766</td>
<td>Crick</td>
<td>Biology</td>
<td>72000</td>
</tr>
<tr>
<td>22222</td>
<td>Einstein</td>
<td>Physics</td>
<td>95000</td>
</tr>
<tr>
<td>32343</td>
<td>El Said</td>
<td>History</td>
<td>60000</td>
</tr>
<tr>
<td>33456</td>
<td>Gold</td>
<td>Physics</td>
<td>87000</td>
</tr>
<tr>
<td>45565</td>
<td>Katz</td>
<td>Comp. Sci.</td>
<td>75000</td>
</tr>
<tr>
<td>98345</td>
<td>Kim</td>
<td>Elec. Eng.</td>
<td>80000</td>
</tr>
<tr>
<td>15151</td>
<td>Mozart</td>
<td>Music</td>
<td>40000</td>
</tr>
<tr>
<td>76643</td>
<td>Singh</td>
<td>Finance</td>
<td>80000</td>
</tr>
<tr>
<td>10101</td>
<td>Srinivasan</td>
<td>Comp. Sci.</td>
<td>65000</td>
</tr>
<tr>
<td>76543</td>
<td>Wu</td>
<td>Finance</td>
<td>90000</td>
</tr>
</tbody>
</table>
Finding Information in Databases

- Binary search
 - Works in $O(\log_2 N)$
- However
 - Sorting the table requires $O(N \cdot \log_2 N)$
 - i.e., complexity for search would also be $O(N \cdot \log_2 N)$
 remember: $O(N \cdot \log_2 N + N \cdot \log_2 N) = N \cdot \log_2 N$

- This pays off only if we sort once and query often
 - Total complexity for S binary searches: $O(S \cdot \log_2 N) + O(N \cdot \log_2 N)$
 - Total complexity for N linear searches: $O(S \cdot N)$
 - i.e., binary search is better if $S > \log_2 N$
 - for 1,000,000 entries: more than 20 searches
Finding Information in Databases

- Binary search
 - Sort & search pays off after $\log_2 N$ searches

- But wait... what if our next query is

  ```sql
  SELECT * FROM employee WHERE salary > 50000
  ```

- Now, the table is sorted by name, not salary
 - If we re-sort before every query, it gets even worse than by linear search
Finding Information in Databases

- Naive solution
 - Provide copies of each table sorted by each attribute we may need

- Hey, wait…
 - We’ve always tried to *reduce* redundancy
 - Not to *increase* it…

- More sophisticated solution:
 - Index structures
Index Files

- **Index files**
 - Provide a compromise between re-sorting
 - and copying the table

- **Idea**
 - Provide a sorted file of a single attribute only
 - Allows linear search
 - Index file contains pointers to actual file
 - Which may or may not be sorted
Index Files

• Basic idea
 – Search in index is $O(\log_2 N)$
 – Following link is $O(1)$
 – Each index can remain sorted
 – Create an index for each attribute which you may use in a query

• Trade-off
 – Faster queries
 – Slower inserts/updates/deletions
 – Some redundancy
 • But this is handled by the DBMS!
 • i.e., mainly a storage capacity problem, not so much a consistency problem
Index Files and Joins

- Understanding the need for an index file
 - Analyzing possible queries
- First use case: search attributes
 - quite straight forward
- Second use case: joins
- Suppose we want to query for the building of an instructor by name
 - *name* on *instructor* is straight forward for an index candidate
 - Query processing:
 - find instructor by name
 - read *dept_name*
 - look up *dept_name* in *department*

hence, we need an index on *dept_name* in *department*!
Index Files – Basic Concepts

• Indexing mechanisms used to speed up access to desired data
 – e.g., searching by a specific attribute
 – but also: joins!

