
Database Technology
SQL Part 1

Heiko Paulheim

2/28/23 Heiko Paulheim 2

Outline

• Today

– Overview of The SQL Query Language

– Basic Query Structure

– Set Operations

– Join Operators

– Null Values

– Aggregate Functions

– Nested Subqueries

• Next week

– Data Definition

– Data Types in SQL

– Modifications of the database

– Views

– Integrity Constraints

– Roles & Rights

2/28/23 Heiko Paulheim 3

Recap: Database Systems

• Users and applications interact
with databases

– By issuing queries

– Data definition (DDL):
defining, altering, deleting tables

– Data manipulation (DML):
reading from & writing to tables

• SQL is both a DDL and a DML

– The language that most DBMS speak

*
*

*

2/28/23 Heiko Paulheim 4

History

• IBM SEQUEL language developed as part of System R project
at the IBM San Jose Research Laboratory

– Structured English QUEry Language

• Renamed Structured Query Language (SQL)

• ANSI and ISO standard SQL:

– SQL-86

– SQL-89

– SQL-92

– SQL:1999

– SQL:2003

• Commercial + free systems offer most, if not all, SQL-92 features

– plus varying feature sets from later standards and special proprietary
features

– Not all examples here may work on your particular system!

Naming became
Y2K compliant! ;-)

2/28/23 Heiko Paulheim 5

Parts of SQL: The Big Picture

Source: https://www.w3schools.in/mysql/ddl-dml-dcl/

2/28/23 Heiko Paulheim 6

Reading Data

• The select clause lists the attributes desired in the result of a query

• Example: find the names of all instructors:
select name
from instructor

• In relational algebra:

– name (instructor)

2/28/23 Heiko Paulheim 7

A Note on Case Sensitivity

• SQL is completely case insensitive

– select = SELECT = SeLeCt

• Also for names of relations and attributes

– instructor = Instructor = INSTRUCTOR

– name = NAME = nAmE

• Each relation / attribute can only exist once

– Hence, two relations named instructor and Instructor
would not be feasible

• Case sensitivity does not apply to values!

– i.e., “Einstein” and “einstein” are different values!

2/28/23 Heiko Paulheim 8

Renaming Columns in a Select

• Columns can be renamed during selection

• select name, salary as payment from instructor

• In relational algebra

– a composition of projection and renaming:

payment← salary

 (name,salary (instructor))

2/28/23 Heiko Paulheim 9

The Select Clause

• An asterisk in the select clause denotes “all attributes”

select * from instructor

• An attribute can be a literal with no from clause, possibly renamed

select ‘437’

select ‘437’ as FOO

• An attribute can be a literal with from clause

select name, ‘Instructor’ as role from instructor

union

select name, ‘Student’ as role from student

name role

Smith Instructor

Einstein Instructor

... ...

Johnson Student

... ...

FOO

437

2/28/23 Heiko Paulheim 10

Duplicates

• Difference to relational algebra

– Sets do not contain duplicates!

• SQL allows duplicates in relations as well as in query results

• To force the elimination of duplicates, insert the keyword distinct
after select.

• Find the department names of all instructors, and remove duplicates
select distinct dept_name

from instructor

unless we define
a constraint
(see later)

2/28/23 Heiko Paulheim 11

Arithmetics in the Selection

• The select clause can contain arithmetic expressions involving the
operation, +, –, , and /, and operating on constants or attributes of
tuples

– Here, we leave relational algebra!

• The query

select ID, name, salary/12 from instructor

would return a relation that is the same as the instructor relation,
except that the value of the attribute salary is divided by 12

• Combined with renaming:

– select ID, name, salary/12 as monthly_salary

2/28/23 Heiko Paulheim 12

Reading Parts of a Relation

• So far, we have always read an entire relation

• Usually, we are interested only in a small portion

• The where clause restricts which parts of the table to read

• To find all instructors in Comp. Sci. dept

select name
from instructor
where dept_name = ‘Comp. Sci.'

