Database Technology
Query Optimization

Heiko Paulheim
Previously on Database Technology

• Last week, we have seen different algorithms for query processing
 – plus their best/worst case cost estimates

• Today
 – how to come up with an efficient query execution plan
Agenda

• Introduction
• Transformation of Relational Expressions
• Catalog Information for Cost Estimation
• Statistical Information for Cost Estimation
• Cost-based optimization
• Dynamic Programming for Choosing Evaluation Plans
Introduction

• SELECT name, title
 FROM instructor, teaches, course
 WHERE instructor.inst_ID = teaches.inst_ID
 AND course.dept_name = instructor.dept_name
 AND dept_name = "Music"
Introduction

• Alternative ways of evaluating a given query
 – Equivalent expressions
 – Different algorithms for each operation
Evaluation Plans

- An **evaluation plan** defines exactly what algorithm is used for each operation, and how the execution of the operations is coordinated.

```
\Pi_{name, title} \quad \text{(sort to remove duplicates)}
```

```
\bowtie \text{(hash join)}
```

```
\bowtie \text{(merge join)}
```

```
\sigma_{dept\_name = \text{Music}} \quad \text{(use index 1)}
```

```
\sigma_{year = 2009} \quad \text{(use linear scan)}
```

```
instructor
```

```
teaches
```

```
course
```
Cost-based Query Optimization

• Cost difference between evaluation plans for a query can be enormous
 – e.g., seconds vs. days in some cases

• Steps in cost-based query optimization
 – Generate logically equivalent expressions using equivalence rules
 – Annotate resultant expressions to get alternative query plans
 – Choose the cheapest plan based on estimated cost

• Estimation of plan cost based on:
 – Statistical information about relations. Examples:
 • number of tuples, number of distinct values for an attribute
 – Statistics estimation for intermediate results
 • to compute cost of complex expressions
 – Cost formulae for algorithms, computed using statistics
Equivalence of Relational Algebra Expressions

• Two relational algebra expressions are said to be **equivalent** if the two expressions generate the same set of tuples on *every legal* database instance
 – order of tuples is irrelevant
 – they may yield different results on databases that violate integrity constraints

• Equivalent results must not be a result of chance, e.g.
 – SELECT name FROM employee WHERE id="12345"
 → “Smith”
 – SELECT name FROM employee WHERE birthday="30.10.1974"
 → “Smith”

• Those results could be different on a different database instance
Equivalence of Relational Algebra Expressions

- In SQL, inputs and outputs are multisets of tuples
 - i.e., they may contain duplicates
 - two expressions in the multiset version of the relational algebra are said to be equivalent
 - if the two expressions generate the same multiset of tuples on every legal database instance
 - for each duplicate result, the same number of duplicates must appear in the results

- An equivalence rule says that expressions of two forms are equivalent
 - Can replace expression of first form by second, or vice versa
 - Successive application of equivalence rules generates alternative query formulations
Equivalence Rules

• (1) Conjunctive selection operations can be deconstructed into a sequence of individual selections.

\[\sigma_{\theta_1 \land \theta_2}(E) = \sigma_{\theta_1}(\sigma_{\theta_2}(E)) \]

• SELECT name, title
 FROM instructor
 WHERE dept_name="Music"
 AND salary>50000

• SELECT name,title FROM (
 SELECT name,title FROM instructor
 WHERE dept_name="Music")
 WHERE salary>50000

Note: SQL statements in these slides are solely illustrative!
Equivalence Rules

• (2) Selection operations are commutative.

\[\sigma_{\theta_1}(\sigma_{\theta_2}(E)) = \sigma_{\theta_2}(\sigma_{\theta_1}(E)) \]

• SELECT name,title FROM (
 SELECT name,title FROM instructor
 WHERE dept_name="Music")
WHERE salary>50000

• SELECT name,title FROM (
 SELECT name,title FROM instructor
 WHERE salary>50000)
WHERE dept_name="Music"
Equivalence Rules

- (3) Only the last in a sequence of projection operations is needed, the others can be omitted.

\[\Pi_{L_1} (\Pi_{L_2} (\ldots (\Pi_{L_n} (E)) \ldots)) = \Pi_{L_1} (E) \]

- SELECT name, title
FROM (
SELECT name, title, salary, dept_name FROM instructor
WHERE dept_name="Music"
AND salary>50000
)