• Search Key - attribute to set of attributes used to look up records in a file
 – An index file consists of records (called index entries) of the form

 | search-key | pointer |
 |

• Two basic kinds of indices:
 – Ordered indices: search keys are stored in sorted order
 – Hash indices: search keys are distributed uniformly across “buckets” using a “hash function”
Metrics for Evaluating Index Structures

- Access types supported efficiently
 - records with a specified value in the attribute
 - or records with an attribute value falling in a specified range of values

- Access time

- Insertion time
 - Note: index needs to be updated as well

- Deletion time
 - Note: may require deletion from index

- Storage space overhead
Ordered Indices

• In an ordered index, index entries are stored sorted on the search key value
 – allows $O(\log_2 N)$ search

• Primary index: in a sequentially ordered file, the index whose search key specifies the sequential order of the file
 – Also called *clustering index*
 – Search key: usually (but not necessarily) the primary key

• Secondary index: an index whose search key specifies an order different from the sequential order of the file
 – Also called *non-clustering index*
Dense vs. Sparse Index Files

- Dense index: index record appears for every search-key value
 - e.g., index on ID attribute of instructor relation

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Department</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>10101</td>
<td>Srinivasan</td>
<td>Comp. Sci.</td>
<td>65000</td>
</tr>
<tr>
<td>12121</td>
<td>Wu</td>
<td>Finance</td>
<td>90000</td>
</tr>
<tr>
<td>15151</td>
<td>Mozart</td>
<td>Music</td>
<td>40000</td>
</tr>
<tr>
<td>22222</td>
<td>Einstein</td>
<td>Physics</td>
<td>95000</td>
</tr>
<tr>
<td>32343</td>
<td>El Said</td>
<td>History</td>
<td>60000</td>
</tr>
<tr>
<td>33456</td>
<td>Gold</td>
<td>Physics</td>
<td>87000</td>
</tr>
<tr>
<td>45565</td>
<td>Katz</td>
<td>Comp. Sci.</td>
<td>75000</td>
</tr>
<tr>
<td>58583</td>
<td>Califierei</td>
<td>History</td>
<td>62000</td>
</tr>
<tr>
<td>76543</td>
<td>Singh</td>
<td>Finance</td>
<td>80000</td>
</tr>
<tr>
<td>76766</td>
<td>Crick</td>
<td>Biology</td>
<td>72000</td>
</tr>
<tr>
<td>83821</td>
<td>Brandt</td>
<td>Comp. Sci.</td>
<td>92000</td>
</tr>
<tr>
<td>98345</td>
<td>Kim</td>
<td>Elec. Eng.</td>
<td>80000</td>
</tr>
</tbody>
</table>
Dense vs. Sparse Index Files

- Dense index: index record appears for every search-key value
 - e.g., index on *department* attribute of *instructor* relation
Dense vs. Sparse Index Files

- **Sparse Index**: contains index records for only some values
 - Applicable when records are sequentially ordered on search-key
- To locate a record with search-key value K we:
 - Find index record with largest search-key value < K
 - Search file sequentially starting at that record
Dense vs. Sparse Index Files

• Dense index
 – Guaranteed search time of $O(\log_2 N)$
 – Requires $O(N)$ storage space

• Sparse index (storing every k-th value)
 – Search time $O(\log_2 (N/k) + \log_2 k)$
 – Requires $O(N/k)$ storage space

• Comparison
 – Dense index is faster
 – Sparse index takes less space
Secondary Index

- Frequently, one wants to find all the records whose values in a certain field (which is not the search-key of the primary index) satisfy some condition
 - Example 1: In the instructor relation stored sequentially by ID, we may want to find all instructors in a particular department
 - Example 2: as above, but where we want to find all instructors with a specified salary or with salary in a specified range of values
- We can have a secondary index with an index record for each search-key value
Secondary Index

- Primary index: index on the attribute by which a file is ordered
- Secondary index: index on any other attribute
 - Index record points to a bucket that contains pointers to all the actual records with that particular search-key value
 - Secondary indices have to be dense (why?)
Multi-Level Indices

- Computer storage:
 - RAM: fast, but limited
 - Disk: slow, but large

- Fast access
 - Keep primary index in memory, actual data on disk

- What if the primary index does not fit in memory?
 - Treat primary index kept on disk as a sequential file
 - Construct a sparse index on it, keep that index in memory

- Outer vs. inner index
 - outer index – a sparse index of primary index
 - inner index – the primary index file
Insertion into Index

• Single-level index insertion
 – Perform a lookup using the search-key value appearing in the record to be inserted
 – Dense indices – if the search-key value does not appear in the index, insert it
 – Sparse indices – if index stores an entry for each block of the file, no change needs to be made to the index unless a new block is created
 • If a new block is created, the first search-key value appearing in the new block is inserted into the index
• Multilevel insertion: algorithms are simple extensions of the single-level algorithms