• In relational algebra: combination of selection and projection

pname(dept_name = ‘Comp. Sci.’(r))

2/28/23 Heiko Paulheim 13

Reading Parts of a Relation

• Comparison results can be combined using the logical connectives
and, or, and not

select name
from instructor
where dept_name = ‘Comp. Sci.' and salary > 90000

pname(dept_name = ‘Comp. Sci.’ ʌ salary>90000(r))

• Can be combined with results of arithmetic expressions

select name, salary/12 as monthly_salary
from instructor
where dept_name = ‘Comp. Sci.' and monthly_salary > 7500

2/28/23 Heiko Paulheim 14

Searching in Texts

• So far, we have handled exact equality in selections

• Sometimes, we want to search differently

– All books that contain “database”

– All authors starting with “S”

– …

• In SQL: comparing with like and two special characters:

– _ = any arbitrary character

– % = any number of arbitrary characters

– masking with backslash

select … where title like ‘%database%’

select … where author like ‘S%’

select … where amount like ‘100\%’

most SQL engines
don’t check types

2/28/23 Heiko Paulheim 15

Reading Data from Multiple Tables

• Example: find all instructors and the courses they teach

• select from instructor, teaches

– this generates the cartesian product, i.e., instructor x teaches

– result: generates every possible instructor – teaches pair, with all
attributes from both relations

• Common attributes (e.g., ID), the attributes in the resulting table are
renamed using the relation name

– e.g., instructor.ID, teaches.ID

• Relational algebra notation:
–

instructor.ID ← ID
(instructor) x

teaches.ID ← ID
(teaches)

but is that useful?

2/28/23 Heiko Paulheim 16

Cartesian Product

instructor teaches

2/28/23 Heiko Paulheim 17

Cartesian Products with Selection

• Find the names of all instructors who have taught some course and
the course_id

select name, course_id
from instructor , teaches
where instructor.ID = teaches.ID

• Relational algebra:
pname,course_id(instructor.ID=teaches.ID(

instructor.ID ← ID
((instructor) x

teaches.ID ← ID
(teaches))))

2/28/23 Heiko Paulheim 18

Cartesian Product

instructor teaches

2/28/23 Heiko Paulheim 19

Cartesian Products with Selection

• Find the names of all instructors in the Finance department who
have taught some course, together with the course_id

select name, course_id
from instructor , teaches
where instructor.ID = teaches.ID and instructor. dept_name = ‘Finance’

pname,course_id(instructor.ID=teaches.ID ʌ dept_name=’Finance’(instructor.ID ← ID
(

(instructor) x
teaches.ID ← ID

(teaches))))

2/28/23 Heiko Paulheim 20

Cartesian Product

instructor teaches

2/28/23 Heiko Paulheim 21

Cartesian Product of a Table with Itself

• Find the names of all instructors who have a higher salary than
some instructor in ‘Comp. Sci’.

– We need the same table twice

– So, we have to use it under different names

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = ‘Comp. Sci.’

pT,name(T.salary>S.salary ʌ S.dept_name=’Comp. Sci.’ (T
(instructor) x

S
(instructor)))

• What happens if we omit the distinct here?

2/28/23 Heiko Paulheim 22

Join Operations

• Join operations

– take two relations

– return as new relation as their result

• A join operation

– is a Cartesian product

– requires that tuples in the two relations match (under some
condition)

– specifies the attributes that are present in the result of the join

• The join operations are typically used as subquery expressions in
the from clause

2/28/23 Heiko Paulheim 23

Join Operations

• Recap: We have already seen a form of joins:

• A join operation

– is a Cartesian product

– requires that tuples in the two relations match (under some
condition)

– specifies the attributes that are present in the result of the join

• Find the names of all instructors who have taught some course and
the course_id

select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID

2/28/23 Heiko Paulheim 24

Outer Joins

• Consider the two relations below

• Desired:

– List all courses with their prerequisites

– Note: course CS-315 has no prerequisites

2/28/23 Heiko Paulheim 25

Outer Joins

• List all courses with their prerequisites

select C.course_id, C.title, C.credits, C.dept_name, P.course_id
from course as C, prereq as P
where C.course_id = P.course_id

C.course_id C.title C.credits C.dept_name P.course_id

BIO-301 Genetics 4 Biology BIO-101

CS-190 Game Design 4 Comp. Sci. CS-101

2/28/23 Heiko Paulheim 26

Outer Joins

• List all courses with their prerequisites

select C.course_id, C.title, C.credits, C.dept_name, P.prereq_id
from course as C left outer join prereq as P
on C.course_id = P.course_id

C.course_id C.title C.credits C.dept_name P.prereq_id

BIO-301 Genetics 4 Biology BIO-101

CS-190 Game Design 4 Comp. Sci. CS-101

CS-315 Robotics 3 Comp. Sci. null

2/28/23 Heiko Paulheim 27

Join Operations

• Join type – defines how tuples in each relation that do not match
any tuple in the other relation (based on the join condition) are
treated

– inner join: ignore

– outer join: fill with null values

• Join condition – defines which tuples in the two relations match,
and what attributes are present in the result of the join

– explicit: on clause

– implicit: natural keyword

for the moment:
keyword for “a blank cell”

2/28/23 Heiko Paulheim 28

Outer Joins

• List all courses with their prerequisites

select C.course_id, C.title, C.credits, C.dept_name, P.prereq_id
from course as C right outer join prereq as P
on C.course_id = P.course_id

C.course_id C.title C.credits C.dept_name P.prereq_id

BIO-301 Genetics 4 Biology BIO-101

CS-190 Game Design 4 Comp. Sci. CS-101

CS-347 null null null CS-101

2/28/23 Heiko Paulheim 29

Outer Joins

• List all courses with their prerequisites

select C.course_id, C.title, C.credits, C.dept_name, P.prereq_id
from course as C full outer join prereq as P
on C.course_id = P.course_id

C.course_id C.title C.credits C.dept_name P.prereq_id

BIO-301 Genetics 4 Biology BIO-101

CS-190 Game Design 4 Comp. Sci. CS-101

CS-347 null null null CS-101

CS-315 Robotics 3 Comp. Sci. null

2/28/23 Heiko Paulheim 30

Join Types at a Glance

https://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

2/28/23 Heiko Paulheim 31

Ordering Results

• Recap: Relational Algebra works on sets

– i.e., it does not have orderings

• For database applications, ordering is often useful, e.g.,

– list students ordered by names
select id,name
from student
order by name

– list instructors ordered by department first, then by name
select id,name,dept_name
from instructor
order by dept_name, name

2/28/23 Heiko Paulheim 32

Limiting Results

• Find the three lecturers with the highest salaries

select id,name,salary
from instructor
order by salary desc
limit 3;

• Note: the desc keyword creates a descending ordering

• asc also exists and creates an ascending ordering

– also the default when not specifiying the direction

2/28/23 Heiko Paulheim 33

Paging with LIMIT and OFFSET

• Applications, e.g., Web applications, often offer a paged view

• Example:

– Display student list on pages of 100 students

– with navigation (next page, previous page)

select id,name
from student
order by name
limit 100
offset 100;

• offset 100 means: skip the first 100 entries

– i.e., this query would create the second page

• Note: offset should only be used with order by

– otherwise, the results are not deterministic

2/28/23 Heiko Paulheim 34

Set Operations

• All courses that are offered in HWS 2017 and FSS 2018

(select course_id from section where sem = ‘HWS’ and year = 2017)
 intersect
(select course_id from section where sem = ‘FSS’ and year = 2018)

pcourse_id(sem=’HWS’ ʌ year=2017(section)) pcourse_id(sem=’FSS’ ʌ year=2018(section))