- SELECT name, title FROM instructor
WHERE dept_name="Music"
AND salary>50000
Equivalence Rules

- (4) Selections can be combined with Cartesian products and theta joins

\[\sigma_\theta(E_1 \times E_2) = E_1 \bowtie_\theta E_2 \]

\[\sigma_{\theta_1}(E_1 \bowtie_{\theta_2} E_2) = E_1 \bowtie_{\theta_1 \land \theta_2} E_2 \]

- SELECT name, building
 FROM instructor, department
 WHERE instructor.dept_name = department.dept_name
 AND salary > 50000

- SELECT name, building FROM(
 SELECT name, building FROM instructor, department)
 WHERE instructor.dept_name = department.dept_name
 AND SALARY > 50000
Equivalence Rules

- (5) Theta-join operations (and natural joins) are commutative
 \[E_1 \bowtie_\theta E_2 = E_2 \bowtie_\theta E_1 \]

- SELECT name, building
 FROM instructor, department
 WHERE instructor.dept_name = department.dept_name
 AND salary>50000

- SELECT name, building
 FROM department, instructor
 WHERE department.dept_name = instructor.dept_name
 AND salary>50000
Equivalence Rules (ctd.)

• (6a) Natural join operations are associative

\[(E_1 \bowtie E_2) \bowtie E_3 = E_1 \bowtie (E_2 \bowtie E_3)\]

• SELECT * FROM instructor, (
 SELECT * FROM teaches, course
 WHERE teaches.course_ID = course.course_ID) AS joined
WHERE instructor.inst_ID = joined.inst_ID

• SELECT * FROM course, (
 SELECT * FROM instructor,teaches WHERE
 WHERE instructor.inst_ID = teaches.inst_ID) AS joined
WHERE course.course_ID = joined.course_ID
Equivalence Rules (ctd.)

• (6b) Theta joins are associative in the following manner

\[
(E_1 \bowtie_{\theta_1} E_2) \bowtie_{\theta_2 \land \theta_3} E_3 = E_1 \bowtie_{\theta_1 \land \theta_3} (E_2 \bowtie_{\theta_2} E_3)
\]

where \(\theta_2\) involves attributes from only \(E_2\) and \(E_3\).

• SELECT * FROM instructor, (SELECT * FROM teaches, course
WHERE teaches.course_ID = course.course_ID) AS joined
WHERE instructor.inst_ID = joined.inst_ID
AND salary>50000

• SELECT * FROM course, (SELECT * FROM instructor,teaches WHERE
WHERE instructor.inst_ID = teaches.inst_ID) AS joined
WHERE course.course_ID = joined.course_ID
AND salary>50000
Example: Join Ordering

- For all relations \(r_1, r_2, \) and \(r_3, \)
 \[
 (r_1 \bowtie r_2) \bowtie r_3 = r_1 \bowtie (r_2 \bowtie r_3)
 \]
 (Rule 6a)

- If \(r_2 \bowtie r_3 \) is quite large and \(r_1 \bowtie r_2 \) is small, we choose
 \[
 (r_1 \bowtie r_2) \bowtie r_3
 \]
 so that we compute and store a smaller temporary relation
Consider the expression

```sql
SELECT name, title FROM instructor, teaches, course
WHERE instructor.inst_ID = teaches.inst_ID
AND teaches.course_ID = course.course_ID
AND instructor.dept_name = "Music"
```

Could compute $\text{teaches} \Join \Pi_{\text{course_id, title}} (\text{course})$ first, and join with

$$\sigma_{\text{dept_name} = "Music"} (\text{instructor})$$

but the result of the first join is likely to be a large relation

Only a small fraction of the university’s instructors are likely to be from the Music department

→ it is better to compute

$$\sigma_{\text{dept_name} = "Music"} (\text{instructor}) \Join \text{teaches}$$

first
Equivalence Rules (ctd.)

- (7) The selection operation distributes over the theta join operation under the following two conditions:
 (a) If all the attributes in θ_0 involve only the attributes of one of the expressions (E_1) being joined

$$\sigma_{\theta_0}(E_1 \bowtie_{\theta} E_2) = (\sigma_{\theta_0}(E_1)) \bowtie_{\theta} E_2$$

(b) If θ_1 involves only the attributes of E_1 and θ_2 involves only the attributes of E_2.

$$\sigma_{\theta_1 \wedge \theta_2}(E_1 \bowtie_{\theta} E_2) = (\sigma_{\theta_1}(E_1)) \bowtie_{\theta} (\sigma_{\theta_2}(E_2))$$
Equivalence Rules (ctd.)