Costly!
Deletion from Index

• If deleted record was the only record in the file with its particular search-key value, the search-key is deleted from the index also

• Single-level index entry deletion:
 – Dense indices – deletion of search-key is similar to file record deletion
 – Sparse indices
 • if an entry for the search key exists in the index, it is deleted by replacing the entry in the index with the next search-key value in the file (in search-key order)
 • If the next search-key value already has an index entry, the entry is deleted instead of being replaced

• Multilevel deletion: algorithms are simple extensions of the single-level algorithms
Summary Sequential Indices

- Access time: $O(\log_2 N)$
- Insertion time: $O(N)$
 - worst case: insertion at the top, all other entries need to be moved down
- Deletion time: $O(N)$
 - worst case: deletion from the top, all other entries need to be moved up
B⁺-Tree Index Files

• Disadvantage of indexed-sequential files
 – performance degrades as file grows, since many overflow blocks get created
 – periodic reorganization of entire file is required

• Advantage of B⁺-tree index files:
 – automatically reorganizes itself with small, local, changes, in the face of insertions and deletions
 – reorganization of entire file is not required to maintain performance

• (Minor) disadvantage of B⁺-trees:
 – extra insertion and deletion overhead, space overhead

• Advantages of B⁺-trees outweigh disadvantages
• B⁺-trees are used extensively
B⁺-Trees

- A B⁺-tree is a rooted tree satisfying the following properties:
 - All paths from root to leaf are of the same length
 - Each node that is not a root or a leaf has between \(\lceil n/2 \rceil \) and \(n \) children
 - A leaf node has between \(\lceil (n-1)/2 \rceil \) and \(n-1 \) values
- Special cases:
 - If the root is not a leaf, it has at least 2 children.
 - If the root is a leaf (that is, there are no other nodes in the tree), it can have between 0 and \((n-1) \) values.

Round up to next integer
B⁺-Trees: Example
B⁺-Trees: Example

- Example: \(n=4 \)
 - All paths from root to leaf are of the same length
 - Each node that is not a root or a leaf has between \(\lceil n/2 \rceil = 2 \) and \(n=4 \) children
 - A leaf node has between \(\lceil (n-1)/2 \rceil = 2 \) and \(n-1=3 \) values
 - Root has at least 2 children
B⁺-Tree Node Structure

- Typical node

 \[
 \begin{array}{cccccccc}
 P_1 & K_1 & P_2 & \ldots & P_{n-1} & K_{n-1} & P_n \\
 \end{array}
 \]

- \(K_i\) are the search-key values
- \(P_i\) are pointers to children (for non-leaf nodes) or pointers to records or buckets of records (for leaf nodes)
- The search-keys in a node are ordered
 \[
 K_1 < K_2 < K_3 < \ldots < K_{n-1}
 \]
 - for the moment: assuming there are no duplicate keys, but extension to handling duplicate keys is easily possible
Leaf Nodes in B⁺-Trees

- For \(i = 1, 2, \ldots, n-1 \), pointer \(P_i \) points to a file record with search-key value \(K_i \).
- If \(L_i, L_j \) are leaf nodes and \(i < j \), \(L_i \)’s search-key values are less than or equal to \(L_j \)’s search-key values.
- \(P_n \) points to next leaf node in search-key order.

![Diagram of leaf nodes and pointers]

