
Database Technology
Query Processing

Heiko Paulheim

5/5/21 Heiko Paulheim 2

Today

• We’re still opening the mysterious RDBMS black box

– We can query a database

– e.g., queries across multiple tables

• Today

– How are those queries executed?

– Which parts are evaluated first?

– How are sorts carried out?

– ...

5/5/21 Heiko Paulheim 3

Outline

• Overview

• Measures of Query Cost

• Selection Operation

• Sorting

• Join Operation

• Other Operations

• Evaluation of Expressions

5/5/21 Heiko Paulheim 4

Motivation

• Suppose you are a RDBMS

– and you are asked to execute

SELECT name, building, salary
FROM instructor, building
WHERE instructor.dept_name = department.dept_name
AND salary>75000
ORDER BY name

• How do you want to proceed?

– Start with instructor or building relation?

– Sort instructor by name table first, or filter by salary first?

– …

5/5/21 Heiko Paulheim 5

Basic Steps in Query Processing

1) Parsing and translation

2) Optimization

3) Evaluation

5/5/21 Heiko Paulheim 6

Basic Steps in Query Processing

• Parsing and translation

– translate the query into its internal form

– this is then translated into relational algebra

– parser checks syntax, verifies relations

• Evaluation

– The query execution engine takes a query evaluation plan,

– executes that plan,

– and returns the answers to the query

5/5/21 Heiko Paulheim 7

Basic Steps in Query Processing

• A relational algebra expression may have many equivalent expressions

– e.g., salary75000(name,salary(instructor)) is equivalent to

 name,salary(salary75000(instructor))

• Each relational algebra operation can be evaluated using one of
several different algorithms

– Correspondingly, a relational-algebra expression can be evaluated
in many ways

• Annotated expression specifying detailed evaluation strategy is called
an evaluation plan

– e.g., can use an index on salary
to find instructors with salary < 75000,

– or can perform complete relation scan and discard instructors with
salary  75000

5/5/21 Heiko Paulheim 8

Query Optimization

• Query Optimization: Among all equivalent evaluation plans choose
the one with lowest cost

– Cost is estimated using statistical information from the
database catalog

– e.g. number of tuples in each relation, size of tuples, etc.

• Today’s lecture:

– How to measure query costs

– Algorithms for evaluating relational algebra operations

– How to combine algorithms for individual operations in order to
evaluate a complete expression

• Next week’s lecture

– How to optimize queries,

– i.e., how to find an evaluation plan with lowest estimated cost

5/5/21 Heiko Paulheim 9

Measuring Query Cost

• We want to execute the query as “cheap” as possible

• But what is “cheap”?

– Execution time

– Memory consumption

– Electrical power consumption

– ...

• Most approaches seek to minimize the execution time

5/5/21 Heiko Paulheim 10

Measuring Query Cost

• Cost is generally measured as total elapsed time for answering query

• Many factors contribute to time cost

– disk accesses, CPU, or even network communication

• Typically disk access is the predominant cost, and is also relatively
easy to estimate

• Measured by taking into account

– Number of seeks * average-seek-cost

– Number of blocks read * average-block-read-cost

– Number of blocks written * average-block-write-cost

• Cost to write a block is greater than cost to read a block

– data is read back after being written to ensure that the write was
successful

5/5/21 Heiko Paulheim 11

Measuring Hardware Performance

seek
time

write
time

read
time

5/5/21 Heiko Paulheim 12

Recap: Data Access from Hard Disks

• Typically, not all the database can be kept in memory

• Databases are stored on hard disks

• Minimal unit of transfer: block

– optimizing cost
means
minimizing block transfer

5/5/21 Heiko Paulheim 13

Measuring Query Cost

• For simplicity we just use the number of block transfers from disk
and the number of seeks as the cost measures

– tT – time to transfer one block

– tS – time for one disk seek (i.e., finding a block on the disk)

– Cost for b block transfers plus S seeks
 b * tT + S * tS

• We ignore CPU costs for simplicity

– Real systems do take CPU cost into account

– We do not include cost of writing output to disk

5/5/21 Heiko Paulheim 14

Measuring Query Cost

• Several algorithms can reduce disk IO by using extra buffer space

– Amount of real memory available to buffer depends on other concurrent
queries and OS processes, known only during execution

– We often use worst case estimates, assuming only the minimum
amount of memory needed for the operation is available

• Required data may be buffer resident already, avoiding disk I/O

– But hard to take into account for cost estimation

5/5/21 Heiko Paulheim 15

Selection Operation

• File scan

• Algorithm A1 (linear search).