- (7) The selection operation distributes over the theta join operation...

- SELECT *
 FROM instructor, department
 WHERE instructor.dept_name = department.dept_name
 AND salary>50000

- SELECT * FROM (
 SELECT * FROM instructor
 WHERE salary>50000) AS R1, (
 SELECT * FROM department) AS R2
WHERE R1.dept_name = R2.dept_name
Equivalence Rules: Graphical Visualization

Rule 5

Rule 6a

Rule 7a

If θ only has attributes from E_1
Example: Pushing Selection

• Query: Find the names of all instructors in the Music department, along with the titles of the courses that they teach

\[\Pi_{\text{name, title}}(\sigma_{\text{dept_name} = \text{"Music"}}(\text{instructor} \Join (\text{teaches} \Join \Pi_{\text{course_id, title}}(\text{course}))))) \]

• Transformation using rule 7a

\[\Pi_{\text{name, title}}((\sigma_{\text{dept_name} = \text{"Music"}}(\text{instructor})) \Join (\text{teaches} \Join \Pi_{\text{course_id, title}}(\text{course})))) \]

• Performing the selection as early as possible reduces the size of the relation to be joined
Example with Multiple Expressions

- Query: Find the names of all instructors in the Music department who have taught a course in 2009, along with the titles of the courses that they taught

\[\Pi_{name, title}(\sigma_{dept_name=\text{"Music"}\land year=2009} (\text{instructor} \bowtie (\text{teaches} \bowtie \Pi_{course_id, title}(\text{course})))) \]

- Transformation using join associatively (Rule 6a):

\[\Pi_{name, title}(\sigma_{dept_name=\text{"Music"}\land year=2009} (\text{instructor} \bowtie \text{teaches} \bowtie \Pi_{course_id, title}(\text{course}))) \]

- Transformed expression provides an opportunity to apply the “perform selections early” rule (7b), resulting in

\[\Pi_{name, title}((\sigma_{dept_name=\text{"Music"}} \text{instructor}) \bowtie \sigma_{year=2009} (\text{teaches}) \bowtie \Pi_{course_id, title}(\text{course})) \]
Example with Multiple Expressions

(a) Initial expression tree

(b) Tree after multiple transformations
Equivalence Rules (ctd.)

• (8) The projection operation distributes over the theta join operation as follows:

 (a) if θ involves only attributes from $L_1 \cup L_2$:

 \[
 \Pi_{L_1 \cup L_2} (E_1 \bowtie \theta E_2) = (\Pi_{L_1} (E_1)) \bowtie \theta (\Pi_{L_2} (E_2))
 \]

 (b) Consider a join $E_1 \bowtie \theta E_2$

 – Let L_1 and L_2 be sets of attributes from E_1 and E_2, respectively

 – Let L_3 be attributes of E_1 that are involved in join condition θ, but are not in $L_1 \cup L_2$, and

 – Let L_4 be attributes of E_2 that are involved in join condition θ, but are not in $L_1 \cup L_2$

 \[
 \Pi_{L_1 \cup L_2} (E_1 \bowtie \theta E_2) = \Pi_{L_1 \cup L_2} ((\Pi_{L_1 \cup L_3} (E_1)) \bowtie \theta (\Pi_{L_2 \cup L_4} (E_2)))
 \]
Equivalence Rules (ctd.)

- (8) The projection operation distributes over the theta join operation...
- SELECT name, salary, building
 FROM instructor, department
 WHERE instructor.dept_name = department.dept_name
- SELECT name, salary, building FROM (SELECT name, salary, dept_name FROM instructor) AS R1,
 SELECT building, dept_name FROM department) AS R2
 WHERE R1.dept_name = R2.dept_name
Example: Pushing Projections

- Consider the query:

```sql
SELECT name, title FROM instructor, teaches, course
WHERE instructor.inst_ID = teaches.inst_ID
AND teaches.course_ID = course.course_ID
AND instructor.dept_name = "Music"
```

- If we compute

\[(\sigma_{dept_name = "Music"}(instructor \bowtie teaches))\]

we obtain a relation whose schema is:

\[(ID, name, dept_name, salary, course_id, sec_id, semester, year)\]