Leaf Nodes in B⁺-Trees

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Department</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>10101</td>
<td>Srinivasan</td>
<td>Comp. Sci.</td>
<td>65000</td>
</tr>
<tr>
<td>12121</td>
<td>Wu</td>
<td>Finance</td>
<td>90000</td>
</tr>
<tr>
<td>15151</td>
<td>Mozart</td>
<td>Music</td>
<td>40000</td>
</tr>
<tr>
<td>22222</td>
<td>Einstein</td>
<td>Physics</td>
<td>95000</td>
</tr>
<tr>
<td>32343</td>
<td>El Said</td>
<td>History</td>
<td>80000</td>
</tr>
<tr>
<td>33456</td>
<td>Gold</td>
<td>Physics</td>
<td>87000</td>
</tr>
<tr>
<td>45565</td>
<td>Katz</td>
<td>Comp. Sci.</td>
<td>75000</td>
</tr>
<tr>
<td>58583</td>
<td>Califieri</td>
<td>History</td>
<td>60000</td>
</tr>
<tr>
<td>76543</td>
<td>Singh</td>
<td>Finance</td>
<td>80000</td>
</tr>
<tr>
<td>76766</td>
<td>Crick</td>
<td>Biology</td>
<td>72000</td>
</tr>
<tr>
<td>83821</td>
<td>Brandt</td>
<td>Comp. Sci.</td>
<td>92000</td>
</tr>
<tr>
<td>98345</td>
<td>Kim</td>
<td>Elec. Eng.</td>
<td>80000</td>
</tr>
</tbody>
</table>
Inner Nodes in B⁺-Trees

- Properties of an inner node with \(m \) entries:
 - All the search-keys in the subtree to which \(P_1 \) points are less than \(K_1 \)
 - For \(2 \leq i \leq n - 1 \), all the search-keys in the subtree to which \(P_i \) points have values greater than or equal to \(K_{i-1} \) and less than \(K_i \)
 - All the search-keys in the subtree to which \(P_n \) points have values greater than or equal to \(K_{n-1} \)

<table>
<thead>
<tr>
<th>(P_1)</th>
<th>(K_1)</th>
<th>(P_2)</th>
<th>...</th>
<th>(P_{n-1})</th>
<th>(K_{n-1})</th>
<th>(P_n)</th>
</tr>
</thead>
</table>

- All values <"Einstein"
- All values \(\geq "Einstein", <"Gold" \)
- All values \(\geq "Gold" \)
Observations about B^+ - Trees

• Since the inter-node connections are done by pointers, “logically” close blocks need not be “physically” close
• The non-leaf levels of the B^+ -tree form a hierarchy of sparse indices
• The B^+ -tree contains a relatively small number of levels
 – Level below root has at least $2^* \lceil n/2 \rceil$ values
 – Next level has at least $2^* \lceil n/2 \rceil * \lceil n/2 \rceil$ values
 • .. etc.
 – If there are K search-key values in the file, the tree height is no more than $\lceil \log_2(n/2)(K) \rceil$
 • thus searches can be conducted efficiently
• Insertions and deletions to the main file can be handled efficiently (as we shall see)
Querying B^+-Trees

- Given a search value V (e.g., “Einstein”)
 - In non-leaf nodes: follow non-null pointers P_i where $V < K_i$, so that i maximal
 - In leaf nodes: if there is a value $K_i = V$, follow P_i
 - else: record does not exist
Querying B^+-Trees

• If there are K search-key values in the file, the height of the tree is no more than \[\lceil \log_{\lfloor n/2 \rfloor}(K) \rceil \]
 – i.e., this is the number of leaf nodes to inspect
 – supposing a disk-based index: the number of nodes to be retrieved

• A node is generally the same size as a disk block, typically 4 kilobytes
 – and n is typically around 100 (40 bytes per index entry)

• With 1 million search key values and $n = 100$
 – at most $\log_{50}(1,000,000) = 4$ nodes are accessed in a lookup

 disk I/O is the crucial factor here
Updates on B⁺-Trees: Insertion

- Find the leaf node in which the search-key value would appear
- If the search-key value is already present in the leaf node
 - add record to the file
 - if necessary, add a pointer to the bucket
- If the search-key value is not present, then
 - add the record to the main file (and create a bucket if necessary)
 - If there is room in the leaf node
 - insert (key-value, pointer) pair in the leaf node
 - else
 - split the node (along with the new (key-value, pointer) entry)
Updates on B⁺-Trees: Insertion

• Splitting a leaf node:
 – take the \(n \) (search-key value, pointer) pairs (including the one being inserted) in sorted order. Place the first \(\lceil n/2 \rceil \) in the original node, and the rest in a new node \(p \)
 – let \(k \) be the least key value in \(p \). Insert \((k,p)\) in the parent of the node being split.
 – If the parent is full, split it and propagate the split further up