– Seek first block

– Scan this and each consecutive file block and test all records to
see whether they satisfy the selection condition

– cost = br * tT + tS

– br denotes number of blocks containing records from relation r

Assumption:
File is stored in

consecutive blocks

5/5/21 Heiko Paulheim 16

Selection Operation

• If selection is on a key attribute, can stop on finding the single
record (if it exists)

– cost = (br /2) * tT + tS

• Linear search can be applied regardless of

– selection condition or

– ordering of records in the file, or

– availability of indices

• Note: binary search generally does not make sense since data is
not stored in order

– except when there is an index available

– and binary search requires more seeks than index search

5/5/21 Heiko Paulheim 17

Selections Using Indices

• Assuming a B+ tree of height hi

• Index scan – search algorithms that use an index

– selection condition must be on search-key of index

• A2 (primary index, equality on key). Retrieve a single record that
satisfies the corresponding equality condition

• Cost = (hi + 1) * (tT + tS)

5/5/21 Heiko Paulheim 18

Selections Using Indices

• Assuming a B+ tree of height hi

• A3 (primary index, equality on nonkey) Retrieve multiple records.

– Records will be on consecutive blocks

– Let b = number of blocks containing matching records

– Cost = hi * (tT + tS) + tS + tT * b

5/5/21 Heiko Paulheim 19

Selection Using Secondary Index

• A4 (secondary index, equality on nonkey).

• Retrieve a single record if the search-key is a candidate key

– Cost = (hi + 1) * (tT + tS)

• Retrieve multiple records if search-key is not a candidate key

– each of n matching records may be on a different block

– Cost = (hi + n) * (tT + tS)

• Can be very expensive!

5/5/21 Heiko Paulheim 20

Selection: A1-A4 in Numbers

• Recap:

– A1 (file scan): br * tT + tS

– A3 (tree, primary index): hi * (tT + tS) + tS + tT * b

– A4 (tree, secondary index): (hi + n) * (tT + tS)

• Let’s assume:

– 1,000 records, br = 50 (20 records per block), tree height hi = 3,
n = b = 4 matching records on different blocks

• A1: 50 * tT + tS

• A3: 3 * (tT + tS) + tS + tT * 4 = 7 * tT + 4 * tS

• A4: (3 + 4) * (tT + tS) = 7 * tT + 7 * tS

5/5/21 Heiko Paulheim 21

Selections Involving Comparisons

• Can implement selections of the form AV (r) or A  V(r) by using

– a linear file scan,

– or by using an index

• A5 (primary index, comparison). (Relation is sorted on A)

– For A  V(r) use index to find first tuple  v and scan relation
sequentially from there

– For AV (r) just scan relation sequentially till first tuple > v; do not
use index

– Cost = hi * (tT + tS) + tS + tT * b

• identical to A3 (index on nonkey)

5/5/21 Heiko Paulheim 22

Selections Involving Comparisons

• Can implement selections of the form AV (r) or A  V(r) by using

– a linear file scan,

– or by using an index

• A6 (secondary index, comparison). (Relation not sorted on A)

– For A  V(r) use index to find first index entry  v and scan index
sequentially from there, to find pointers to records.

– For AV (r) just scan leaf pages of index finding pointers to records,
till first entry > v

– In either case, retrieving records that are pointed to

• requires an I/O for each record

• may be more expensive than linear file scan

– Cost = (hi + n) * (tT + tS)

• identical to A4 (index on nonkey)

5/5/21 Heiko Paulheim 23

Implementation of Complex Selections

• Conjunction: 1 2. . . n(r)

– e.g., all students enrolled in the MMDS,
in semester 4 or higher with GPA<2.0

• A7 (conjunctive selection using one index).