- Push projections using equivalence rules 8a and 8b;
 eliminate unneeded attributes from intermediate results to get:

\[\Pi_{name, title}(\Pi_{name, course_id} (\sigma_{dept_name = "Music"}(instructor) \bowtie teaches) \bowtie \Pi_{course_id, title}(course)))\]

- Performing the projection as early as possible reduces the size of the relation to be joined
Pusing Selection and Projection

• Pushing selection to earlier steps
 – Leads to joining shorter tables (less rows)

• Pushing projection to earlier steps
 – Leads to joining narrower tables (less columns)

• In each case
 – Make intermediate results smaller
 – Reduce amount of cache needed
 – Make subsequent steps faster
Equivalence Rules (ctd.)

• (9) The set operations union and intersection are commutative
 \[E_1 \cup E_2 = E_2 \cup E_1 \]
 \[E_1 \cap E_2 = E_2 \cap E_1 \]
 (but: set difference is not commutative)

• (10) Set union and intersection are associative
 \[(E_1 \cup E_2) \cup E_3 = E_1 \cup (E_2 \cup E_3)\]
 \[(E_1 \cap E_2) \cap E_3 = E_1 \cap (E_2 \cap E_3)\]

• (11) The selection operation distributes over \(\cup\), \(\cap\) and \(-\).
 \[\sigma_\theta (E_1 - E_2) = \sigma_\theta (E_1) - \sigma_\theta (E_2) \]
 and similarly for \(\cup\) and \(\cap\) in place of \(-\)

 Also: \[\sigma_\theta (E_1 - E_2) = \sigma_\theta (E_1) - E_2 \]
 and similarly for \(\cap\) in place of \(-\), but not for \(\cup\)

• (12) The projection operation distributes over union
 \[\Pi_L(E_1 \cup E_2) = (\Pi_L(E_1)) \cup (\Pi_L(E_2)) \]
Enumeration of Equivalent Expressions

- Query optimizers use equivalence rules to **systematically** generate expressions equivalent to the given expression.
- Can generate all equivalent expressions as follows:
 - Repeat
 - apply all applicable equivalence rules on every subexpression of every equivalent expression found so far
 - add newly generated expressions to the set of equivalent expressions
 - Until no new equivalent expressions are generated above.
- The above approach is very expensive in space and time.
- Two approaches
 - Optimized plan generation based on transformation rules
 - Special case approach for queries with only selections, projections and joins.
Transformation based Optimization

- Space requirements reduced by sharing common sub-expressions:
 - when E1 is generated from E2 by an equivalence rule, usually only the top level of the two are different, subtrees below are the same and can be shared using pointers
 - E.g. when applying join commutativity
 - Same sub-expression may get generated multiple times
 - Detect duplicate sub-expressions and share one copy

- Time requirements are reduced by not generating all expressions
 - Dynamic programming
 - We will study only the special case of dynamic programming for join order optimization
Cost Estimation for Execution Plans

• Cost of each operator computed as described in last lecture
 – Need statistics of input relations
 • E.g. number of tuples, sizes of tuples
 – Inputs can be results of sub-expressions
• Need to estimate statistics of expression results
 – To do so, we require additional statistics
 – E.g. number of distinct values for an attribute
• More on cost estimation later
Cost-based Optimization

• Consider finding the best join ordering for $r_1 \bowtie r_2 \bowtie \ldots r_n$

• Join is commutative and associative. For $n=3$, we have
 - $(r_1, r_2), r_3; (r_2, r_1), r_3; r_3, (r_1, r_2); r_3, (r_2, r_1)$;
 $r_1, (r_2, r_3), r_2; (r_3, r_1), r_2; r_2, (r_1, r_3); r_2, (r_3, r_1)$;
 $(r_3, r_2), r_1; (r_2, r_3), r_1; r_1, (r_3, r_2); r_1, (r_2, r_3)$.

• In general, the number is very large
 - Mathematically: $(2(n - 1))!/(n - 1)!$
 - $n = 5 \quad \rightarrow 1,680$
 - $n = 10 \quad \rightarrow >17$ billion!

• No need to generate all the join orders
 - Dynamic programming: compute least-cost join order for any subset of
 $\{r_1, r_2, \ldots r_n\}$
 - reduces complexity to $O(3^n)$

Note: factorial complexity is even worse than exponential!
Choosing a Good Execution Plan

• Naively: for each operation, pick the cheapest algorithm
 – given the statistics
 – caution: may not yield best overall algorithm!