• Splitting of nodes proceeds upwards till a node that is not full is found
 – In the worst case (i.e., root is full) the root node may be split increasing the height of the tree by 1

Result of splitting node containing Brandt, Califieri, Crick on inserting Adams
Next step: insert entry with \((\text{Califieri}, \text{pointer-to-new-node})\) into parent
Updates on B⁺-Trees: Insertion

- Inserting “Adams”
Updates on B⁺-Trees: Insertion

- Inserting “Lamport”
Updates on B⁺-Trees: Deletion

- Find the record to be deleted, and remove it from the main file and from the bucket (if present)
- Remove (search-key value, pointer) from the leaf node if there is no bucket or if the bucket has become empty
- If the node has too few entries due to the removal, and the entries in the node and a sibling fit into a single node, then *merge siblings*
- Otherwise, if the node has too few entries due to the removal, but the entries in the node and a sibling do not fit into a single node, then *redistribute pointers*
Updates on B⁺-Trees: Deletion

- Deleting “Srinivasan”

![Diagram of B⁺-Tree deletion process]
Indices on Multiple Attributes

• Use multiple indices for certain types of queries
• Example:

\[
\text{select } ID \\
\text{from instructor} \\
\text{where dept_name = “Finance” and salary = 80000}
\]

• Possible strategies for processing query using indices on single attributes:

1. Use index on \text{dept_name} to find instructors with department name Finance; test \text{salary = 80000}
2. Use index on \text{salary} to find instructors with a salary of $80000; test \text{dept_name = “Finance”}
3. Use both indices, take intersection of sets of pointers obtained
Indices on Multiple Attributes

• Composite search keys are search keys containing more than one attribute
 – e.g. (dept_name, salary)
• Lexicographic ordering: \((a_1, a_2) < (b_1, b_2)\) if either
 – \(a_1 < b_1\), or
 – \(a_1=b_1\) and \(a_2 < b_2\)
• Use this ordering to create an index (sequential or B\(^+\)-tree)
Indices on Multiple Attributes

• Suppose we have an index on (dept_name, salary)
• With the `where` clause
  ```
  where dept_name = "Finance" and salary = 80000
  ```
 the index on `(dept_name, salary)` can be used to fetch only records that satisfy both conditions
• Using separate indices is less efficient — we may fetch many records (or pointers) that satisfy only one of the conditions
Indices on Multiple Attributes

• Note:
 – Ordering is sensitive to order of attributes
 – i.e., (salary,dept_name) would lead to a different ordering!

• With (dept_name,salary), we can efficiently retrieve
 \(\text{dept_name} = \text{“Finance”} \text{ and } \text{salary} > 80000\)

• But not
 \(\text{dept_name} > \text{“Finance”} \text{ and } \text{salary} = 80000\)

• Ordering of index is by dept_name first, then salary
Multi-Attribute Indices vs. Multiple Indices

• Multi-Attribute are faster than multiple indices
 – Make sure you only retrieve the records you are interested in
 – Avoid unnecessary lookups, comparisons, and/or intersections

• On the other hand
 – Storing an index for all combinations of attributes would be costly
 • 10 attributes, all combinations of only 2 attributes → 100 indices!
 – Think: storage capacity
 – Think: cost of insert/update/delete operations

• Typical considerations
 – Heavily used attribute combinations
 – Expected runtime disadvantage of individual indices
Indexing vs. Hashing

• Index structures:
 – Look up value
 – Retrieve storage location (e.g., row number in table)

• Hashing:
 – Compute storage location directly from the value using a hash function
Static Hashing

• Bucket: unit of storage containing one or more records
 – Typically: a disk block
• Hash function h: maps a search key to the block where the record is located
 – $h : K \rightarrow B$
 – Records with different search-key values may be mapped to the same bucket
 → bucket has to be searched sequentially to eventually locate a record
 → bucket overflow occurs when a bucket is full
Example for a Hash Function

- There are 10 buckets
- The hash function maps a department name to numbers between 0-9
- e.g., \(h(\text{Music}) = 1 \) \(h(\text{History}) = 2 \)
 \(h(\text{Physics}) = 3 \) \(h(\text{Elec. Eng.}) = 3 \)
Hash Functions