• All courses that are offered in HWS 2017 but not in FSS 2018

(select course_id from section where sem = ‘HWS’ and year = 2017)
 except
(select course_id from section where sem = ‘FSS’ and year = 2018)

pcourse_id(sem=’HWS’ ʌ year=2017(section)) – pcourse_id(sem=’FSS’ ʌ year=2018(section))

2/28/23 Heiko Paulheim 35

Set Operations

• All courses that are offered in HWS 2017 or FSS 2018

(select course_id from section where sem = ‘HWS’ and year = 2017)
 union
(select course_id from section where sem = ‘FSS’ and year = 2018)

pcourse_id(sem=’HWS’ ʌ year=2017(section)) pcourse_id(sem=’FSS’ ʌ year=2018(section))

• Alternative solution

(select course_id from section where
((sem = ‘HWS’ and year = 2017) or (sem = ‘FSS’ and year = 2018))

pcourse_id((sem=’HWS’ ʌ year=2017) v (sem=’FSS’ ʌ year=2018)) (section))

2/28/23 Heiko Paulheim 36

Aggregate Functions – Examples

• Find the average salary of instructors in the Computer Science
department

– select avg (salary)
from instructor
where dept_name= ’Comp. Sci.’;

• Find the number of tuples in the course relation

– select count (*)
from course;

• Find the total number of instructors who teach a course in the
Spring 2010 semester

– select count (distinct ID)
from teaches
where semester = ’Spring’ and year = 2010;

Why do we need
distinct here?

2/28/23 Heiko Paulheim 37

Aggregate Functions with Group By

• Find the average salary of instructors in each department

– select dept_name, avg (salary) as avg_salary
from instructor
group by dept_name;

avg_salary

2/28/23 Heiko Paulheim 38

Aggregate Functions with Group By

• Attributes in select clause outside of aggregate functions must
appear in group by list

/* erroneous query */
select dept_name, ID, avg (salary)
from instructor
group by dept_name;

why?

avg(salary)

2/28/23 Heiko Paulheim 39

Conditions on Aggregate Values

• Find the names and average salaries of all departments whose
average salary is greater than 42000

– select dept_name, avg (salary) as avg_salary
from instructor
group by dept_name
where avg_salary > 42000;

• Problem:

– Aggregation is performed after selection and projection

– Hence, the variable avg_salary is not available
when the where clause is evaluated

→ The above query will not work

2/28/23 Heiko Paulheim 40

Conditions on Aggregate Values

• Find the names and average salaries of all departments whose
average salary is greater than 42000

– select dept_name, avg (salary) as avg_salary
from instructor
group by dept_name
having avg_salary > 42000;

• The having clause is evaluated after the aggregation

• Hence, it is different from the where clause

• Rule of thumb

– Conditions on aggregate values can only be defined using having

performance!

2/28/23 Heiko Paulheim 41

NULL Values

• null signifies an unknown value or that a value does not exist

• It is possible for tuples to have a null value, denoted by null, for
some of their attributes

– can be forbidden by a not null constraint

– keys can never be null!

• The result of any arithmetic expression involving null is null

• Example: 5 + null returns null

• The predicate is null can be used to check for null values

• Example: Find all instructors whose salary is null.

select name
from instructor
where salary is null

2/28/23 Heiko Paulheim 42

NULL Values and Three Valued Logic

• Three values – true, false, unknown

• Any comparison with null returns unknown

– Example: 5 < null or null <> null or null = null

• Three-valued logic using the value unknown:

– OR: (unknown or true) = true,
 (unknown or false) = unknown
 (unknown or unknown) = unknown

– AND: (true and unknown) = unknown,
 (false and unknown) = false,
 (unknown and unknown) = unknown

– NOT: (not unknown) = unknown

• “P is unknown” evaluates to true if predicate P evaluates to unknown

• Result of where clause predicate is treated as false if it evaluates to
unknown

2/28/23 Heiko Paulheim 43

Aggregates and NULL Values

• Total all salaries

select sum (salary)
from instructor

– Above statement ignores null amounts

– Result is null if there is no non-null amount

• All aggregate operations except count(*) ignore tuples with null
values on the aggregated attributes

• What if collection has only null values?