– Select a combination of i and algorithms A2 through A6
that results in the least cost for i (r)

– Test other conditions on tuple after fetching it into memory buffer

• A8 (conjunctive selection using composite index).

– Use appropriate composite (multiple-key) index if available

– Use one of the algorithms A2-A4 with the least cost

– Test other conditions on tuple after fetching it into memory buffer

5/5/21 Heiko Paulheim 24

Implementation of Complex Selections

• A9 (conjunctive selection by intersection of identifiers)

– Requires indices with record pointers

– Use corresponding index for each condition, and take
intersection of all the obtained sets of record pointers

• all record pointers of students with program “MMDS”,

• all record pointers of students with semester ≥ 4

• all record pointers of students with GPA<2.0

– Then fetch records from file

• minimizes block transfers as far as possible

– If some conditions do not have appropriate indices

• apply remaining tests in memory

5/5/21 Heiko Paulheim 25

Implementation of Complex Selections

• Disjunction:1 2 . . . n (r).

• A10 (disjunctive selection by union of identifiers)

– Use corresponding index for each condition

– collect pointers for each condition

– use union of all the obtained sets of record pointers

– Then fetch records from file

• Applicable only if all conditions have available indices

– Otherwise use linear scan

5/5/21 Heiko Paulheim 26

Implementation of Complex Selections

• Negation: (r)

– Use linear scan on file

• Sometimes:

– negation can be reformulated:

• (salary>4000) → salary≤4000

• Special case:

– if very few records satisfy , and an index is applicable to 
– find satisfying records using index and fetch from file

5/5/21 Heiko Paulheim 27

Intermediate Recap: Selection

• Selection performance depends on availability of indices

• Conjunctive queries ():

– mixed strategies are possible:

• create intermediate result set using indices

• perform remaining tests on intermediate result set

• Disjunctive queries () and negation ():
– less easy

– disjunction requires complete set of indices

– negation is not easily solveable (unless it can be resolved upfront)

5/5/21 Heiko Paulheim 28

Sorting

• Recap initial example:

SELECT name, building, salary
FROM instructor, building
WHERE instructor.dept_name = department.dept_name
AND salary>75000
ORDER BY name

• Assuming we have indices on dept_name and salary

– how do we sort the results efficiently?

• Variant 1: build an index on the sorting attribute

– and read from that index

– hard to combine with other conditions

• Variant 2: sort in memory (e.g., QuickSort)

• Variant 3: use external sort merge

5/5/21 Heiko Paulheim 29

External Sort-Merge

• Two steps:

1) Created partially sorted data chunks

2) Merge the partially sorted chunks

● First step:
● Let M be the memory capacity
● Create sorted runs. Let i be 0 initially

 Repeatedly do the following till the end of the relation:
 (a) Read M blocks of relation into memory
 (b) Sort the in-memory blocks
 (c) Write sorted data to run Ri; increment i

Let the final value of i be N

5/5/21 Heiko Paulheim 30

External Sort-Merge

● Second step: merge the runs
● Merge the runs (N-way merge). We assume (for now) that N < M.

● Use N blocks of memory to buffer input runs, and 1 block to buffer
output. Read the first block of each run into its buffer page

repeat

Select the first record (in sort order) among all buffer pages

Write the record to the output buffer.

If the output buffer is full write it to disk.

Delete the record from its input buffer page.
If the buffer page becomes empty then
 read the next block (if any) of the run into the buffer.

until all input buffer pages are empty

• If N  M, several merge passes are required

– In each pass, contiguous groups of M - 1 runs are merged

5/5/21 Heiko Paulheim 31

External Sort-Merge

5/5/21 Heiko Paulheim 32

External Sort-Merge

3

1

1

2

5/5/21 Heiko Paulheim 33

External Sort-Merge

• At each merge step, only three blocks need to be kept in memory

– the two (sorted) blocks which are currently merged

– the current output block

– after half way through sorting two blocks

• the current output block is written to disk

• a second output block is started

• Speed up:

– the more blocks fit in memory at a same time,

the larger the chunks can be

– Ultimately, less passes are required

5/5/21 Heiko Paulheim 34

Join Operations

• Recap: Initial example:
SELECT name, building, salary
FROM instructor, building
WHERE instructor.dept_name = department.dept_name
AND salary>75000
ORDER BY name

• Several different algorithms to implement joins

• Choice based on cost estimate

• Examples use the following information

– Number of records of instructor: 5,000 department: 10,000

– Number of blocks of instructor: 100 department: 400

5/5/21 Heiko Paulheim 35

Nested Loop Join

• To compute the theta join r  s
for each tuple tr in r do begin

for each tuple ts in s do begin

test pair (tr,ts) to see if they satisfy the join condition 

if they do, add tr • ts to the result.

end
end

• r is called the outer relation and s the inner relation of the join

• Requires no indices and can be used with any kind of join condition

• Expensive since it examines every pair of tuples in the two relations

5/5/21 Heiko Paulheim 36

Nested Loop Join

• In the worst case, if there is enough memory only to hold one block
of each relation, the estimated cost is
 nr  bs + br block transfers, plus
 nr + br seeks

• Assuming worst case memory availability cost estimate is

– with instructor as outer relation:

5000  400 + 100 = 2,000,100 block transfers,

5000 + 100 = 5,100 seeks

– with department as the outer relation

10000  100 + 400 = 1,000,400 block transfers and 10,400 seeks

records/blocks
instructor: 5,000/100
department: 10,000/400

5/5/21 Heiko Paulheim 37

Nested Loop Join

• Best case: the smaller relation fits entirely in memory

– use that as the inner relation

– reduces cost to br + bs block transfers and two seeks

• If smaller relation (instructor) fits entirely in memory, the cost
estimate will be 500 block transfers

– 100 blocks reading the instructor relation into memory

– 400 blocks of the department relation

records/blocks
instructor: 5,000/100
department: 10,000/400

5/5/21 Heiko Paulheim 38

Block Nested Loop Join

• Variant of nested-loop join in which every block of inner relation is
paired with every block of outer relation

• Algorithm uses four nested loops

for each block Br of r do

for each block Bs of s do

for each tuple tr in Br do

for each tuple ts in Bs do

Check if (tr,ts) satisfy the join condition

if they do, add tr
 • ts to the result.

5/5/21 Heiko Paulheim 39

Block Nested Loop Join

• Worst case: only one block of each relation fits in memory

– estimate: br  bs + br block transfers + 2 * br seeks

– Each block in the inner relation s is read once
for each block in the outer relation

• Best case: br + bs block transfers + 2 seeks

• Improvements to nested loop and block nested loop algorithms:

– If equi-join attribute forms a key on inner relation, stop inner loop
on first match

– Scan inner loop forward and backward alternately, to make use
of the blocks remaining in buffer (with LRU replacement)

– Use index on inner relation if available (next slide)

5/5/21 Heiko Paulheim 40

Indexed Nested Loop Join

• Index lookups can replace file scans if

– join is an equi-join or natural join and

– an index is available on the inner relation’s join attribute

• For each tuple tr in the outer relation r, use the index to look up

tuples in s that satisfy the join condition with tuple tr

• Worst case: buffer has space for only one page of r, and, for each
tuple in r, we perform an index lookup on s

• If indices are available on join attributes of both r and s

– use the relation with fewer tuples as the outer relation

5/5/21 Heiko Paulheim 41

Cost of Nested Loop with and without Index

• Compute instructor department, with department as the outer
relation

– Let department have a primary B+-tree index on the attribute
dept_name, which contains 20 entries in each index node

– Since department has 10,000 tuples, the height of the tree is 4

– i.e.: five block transfers to find the actual data

• instructor has 5000 tuples

• Cost of block nested loops join

– 400*100 + 100 = 40,100 block transfers + 2 * 100 = 200 seeks

– assuming worst case memory

(may be significantly less with more memory)