• A hash function should be
 – *uniform*, i.e., each bucket is assigned the same number of search-key values
 – *random*, i.e., the size of buckets should be independent of the actual distribution of search-key values
 • e.g., language is not uniformly distributed
• Worst case: all search-key values map to the same bucket
 – access time proportional to the number of search-key values in the file
Bucket Overflow

- **Overflow chaining** (also called **closed hashing**)
 - the overflow buckets of a given bucket are chained together in a linked list
 - slows search for actual record
 - cannot be entirely avoided, but reduced by good choice of hash function

![Diagram of bucket overflow]

bucket 0

bucket 1

bucket 2

bucket 3

overflow buckets for bucket 1
Hash Indices

- Hashing can be used not only for file organization, but also for index-structure creation
 - A **hash index** organizes the search keys, with their associated record pointers, into a hash file structure

```
| bucket 0 | 76766 |
| bucket 1 | 45565 |
|          | 76543 |
| bucket 2 | 22222 |
| bucket 3 | 10101 |
| bucket 4 |      |
| bucket 5 | 15151 |
|          | 33456 |
| bucket 6 | 83821 |
| bucket 7 | 12121 |
|          | 32343 |
```

```
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>76766</td>
<td>Crick</td>
<td>Biology</td>
<td>72000</td>
</tr>
<tr>
<td>10101</td>
<td>Srinivasan</td>
<td>Comp. Sci.</td>
<td>65000</td>
</tr>
<tr>
<td>45565</td>
<td>Katz</td>
<td>Comp. Sci.</td>
<td>75000</td>
</tr>
<tr>
<td>83821</td>
<td>Brandt</td>
<td>Comp. Sci.</td>
<td>92000</td>
</tr>
<tr>
<td>98345</td>
<td>Kim</td>
<td>Elec. Eng.</td>
<td>80000</td>
</tr>
<tr>
<td>12121</td>
<td>Wu</td>
<td>Finance</td>
<td>90000</td>
</tr>
<tr>
<td>76543</td>
<td>Singh</td>
<td>Finance</td>
<td>80000</td>
</tr>
<tr>
<td>32343</td>
<td>El Said</td>
<td>History</td>
<td>60000</td>
</tr>
<tr>
<td>58583</td>
<td>Califieri</td>
<td>History</td>
<td>62000</td>
</tr>
<tr>
<td>15151</td>
<td>Mozart</td>
<td>Music</td>
<td>40000</td>
</tr>
<tr>
<td>22222</td>
<td>Einstein</td>
<td>Physics</td>
<td>95000</td>
</tr>
<tr>
<td>33465</td>
<td>Gold</td>
<td>Physics</td>
<td>87000</td>
</tr>
</tbody>
</table>
```
Drawbacks of Static Hashing

• In static hashing, function h maps search-key values to a fixed set of B of bucket addresses
 – But databases may grow or shrink over time

• Growing database
 – performance degrades due to many overflow buckets

• Shrinking database
 – space is wasted by underfull buckets

• Possible solution: periodic re-organization of the file with a new hash function
 – Expensive, disrupts normal operations

• Better solution
 – allow the number of buckets to be modified dynamically
 – aka *dynamic hashing*
Dynamic Hashing

- Good for database that grows and shrinks in size
- Allows the hash function to be modified dynamically
- **Extendable hashing** – one form of dynamic hashing
 - Hash function generates values over a large range
 - typically b-bit integers, e.g., $b = 32$.
- At any time use only a prefix of the hash function to index into a table of bucket addresses
 - Let the length of the prefix be i bits, $0 \leq i \leq 32$.
 - Bucket address table size $= 2^i$. Initially $i = 0$
- Value of i grows and shrinks as the size of the database grows and shrinks
- Multiple entries in the bucket address table may point to a bucket (why?)
 - Thus, actual number of buckets is $< 2^i$
 - Number of buckets also changes dynamically by merging and splitting buckets
Extendable Hash Structure

• Example:
 – more hash values with prefix “1” than with prefix “0”
Extendable Hashing

• Each bucket \(j \) stores a value \(i_j \)

• All the entries that point to the same bucket have the same values on the first \(i_j \) bits

• To locate the bucket containing search-key \(K_j \):