– count returns 0

– all other aggregates return null

null

null

null

null

2/28/23 Heiko Paulheim 44

Subqueries

• SQL provides a mechanism for the nesting of subqueries. A subquery is a
select-from-where expression that is nested within another query.

• The nesting can be done in the following SQL query

select A1, A2, ..., An

from r1, r2, ..., rm

where P

as follows:

• Ai can be replaced be a subquery that generates a single value

• ri can be replaced by any valid subquery

• P can be replaced with an expression of the form:

 B <operation> (subquery)

 Where B is an attribute and <operation> to be defined later

2/28/23 Heiko Paulheim 45

Subqueries in the WHERE Clause

• A common use of subqueries is to perform tests:

– for set membership

– for set comparisons

– for set cardinality

2/28/23 Heiko Paulheim 46

Test for Set Membership

• Find courses offered this term by lectures from the biology
department

select distinct course_id
from teaches
where semester = ’Spring’ and year= 2022 and

ID in (select ID from instructor where dept_name = ‘Biology’);

• Find courses offered this term before 9 am or after 5 pm
select distinct course_id
from section
where semester = ’Spring’ and year= 2022 and

time_slot_id not in (select time_slot_id from time_slot
where end_time >= 9 and start_time <= 17);

2/28/23 Heiko Paulheim 47

Test for Set Membership

• Find the total number of (distinct) courses offered by instructors in
the biology department

select count(distinct course_id)
from teaches
where semester = ’Spring’ and year= 2022 and

ID in (select ID from instructor where dept_name = ‘Biology’);

• Note: in all of those cases,
other (sometimes simpler) solutions are possible

– In SQL, there are often different ways to solve a problem

– A question of personal taste

– But also: a question of performance...

2/28/23 Heiko Paulheim 48

Test for Set Membership

• Find the total number of (distinct) courses offered by instructors in
the biology department

select count(distinct course_id)
from teaches
where semester = ’Spring’ and year= 2022 and

ID in (select ID from instructor where dept_name = ‘Biology’);

• vs.
select count (distinct course_id)
from teaches, instructor
where teaches.ID = instructor.ID and instructor.department = ‘Biology’;

computes
Cartesian
product

creates a
temporary

table

2/28/23 Heiko Paulheim 49

Set Comparison with SOME

• Find names of instructors with salary greater than
that of some (at least one) instructor in the Biology department

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept name = ’Biology’;

• Same query using > some clause
select name
from instructor
where salary > some (select salary

 from instructor
 where dept name = ’Biology’);

2/28/23 Heiko Paulheim 50

Set Comparison with ALL

• Find names of instructors with salary greater than
that of all instructors in the Biology department

select name
from instructor
where salary > all (select salary

 from instructor
 where dept name = ’Biology’);

• Note: we could also achieve this with MIN and MAX aggregates in the
subqueries

2/28/23 Heiko Paulheim 51

Definition: Comparisons with SOME

• F <comp> some r t r such that (F <comp> t)
Where <comp> can be:

0
5
6

(5 < some) = true

0
5

0

) = false

5

0
5(5 some) = true (since 0 5)

(read: 5 < some tuple in the relation)

(5 < some

) = true(5 = some

(= some) in
However, (some) not in

2/28/23 Heiko Paulheim 52

Definition: Comparisons with ALL

• F <comp> all r t r (F <comp> t)

0
5
6

(5 < all) = false

6
10

4

) = true

5

4
6(5 all) = true (since 5 4 and 5 6)

(5 < all

) = false(5 = all

(all) not in
However, (= all) in

2/28/23 Heiko Paulheim 53

Existential Quantification in Subqueries

• Select all courses offered this year which are taken by at least one
student

– select course_id
 from section
 where semester = ’Spring’ and year = 2022 and
 exists (select *
 from takes
 where takes.course_id = section.course_id
 and takes.sec_id = section.sec_id
 and takes.semester = section.semester);