• Example 1: merge-join may be costlier than hash-join
 – but may provide a sorted output which reduces the cost for an outer level aggregation

• Example 2: nested-loop join may be a costly variant
 – but provides opportunity for pipelining

• Practical query optimizers incorporate elements of the following two broad approaches
 – Search all the plans and choose the best plan in a cost-based fashion
 – Uses heuristics to choose a plan
Interesting Sort Orders

• Consider the expression \((r_1 \bowtie r_2) \bowtie r_3\) (with A as common attribute)

• An **interesting sort order** is a particular sort order of tuples that could be useful for a later operation
 – Using merge-join to compute \(r_1 \bowtie r_2\) may be costlier than hash join
 • but generates result sorted on A
 – Which in turn may make merge-join with \(r_3\) cheaper
 • which may reduce cost of join with \(r_3\) and minimizing overall cost
 – Sort order may also be useful for result ordering and aggregation

• Not sufficient to find the best join order for each subset of the set of \(n\) given relations
 – must find the best join order for each subset, **for each interesting sort order**
 • extension of dynamic programming algorithms
 – Usually, number of interesting orders is quite small
 • does not affect time/space complexity significantly
Heuristic Optimization

• Cost-based optimization is expensive, even with dynamic programming

• Alternative: use *heuristics* to reduce the number of choices that must be made in a cost-based fashion
 – may miss the *best* solution, but yields a *good* solution

• Heuristic optimization transforms the query tree by using a set of rules that typically improve execution performance:
 – Perform selection early (reduces the number of tuples)
 – Perform projection early (reduces the number of attributes)
 – Perform most restrictive selection and join operations (i.e. with smallest result size) before other similar operations

• Some systems use only heuristics, others combine heuristics with partial cost-based optimization
Practical Query Optimizers

• Many optimizers consider only left-deep join orders
 – Plus heuristics to push selections and projections down the query tree
 – Reduces optimization complexity and generates plans amenable to pipelined evaluation

• Intricacies of SQL complicate query optimization
 – e.g. nested subqueries

(a) Left-deep join tree
(b) Non-left-deep join tree
Practical Query Optimizers

• Savings vs. overhead
 – Large search space can lead to severe overhead

• Mixed approach: heuristics for cheap queries, exhaustive search for expensive query

• Strategies of practical optimizers (e.g., MS SQL Server) include
 – Optimization cost budget to stop optimization early
 • e.g.: found a plan is less than cost of optimization
 – Plan caching to reuse previously computed plan if query is resubmitted
 • Even with different constants in query
Statistical Information for Cost Estimation

• n_r: number of tuples in a relation r
• b_r: number of blocks containing tuples of r
• f_r: blocking factor of r (number of tuples of r that fit into one block)
• If tuples of r are stored together physically in a file, then:
 \[b_r = \left\lfloor \frac{n_r}{f_r} \right\rfloor \]
• l_r: size of a tuple of r
• $V(A, r)$: number of distinct values that appear in r for attribute A; same as the size of $\Pi_A(r)$
Running example: \textit{student} \Join \textit{takes}

Catalog information for join examples:

- \(n_{\text{student}} = 5,000 \).
- \(f_{\text{student}} = 50 \), which implies that \(b_{\text{student}} = 5000/50 = 100 \).
- \(n_{\text{takes}} = 10,000 \).
- \(f_{\text{takes}} = 25 \), which implies that \(b_{\text{takes}} = 10000/25 = 400 \).

\[V(\text{student}_id, \text{takes}) = 2500 \]

- on avg., each student who has taken a course has taken four courses
- Attribute \textit{student}_id in \textit{takes} is a foreign key referencing \textit{student}
 - \(V(\text{student}_id, \text{student}) = 5000 \) (primary key!)
Selection Size Estimates

• Given a selection criterion, \(c \) is the estimated number of matching tuples

 \[\sigma_{A=v}(r) \]

 – if \(A \) is a key attribute: \(c = 1 \)

 – if \(A \) is a non-key attribute: \(c = n_r / V(A,r) \)

• \(\sigma_{A\leq v}(r) \) (case of \(\sigma_{A\geq v}(r) \) is symmetric)

 – In absence of statistical information: \(c = n_r / 2. \)