• Cost of indexed nested loops join

– 100 + 5000 * 5 = 25,100 block transfers and seeks

records/blocks
instructor: 5,000/100
department: 10,000/400

5/5/21 Heiko Paulheim 42

Merge Join

• Sort both relations on their join attribute (if not already sorted on the
join attributes):

– move two pointers pr and ps

– if pr=ps → add join result to result set

else

if pr<ps
advance pr

else
advance ps

• Main difference is handling of duplicate values in join attribute:

– every pair with same value on join attribute must be matched

• Detailed algorithm in books

5/5/21 Heiko Paulheim 43

Merge Join

• Example from http://sqlity.net/en/1480/a-join-a-day-the-sort-merge-
join/

5/5/21 Heiko Paulheim 44

Merge Join

• Can be used only for equi-joins and natural joins

• Each block needs to be read only once (assuming all tuples for any
given value of the join attributes fit in memory)

• Thus the cost of merge join is:

– br + bs block transfers + br / bb + bs / bb seeks

– plus the cost of sorting if relations are unsorted

bb: no- of buffer blocks
allocated to each relation

5/5/21 Heiko Paulheim 45

Merge Join

• Actual comparisons carried out by a merge join

– roughly linear instead of quadratic

http://www.dcs.ed.ac.uk/home/tz/phd/thesis/node20.htm

5/5/21 Heiko Paulheim 46

Hash Join

• Applicable for equi-joins and natural joins

– idea: partition relations to join using hashes

– only compute joins based on the hash partitions

• A hash function h is used to partition tuples of both relations

• h maps JoinAttrs values to {0, 1, ..., n}, where JoinAttrs denotes the
common attributes of r and s used in the natural join

– r0, r1, ... , rn denote partitions of r tuples

• Each tuple tr  r is put in partition ri where i = h(tr [JoinAttrs])

– s0,s1 ... , sn denotes partitions of s tuples

• Each tuple ts s is put in partition si where i = h(ts[JoinAttrs])

5/5/21 Heiko Paulheim 47

Hash Join

5/5/21 Heiko Paulheim 48

Hash Join

Computing Hash Join:

1. Partition the relation s using hashing function h

2. Partition r similarly

3. For each i (1 ≤ i ≤ number of partitions):

(a)Load si into memory and build an in-memory hash index on it using
the join attribute (using a different hash function)

(b) Read the tuples in ri from the disk one by one. For each tuple tr
locate each matching tuple ts in si using the in-memory hash index

Relation s is called the build input and r is called the probe input

why
different?

5/5/21 Heiko Paulheim 49

Hash Join

• Complexity

– Building the hash: reading each block in each relation, and writing the
partition back to disk: 2(br + bs)

– Computing the join: reading each partition

• Partitions can also be underfull blocks

– i.e., there might be nh extra partitions for each relation

– each of those needs to be written and read

• Thus, the total number of block transfers is

– 3(br + bs) + 4nh

• Number of seeks

– need to seek original and partitioned blocks, respecting underfull blocks

– i.e. 2(br / bb + bs / bb)

for simplicity,
overflow partitions
are not considered

here

5/5/21 Heiko Paulheim 50

Joins with Complex Conditions

• Join with a conjunctive condition:

r 1  2...   n s

– Either use nested loops/block nested loops, or

– Compute the result of one of the simpler joins r i s

– final result comprises those tuples in the intermediate result that
satisfy the remaining conditions

1  . . .  i –1  i +1  . . .  n

• Join with a disjunctive condition

 r 1  2 ...  n s

– Either use nested loops/block nested loops, or

– Compute as the union of the records in individual joins r  i s:

(r 1 s)  (r 2 s)  . . .  (r n s)

5/5/21 Heiko Paulheim 51

Duplicate Elimination & Projection

• In relational algebra, there are no duplicates by definition

– i.e., each projection yields a unique result

• In SQL queries, they can be explicitly discarded

– SELECT DISTINCT …

• Duplicates can be eliminated either via sorting or hashing

– After sorting, duplicates are adjacent,
and can be easily removed passing over the data

• with sort merge, duplicate elimination can be done early

– With hashing, they are sorted into the same bucket,
and can be detected locally