 1. Compute \(h(K_j) = X \)

 2. Use the first \(i \) bits of \(X \) as a displacement into bucket address table, and follow the pointer to appropriate bucket

• Insertion and deletion may cause splitting/merging of buckets

• Overflow buckets may still be needed for key collisions
Extendable Hashing – Example

- Bucket size: 2

<table>
<thead>
<tr>
<th>dept_name</th>
<th>h(dept_name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>0010 1101 1111 1011 0010 1100 0011 0000</td>
</tr>
<tr>
<td>Comp. Sci.</td>
<td>1111 0001 0010 0100 1001 0011 0110 1101</td>
</tr>
<tr>
<td>Elec. Eng.</td>
<td>0100 0011 1010 1100 1100 0110 1101 1111</td>
</tr>
<tr>
<td>Finance</td>
<td>1010 0011 1010 0000 1100 0110 1001 1111</td>
</tr>
<tr>
<td>History</td>
<td>1100 0111 1110 1101 1011 1111 0011 1010</td>
</tr>
<tr>
<td>Music</td>
<td>0011 0101 1010 0110 1100 1001 1110 1011</td>
</tr>
<tr>
<td>Physics</td>
<td>1001 1000 0011 1111 1001 1100 0000 0001</td>
</tr>
</tbody>
</table>

Bucket 0

![Diagram of bucket 0 with hash values and entries]
Extendable Hashing – Example

- After insertion of Mozart, Srinivisan, Wu

Prefix length 1

Bucket 0

<table>
<thead>
<tr>
<th>dept_name</th>
<th>h(dept_name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>001011111011010010001100000</td>
</tr>
<tr>
<td>Comp. Sci.</td>
<td>1111000100101001001101101101</td>
</tr>
<tr>
<td>Elec. Eng.</td>
<td>0100001110101100110001101111</td>
</tr>
<tr>
<td>Finance</td>
<td>10100011101000001100101101111</td>
</tr>
<tr>
<td>History</td>
<td>11000111111011011111001101111</td>
</tr>
<tr>
<td>Music</td>
<td>0011101011011100100111101110</td>
</tr>
<tr>
<td>Physics</td>
<td>10011000110111110011000001001</td>
</tr>
</tbody>
</table>

Bucket 1

<table>
<thead>
<tr>
<th>dept_name</th>
<th>h(dept_name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15151</td>
<td>Mozart</td>
</tr>
<tr>
<td>10101</td>
<td>Srinivisan</td>
</tr>
<tr>
<td>12121</td>
<td>Wu</td>
</tr>
</tbody>
</table>

40000
90000
90000
Extendable Hashing – Example

• After insertion of Einstein

<table>
<thead>
<tr>
<th>dept_name</th>
<th>h(dept_name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>0010 1111 1011 0110 1000 0010 0000</td>
</tr>
<tr>
<td>Comp. Sci.</td>
<td>1111 0001 0010 0100 1001 0011 0110 1101</td>
</tr>
<tr>
<td>Elec. Eng.</td>
<td>0100 0011 1010 1100 1100 0110 1101 1111</td>
</tr>
<tr>
<td>Finance</td>
<td>1010 0011 1010 0000 1100 0110 1001 1111</td>
</tr>
<tr>
<td>History</td>
<td>1100 0111 1110 1101 1011 1111 0011 1010</td>
</tr>
<tr>
<td>Music</td>
<td>0011 0101 1010 0110 1100 1001 1110 1011</td>
</tr>
<tr>
<td>Physics</td>
<td>1001 1000 0011 1111 1001 1100 0000 0001</td>
</tr>
</tbody>
</table>

Pointers to same bucket
Extendable Hashing – Example

- After insertion of Gold, El Said

Bucket 0
- 15151 | Mozart | Music | 40000

Bucket 1
- 22222 | Einstein | Physics | 95000
- 33456 | Gold | Physics | 87000

Bucket 2
- 12121 | Wu | Finance | 90000

Bucket 3
- 10101 | Srinivisan | Comp.Sci | 90000
- 32343 | El Said | History | 60000
Extendable Hashing – Example