 – If \(\min(A,r) \) and \(\max(A,r) \) are available in catalog

 • \(c = 0 \) if \(v < \min(A,r) \)

 • \(c = n_r \cdot \frac{v - \min(A,r)}{\max(A,r) - \min(A,r)} \)

 – Further refinement possible using histograms
Example for Selection Size Estimation

- Estimate for temperature ≤ 18
 - without statistics ($n_r = 176$): $c = n_r / 2 = 88$
 - with min=1, max=25: $c = \frac{n_r \cdot (v - \min(A, r))}{\max(A, r) - \min(A, r)} = 125$
 - using histogram: $c = 48 + 35 + 25 + 50 \cdot \frac{2}{5} = 128$

assumes uniform distribution
assumes uniform distribution within histogram bars
Size Estimation for Complex Selections

- The **selectivity** of a condition θ_i is the probability that a tuple in the relation r satisfies θ_i.
- If s_i is the number of satisfying tuples in r, the selectivity of θ_i is s_i/n_r.
- **Conjunction:** $\sigma_{\theta_1 \wedge \theta_2 \wedge \ldots \wedge \theta_n}(r)$. Assuming independence, estimate of tuples in the result is: $n_r \times \frac{s_1 \times s_2 \times \ldots \times s_n}{n_r^n}$

- **Disjunction:** $\sigma_{\theta_1 \vee \theta_2 \vee \ldots \vee \theta_n}(r)$. Estimated number of tuples:
 $$n_r \times \left(1 - \left(1 - \frac{s_1}{n_r}\right) \times \left(1 - \frac{s_2}{n_r}\right) \times \ldots \times \left(1 - \frac{s_n}{n_r}\right)\right)$$

- **Negation:** $\sigma_{\neg \theta}(r)$. Estimated number of tuples:
 $$n_r - \text{size}(\sigma_{\theta}(r))$$
Estimating the Size of Joins

- The Cartesian product $r \times s$ contains $n_r \cdot n_s$ tuples
 - each tuple occupies $s_r + s_s$ bytes.
- If $R \cap S = \emptyset$, then $r \times s$ is the same as $r \times s$
- If $R \cap S$ is a key for R, then a tuple of s will join with at most one tuple from r
 - therefore, the number of tuples in $r \bowtie s$ is no greater than the number of tuples in s
- If $R \cap S$ in S is a foreign key in S referencing R, then the number of tuples in $r \bowtie s$ is exactly the same as the number of tuples in s.
 - The case for $R \cap S$ being a foreign key referencing S is symmetric.
 - In the example query $\text{student} \bowtie \text{takes}$, student_id in takes is a foreign key referencing student
 - hence, the result has exactly n_{takes} tuples, which is 10,000
Estimating the Size of Joins

- If $R \cap S = \{A\}$ is not a key for R or S

 If we assume that every tuple t in R produces tuples in $R \times S$, the number of tuples in $R \times S$ is estimated to be:

 $$\frac{n_r \times n_s}{V(A,s)}$$

 If the reverse is true, the estimate obtained will be:

 $$\frac{n_r \times n_s}{V(A,r)}$$

 The lower of these two estimates is probably the more accurate one, i.e., we ultimately use

 $$\min \left(\frac{n_r \times n_s}{V(A,s)}, \frac{n_r \times n_s}{V(A,r)} \right)$$

- Can improve on above if histograms are available

 - Use formulas similar to above, for each cell of histograms on the two relations
Estimating the Size of Joins

- If \(R \cap S = \{A\} \) is not a key for \(R \) or \(S \)

Example: computing student \(\times \) takes without join information

\[
\frac{n_{\text{student}} \times n_{\text{takes}}}{V(ID,\text{takes})} = \frac{5000 \times 10000}{2500} = 20000
\]

\[
\frac{n_{\text{student}} \times n_{\text{student}}}{V(ID,\text{takes})} = \frac{5000 \times 10000}{5000} = 10000
\]

\(\rightarrow \) The minimum of the two is 10,000
Estimating the Size of Joins

• Left/right outer join:
 – Estimated size of $r \bowtie s = \text{size of } r \bowtie s + \text{size of } r$
 – Case of right outer join is symmetric

• Full outer join:
 – Estimated size of $r \bowtie\bowtie s = \text{size of } r \bowtie s + \text{size of } r + \text{size of } s$