• The exists construct returns the value true
if the result of the subquery is not empty

– exists r r Ø

– not exists r r = Ø

2/28/23 Heiko Paulheim 54

Subqueries with NOT EXISTS

• Find all students who have taken all courses offered in the Biology
department

select distinct S.ID, S.name
from student as S
where not exists ((select course_id
 from course
 where dept_name = ’Biology’)
 except
 (select T.course_id
 from takes as T
 where S.ID = T.ID));

– First nested query lists all courses offered in Biology

– Second nested query lists all courses a particular student took

• Note that X – Y = Ø X Y
• Note: Cannot write this query using = all and its variants

2/28/23 Heiko Paulheim 55

Test for Duplicate Tuples

• Find all courses that were offered at most once in 2009

select T.course_id
from course as T
where unique (select R.course_id
 from section as R
 where T.course_id= R.course_id
 and R.year = 2009);

• The unique construct evaluates to “true” if a given subquery
contains no duplicates

• With not unique, we could query for courses that were offered
more than once

2/28/23 Heiko Paulheim 56

Subqueries in the FROM Clause

• So far, we have considered subqueries in the where clause

• Find the average instructors’ salaries of those departments where
the average salary is greater than $42,000.”

select dept_name, avg_salary
from

(select dept_name, avg (salary) as avg_salary
 from instructor
 group by dept_name)
where avg_salary > 42000;

• Note that we do not need to use the having clause

– why?

2/28/23 Heiko Paulheim 57

Creating Temporary Relations Using WITH

• Find all departments with the maximum budget

 with max_budget (value) as
 (select max(budget)
 from department)
 select department.name
 from department, max_budget
 where department.budget = max_budget.value;

• The with clause provides a way of defining a temporary relation
whose definition is available only to the query in which the with
clause occurs

this defines the structure
of the temporary relation
(datatypes are implicit)

2/28/23 Heiko Paulheim 58

Creating Temporary Relations Using WITH

• A more complex example involving two temporary relations:

– Find all departments where the total salary is greater than the
average of the total salary at all departments

with
dept _total (dept_name, value) as
 (select dept_name, sum(salary)
 from instructor
 group by dept_name),
dept_total_avg(value) as
 (select avg(value)
 from dept_total)
select dept_name
from dept_total, dept_total_avg
where dept_total.value > dept_total_avg.value;

2/28/23 Heiko Paulheim 59

Scalar Subqueries in the SELECT Part

• List all departments along with the number of instructors in each
department

select dept_name,
 (select count(*)
 from instructor
 where

 department.dept_name = instructor.dept_name)
 as num_instructors
from department;

• Scalar subqueries return a single result

– More specifically: a single tuple

• Runtime error if subquery returns more than one result tuple

2/28/23 Heiko Paulheim 60

Summary of Subqueries

• SELECT queries are the most often used part of SQL

• Their basic structure is simple, but subqueries are a powerful means
to make them quite expressive

select A1, A2, ..., An

from r1, r2, ..., rm

where P

• Subqueries in select part (A1, A2, ..., An)

– Scalar subqueries (single values, like aggregates)

• Subqueries in from part (r1, r2, ..., rm)

– Temporary relations (can also be defined using with)

• Subqueries in where part (P)

– Set comparisons, empty sets, test for duplicates

– Universal and existential quantification

2/28/23 Heiko Paulheim 61

Summary: SQL SELECT at a Glance

• The tool support of SQL varies

• what we have covered here
is standard SQL

– Supported by most tools

2/28/23 Heiko Paulheim 62

Recap: The Big Picture

Source: https://www.w3schools.in/mysql/ddl-dml-dcl/

2/28/23 Heiko Paulheim 63

Summary and Take Aways

• SQL is a standarized language for relational databases

– DML: Data Manipulation Language

• DML

– Read data from tables using SELECT

• Coming Up:

– Writing data to tables

– Creating and changing tables

– Rights & Roles

– …

2/28/23 Heiko Paulheim 64

Questions?