- After inserting Feinman

<table>
<thead>
<tr>
<th>Bucket 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>15151</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bucket 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>22222</td>
</tr>
<tr>
<td>33456</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bucket 1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>47035</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bucket 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>12121</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bucket 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10101</td>
</tr>
<tr>
<td>32343</td>
</tr>
</tbody>
</table>
Extendable Hashing

• Benefits
 – Hash performance does not degrade with growth of file
 – Minimal space overhead

• Disadvantages
 – Extra level of indirection to find desired record
 – Bucket address table may itself become very big (larger than memory)
 • Cannot allocate very large contiguous areas on disk either
 • Solution: B+-tree structure to locate desired record in bucket address table
 – Changing size of bucket address table is an expensive operation
Comparison of Indexing and Hashing

- Expected type of queries:
 - Hashing is generally better at retrieving records having a specified value of the key.
 - If range queries are common, ordered indices are to be preferred
- Cost of periodic re-organization
- Relative frequency of insertions and deletions
- Average vs. worst case access time
- Which index type is supported by the DBMS at hand?
Bitmap Indices

• B+-Trees and Hash Functions are good for attributes with *many* values
 – e.g., names, matriculation numbers, salaries, …
• They do not work well for attributes with *few* values
 – e.g., gender (m/f/d), term (spring/autumn), …
• Thought exercise:
 – construct a B+-Tree / a hash index on one of these attributes
Bitmap Indices

• Special type of index designed for efficient querying on multiple keys
• Records in a relation are assumed to be numbered sequentially from, say, 0
 − Given a number n it must be easy to retrieve record n
• Applicable on attributes that take on a relatively small number of distinct values
 − e.g. gender, country, state, …
 − e.g. income-level (income broken up into a small number of levels such as 0-9999, 10000-19999, 20000-50000, 50000-infinity)
• A bitmap is simply an array of bits
• CPUs can process them very efficiently (i.e., 32 or 64 bits at once)
Bitmap Indices

- In its simplest form a bitmap index on an attribute has a bitmap for each value of the attribute
 - Bitmap has as many bits as records
 - In a bitmap for value v, the bit for a record is 1 if the record has the value v for the attribute, and is 0 otherwise

<table>
<thead>
<tr>
<th>record number</th>
<th>ID</th>
<th>gender</th>
<th>income_level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>76766</td>
<td>m</td>
<td>L1</td>
</tr>
<tr>
<td>1</td>
<td>22222</td>
<td>f</td>
<td>L2</td>
</tr>
<tr>
<td>2</td>
<td>12121</td>
<td>f</td>
<td>L1</td>
</tr>
<tr>
<td>3</td>
<td>15151</td>
<td>m</td>
<td>L4</td>
</tr>
<tr>
<td>4</td>
<td>58583</td>
<td>f</td>
<td>L3</td>
</tr>
</tbody>
</table>

Bitmaps for gender

- m: 10010
- f: 01101

Bitmaps for income_level

- L1: 10100
- L2: 01000
- L3: 00001
- L4: 00010
- L5: 00000
Bitmap Indices

• Bitmap indices are useful for queries on multiple attributes
 – not particularly useful for single attribute queries
• Queries are answered using bitmap operations
 – Intersection (and)
 – Union (or)
 – Negation (not)
• Each operation takes two bitmaps of the same size and applies the operation on corresponding bits to get the result bitmap
 – Males with income level L1: 10010 AND 10100 = 10000
 – People with income level L3 to L5: 00001 OR 00010 OR 00000 = 00011
 – Females with income above L1: 01101 AND (NOT 10100) = 01001
• Can then retrieve required tuples
 – Counting number of matching tuples is even faster!
Selected Other Index Types

- Tries (also known as Prefix Trees)
Selected Other Index Types

- R-Trees and kd trees
Summary

• Index structures help making queries efficient
 – Practically, speedup by many orders of magnitude
• Trading off storage against computation time
• We’ve got to know different flavors
 – Table index
 – B⁺-Tree
 – Hash tables
 – Bitmap indices
• Choice of an index structure
 – Desired queries (single/multi attribute? range or value? counting?)
 – Frequency of updates
 – Real time requirements
Featured Movie Recommendation

- At www.phdcomics.com, both PhD movies are currently available for free for streaming
 - features a TA’s dance to illustrate a hash table :-)

![Image of a dance illustration for a hash table](image-url)