• Projection

– perform projection on each tuple

– then run duplicate removal

5/5/21 Heiko Paulheim 52

Aggregation

• Aggregation can be implemented similarly to duplicate elimination

• Sorting or hashing

– bring tuples in the same group together

– then apply aggregate functions on each group

• Optimization:

– combine tuples in the same group during run generation and
intermediate merges

– compute partial aggregate values

• count, min, max, sum: keep aggregate values on tuples
found so far in the group

• avg: keep sum and count, and divide sum by count at the
end

5/5/21 Heiko Paulheim 53

Outer Joins

• Outer join can be computed either as

– a join followed by addition of null-padded non-participating tuples

– by modifying the join algorithms

• Modifying merge join to compute r s

– In r s, non participating tuples are those in r – R(r s)

– During merging, for every tuple tr from r that do not match any tuple
in s, output tr padded with nulls

• Right outer join and full outer join can be computed similarly

• Modifying hash join to compute r s

– If r is probe relation, output non-matching r tuples padded with nulls

– If r is build relation, keep track of which r tuples matched s tuples

• at the end of si, output non-matched r tuples padded with nulls

5/5/21 Heiko Paulheim 54

Evaluation of Expressions

• So far: we have seen algorithms for individual operations

• Alternatives for evaluating an entire expression tree

– Materialization: generate results of an expression whose
inputs are relations or are already computed, materialize (store)
it on disk. Repeat.

– Pipelining: pass on tuples to parent operations even as an
operation is being executed

• We study above alternatives in more detail

5/5/21 Heiko Paulheim 55

Materialization

• Materialized evaluation: evaluate one operation at a time, starting
at the lowest level. Use intermediate results materialized into
temporary relations to evaluate next-level operations

• E.g., in figure below, compute and store

then compute the store its join with instructor, and finally compute
the projection on name.

)("Watson" departmentbuilding

5/5/21 Heiko Paulheim 56

Cost of Materialization

• Materialized evaluation is always applicable

– Cost of writing results to disk and reading them back can be
quite high

• Our cost formulas for operations ignore cost of writing results
to disk, so

• Overall cost = Sum of costs of individual operations +
 cost of writing intermediate results to disk

• Double buffering: use two output buffers for each operation, when
one is full write it to disk while the other is getting filled

– Allows overlap of disk writes with computation and reduces
execution time

5/5/21 Heiko Paulheim 57

Pipelining

• Pipelined evaluation: evaluate several operations simultaneously,
passing the results of one operation on to the next

– E.g., in previous expression tree, do not store result of

– instead, pass tuples directly to the join

– do not store result of join, pass tuples directly to projection

• Much cheaper than materialization: no need to store a temporary
relation to disk

– Pipelining may not always be possible – e.g., sort, hash-join

– For pipelining to be effective, use evaluation algorithms that
generate output tuples even as tuples are received for inputs to
the operation

• Pipelines can be executed in two ways: demand driven and
producer driven

)("Watson" departmentbuilding

5/5/21 Heiko Paulheim 58

Pipelining

• In demand driven or lazy evaluation

– system repeatedly requests next tuple from top level operation

– Each operation requests next tuple from children operations as required,
in order to output its next tuple

– In between calls, operation has to maintain “state” so it knows what to return
next

• In producer-driven or eager pipelining

– Operators produce tuples eagerly and pass them up to their parents

– Buffer maintained between operators, child puts tuples in buffer, parent
removes tuples from buffer

– if buffer is full, child waits till there is space in the buffer, and then generates
more tuples

– System schedules operations that have space in output buffer and can
process more input tuples

• Alternative names: pull and push models of pipelining

5/5/21 Heiko Paulheim 59

Summary

• How are queries executed?

– Each query is a sequence of operations

– Sequence: materialization vs. pipelining

• Implementation of different operations

– Selection

– Joins

– Sorting

– Projection

– …

• Estimation of query cost

– block seeks and block transfers

– gives way to query optimization (next lecture)

5/5/21 Heiko Paulheim 60

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Questions?