• Note: These are pessimistic estimates
 – i.e. upper bounds

• In our example: not all students have to take courses
 – hence, computing student \bowtie takes make sense

• Estimated upper bound: $10,000 + 5,000 = 15,000$
Size Estimation for Other Operations

• Projection: estimated size of $\Pi_A(r) = V(A,r)$
• Aggregation: estimated size of $A g_F(r) = V(A,r)$
• Set operations
 – For unions/intersections of selections on the same relation: rewrite and use size estimate for selections
 • E.g. $\sigma_{\theta_1}(r) \cup \sigma_{\theta_2}(r)$ can be rewritten as $\sigma_{\theta_1 \lor \theta_2}(r)$
 – For operations on different relations:
 • estimated size of $r \cup s \leq$ size of $r +$ size of s
 • estimated size of $r \cap s \leq$ minimum (size of r, size of s)
 • estimated size of $r - s \leq r$
 • All the three estimates may be quite inaccurate
 – but provide reliable upper bounds on the sizes
Estimating the Number of Distinct Values

Selections: $\sigma_\theta (r)$

- If θ forces A to take a specified value: $V(A, \sigma_\theta (r)) = 1.$
 - e.g., $A = 3$

- If θ forces A to take on one of a specified set of values: $V(A, \sigma_\theta (r)) = \text{number of specified values}.$
 - e.g., $(A = 1 \lor A = 3 \lor A = 4)$

- If the selection condition θ is of the form $A < r$ estimated $V(A, \sigma_\theta (r)) = V(A,r) \times s$
 - where s is the selectivity of the selection

- In all other cases: use approximate estimate of $\min(V(A,r), n_{\sigma_\theta (r)})$
 - more accurate estimate can be got using probability theory
 - but this one works fine generally

analogous for $>, \leq, \geq$
Estimating the Number of Distinct Values

Joins: $r \Join s$

- If all attributes in A are from r

 \[
 \text{estimated } V(A, r \Join s) = \min (V(A,r), n_{r \Join s})
 \]

- If A contains attributes A_1 from r and A_2 from s, then estimated

 \[
 V(A,r \Join s) = \min(V(A_1,r)*V(A_2 - A_1,s), V(A_1 - A_2,r)*V(A_2,s), n_{r \Join s})
 \]

- Again:
 - more accurate estimate can be got using probability theory
 - but this one works fine generally
Optimizing Nested Subqueries

• In the part about SQL, we have learned about nested subqueries
 – A useful tool, but can lead to complex & expensive queries
• Consider:
 – `select name
 from instructor
 where exists (select *
 from teaches
 where instructor.ID = teaches.ID and teaches.year = 2007)`
• SQL conceptually treats nested subqueries in the where clause as functions
 – Parameters are variables from outer level query, called correlation variables
• Conceptually, nested subquery is executed once for each tuple in the cross-product generated by the outer level `from` clause
 – Such evaluation is called correlated evaluation
Optimizing Nested Subqueries

• Correlated evaluation may be quite inefficient since
 – a large number of calls may be made to the nested query
 – may lead to many additional I/O operations (block seek/transfer) as a result

• SQL optimizers attempt to transform nested subqueries to joins where possible, enabling use of efficient join techniques
 – E.g.: earlier nested query can be rewritten as

    ```sql
    select name 
    from instructor, teaches 
    where instructor.ID = teaches.ID and teaches.year = 2007 
    ```

• Note: the two queries generate different numbers of duplicates (why?)
 – teaches can have duplicate IDs
 – Can be modified to handle duplicates correctly as we will see

• In general, it is not possible/straightforward to move the entire nested subquery from clause into the outer level query from clause

• A temporary relation is created instead, and used in body of outer level query
Optimizing Nested Subqueries

In general, SQL queries of the form below can be rewritten as shown

Rewrite:
\[
\begin{align*}
\text{select} & \quad \ldots \\
\text{from} & \quad L_1 \\
\text{where} & \quad P_1 \text{ and exists (select }^* \text{ from } L_2 \text{ where } P_2) \\
\end{align*}
\]

To:
\[
\begin{align*}
\text{create table } t_1 \text{ as select distinct } V \\
\text{from } & \quad L_2 \\
\text{where} & \quad P_2^1 \\
\text{select} & \quad \ldots \\
\text{from} & \quad L_1, t_1 \\
\text{where} & \quad P_1 \text{ and } P_2^2 \\
\end{align*}
\]

- P_2^1 contains predicates in P_2 that do not involve any correlation variables
- P_2^2 reintroduces predicates involving correlation variables, with relations renamed appropriately
- V contains all attributes used in predicates with correlation variables
Optimizing Nested Subqueries

• In our example, the original nested query would be transformed to

```sql
create table t_1 as
    select distinct ID
    from teaches
    where year = 2007

select name
from instructor, t_1
where t_1.ID = instructor.ID
```

• Replacing a nested query by a query with a join (possibly with a temporary relation) is called **decorrelation**.

• Decorrelation is more complicated if
 – the nested subquery uses aggregation
 – the result of the nested subquery is used to test for equality / comparison
 – the condition linking the nested subquery to the other query is **not exists**
 – ...

 ...
A Note on Subqueries

• In the part about SQL, we have learned that there’s many variants

```
select distinct course_id
from section
where semester = 'Fall' and year = 2009 and
course_id in (select course_id from section
where semester = 'Spring' and year = 2010);
```

• vs.

```
select course_id
from section as S
where semester = 'Fall' and year = 2009 and
exists (select *
from section as T
where semester = 'Spring' and year = 2010
and S.course_id = T.course_id);
```

• vs.

```
select course_id
from section as s1, section as s2
where s1.semester = 'Fall' and s1.year = 2009
and s2.semester = 'Fall' and s2.year = 2009 and s1.course_id = s2.course_id
```
A Note on Subqueries

• For the RDBMS, joins are easier to optimize than subqueries
• Details may differ from RDBMS to RDBMS
• Rule of thumb:
 – if in doubt, use a join rather than a subquery
• That they are equivalent does not mean that they have the same performance!
Top-k Queries

- Top k queries are quite frequent, e.g.,
 - display first 20 records in a user interface, sorted by name
 - search for top selling books
 - list most recent entries in a log table
 - ...

- Query:

  ```sql
  select *
  from r, s
  where r.B = s.B
  order by r.A ascending
  limit 10
  ```

- Alternative 1: Indexed nested loops join with r as outer
- Alternative 2: estimate highest r.A value in result
 - add selection (and r.A <= H) to where clause
 - if < 10 results, retry with larger H
Join Minimization

• Consider

 \[
 \text{select} \ r.A, \ r.B \\
 \text{from} \ r, \ s \\
 \text{where} \ r.B = s.B
 \]

• Check if join with s is redundant, if yes, drop it

• Example for redundant joins:
 – join condition is on foreign key from r to s, r.B is declared not null, \textbf{and}
 – no selection from s
Multiquery Optimization

- Example
 - Q1: `select * from (r natural join t) natural join s`
 - Q2: `select * from (r natural join u) natural join s`
- Both queries share common subexpression `(r natural join s)`
 - May be useful to compute `(r natural join s)` once and use it in both queries
 - May be more expensive in some situations
 - e.g. `(r natural join s)` may be expensive, plans as shown in queries may be cheaper
- **Multiquery optimization**: find best overall plan for a set of queries, exploiting sharing of common subexpressions between queries where it is useful
Parametric Query Optimization

- Example
  ```sql
  select *
  from r natural join s
  where r.a < $1
  ```
 - value of parameter $1 not known at compile time
 - known only at run time
 - Different plans may be optimal for different values of $1

- Solution 1: optimize at run time, each time query is submitted
 - can be expensive
Parametric Query Optimization

- Example
  ```sql
  select *
  from r natural join s
  where r.a < $1
  ```

- Solution 2: **Parametric Query Optimization**:
 - optimizer generates a set of plans, optimal for different values of $1
 - set of optimal plans usually small for 1 to 3 parameters
 - Key issue: how to do find set of optimal plans efficiently
 - best one from this set is chosen at run time when $1 is known

- Solution 3: **Query Plan Caching**
 - If optimizer decides that same plan is likely to be optimal for all parameter values, it caches plan and reuses it, else reoptimize each time
 - Implemented in many database systems
Summary

• Queries can be expressed in multiple forms
 – equivalent in terms of results
 – but different in terms of performance

• Query Optimization
 – pick best execution plan
 – estimate time/memory consumption for an execution plan
 – based on statistical information

• A widely researched area
 – e.g., exploiting advanced statistics about datasets
 – e.g., exploiting log files and histories
 – etc.
Questions?