T MANNHEIM

Database Technology
SQL Part 2

LT;T:V =
*.::”w.g‘

I U“”lj”tt“tt”tﬁ,
TYYYYT

Heiko Paulheim

Looking Back
-

* We have seen
— Reading data from tables

SQL
Commands
| |
DDL DML DCL TCL

CREATE GRANT COMMIT
ALTER INSERT REVOKE ROLLBACK
DROP UPDATE SAVEPOINT
TRUNCATE DELETE SET TRANSACTION
COMMENT MERGE
RENAME CALL

EXPLAIN PLAN

LOCK TABLE

3/7/23 Heiko Paulheim

Outline
e

* Last week
— Overview of The SQL Query Language
— Basic Query Structure
— Set Operations
— Join Operators
— Null Values
— Aggregate Functions
— Nested Subqueries

* Today
— Data Definition
— Data Types in SQL
— Modifications of the database
— Views
— Integrity Constraints
— Roles & Rights

3/7/23 Heiko Paulheim

SQL Data Definition Language (DDL)
e

* Allows the specification of information about relations, including
— The schema for each relation
— The domain of values associated with each attribute
— Integrity constraints
* And as we will see later, also other information such as
— The set of indices to be maintained for each relations
— Security and authorization information for each relation
— The physical storage structure of each relation on disk

3/7/23 Heiko Paulheim

Recap: Domain of an Attribute
e

* The set of allowed values for an attribute
— Programmers: think datatype

ID name dept_name salary
22222 | Einstein Physics 95000
12121 | Wu Finance 90000
32343 | El Said History 60000
45565 | Katz Comp. Sci. | 75000
98345 | Kim Elec. Eng. 80000
76766 | Crick Biology 72000
10101 | Srinivasan | Comp. Sci. | 65000
58583 | Califieri History 62000
83821 | Brandt Comp. Sci. 92000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
76543 | Singh Finance 80000

3/7/23 Heiko Paulheim

Simple Domains in SQL
e

char(n). Fixed length character string, with user-specified length n.

varchar(n). Variable length character strings, with user-specified
maximum length n.

int. Integer (a finite subset of the integers that is machine-
dependent).

smallint. Small integer (a machine-dependent subset of the integer
domain type).

numeric(p,d). Fixed point number, with user-specified precision of
p digits, with d digits to the right of decimal point. (ex.,
numeric(3,1), allows 44.5 to be stores exactly, but not 444.5 or
0.32)

real, double precision. Floating point and double-precision floating
point numbers, with machine-dependent precision.

float(n). Floating point number, with user-specified precision of at
least n digits.

3/7/23 Heiko Paulheim

Date and Time Data Types in SQL
e

We have already encountered characters and numbers
date: Dates, containing a (4 digit) year, month and date

— Example: date ‘2005-7-27’
time: Time of day, in hours, minutes and seconds.

— Example: time ‘09:00:30° time ‘09:00:30.7%5°
timestamp: date plus time of day

— Example: timestamp ‘2005-7-27 09:00:30.75’
interval: period of time

— Example: interval ‘1’ day

— Subtracting a date/time/timestamp value from another gives an
interval value

— Interval values can be added to date/time/timestamp values

3/7/23 Heiko Paulheim

Arithmetics with Dates
e

* Dates can be compared
— j.e,<or>
* e.g., select employees who started before January 1st, 2017
— Special function: NOW() (in MariaDB; name may differ for other DBMS)
* Dates can be added to / substracted from intervals and other dates
— e.g., select students who have been enrolled for more than five years

* Implementation often not standardized
— Details differ from DBMS to DBMS!

3/7/23 Heiko Paulheim

User Defined Types
-

* create type construct in SQL creates user-defined type

create type Dollars as numeric (12,2) final

|

* create table department required due to |
(dept_name varchar (20), SQL standard;
building varchar (15), not really

~meaningful

budget Dollars);

3/7/23 Heiko Paulheim

User-defined Domains
e

* create domain construct creates user-defined domain types

create domain person _name char(20) not null

* Types and domains are similar

— Domains can have constraints, such as not null, specified on
them

create domain degree level varchar(10)
constraint degree level test
check (value in ('Bachelors’, 'Masters’, ‘Doctorate’));

3/7/23 Heiko Paulheim

Domain Constraints vs. Table Constraints

* Some checks may reoccur over different relations
— e.g., degrees for students or instructors
— e.g., salutations
— e.g., valid ranges for ZIP codes

bologna
* Binding them to a domain is preferred process

— Central definition

— Consistent usage _ I
i 1123145 e 12/3]415)8

BONN 7 1004

HAND DRAUFS
A1)

17 QN 95-18

Seit 1.7, gellen nee Postlsitzahlen

53111

3/7/23 Heiko Paulheim

Large Object Types
e

* Large objects (photos, videos, CAD files, etc.) are stored as a large
object.
— blob: binary large object -- object is a large collection of

uninterpreted binary data (whose interpretation is left to an
application outside of the database system)

— clob: character large object -- object is a large collection of
character data

* When a query returns a large object, a pointer is returned rather
than the large object itself

3/7/23 Heiko Paulheim

Creating Relations
e

* An SQL relation is defined using the create table command:

create tabler (A, D,,A,D,, ..., A, D,
(integrity-constraint,),

(integrity-constraint,))
* risthe name of the relation

« each A, is an attribute name in the schema of relation r

« D, is the datatype/domain of values in the domain of attribute A,

* Example:
create table instructor (
ID char(5),
name varchar(20),
dept _name varchar(20),
salary numeric(8,2))

3/7/23 Heiko Paulheim

Recap: Keys
S

* Primary keys identify a unique tuple of each possible relation r(R)
— Typical examples: IDs, Social Security Number, car license plate

* Primary keys can consist of multiple attributes
— e.g.: course ID plus semester (CS 460, FSS 2019)
— Must be minimal — (ID, semester, instructor) would work as well

* Foreign keys refer to other tables
— i.e., they appear in other tables as primary keys

3/7/23 Heiko Paulheim

Defining Keys
e
« primary key (A, ..., A,)

- foreign key (A, ..., A) references r

* Example:
create table instructor (
ID char(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2),

primary key (/D),
foreign key (dept_name)
references department(dept_name));

3/7/23 Heiko Paulheim

Removing and Altering Relations

* Removing relations
— drop table r

* Altering
— alter table radd A D

* where A is the name of the attribute to be added
to relation r, and D is the domain of A

* all existing tuples in the relation are assigned null as the value for
the new attribute

— alter table rdrop A
* where A is the name of an attribute of relation r
* not supported by many databases

3/7/23 Heiko Paulheim

Back to DML...
e

* We have seen

— Basic DDL: how do we define tables?
— SELECT: how do we read from tables?

SQL
Commands
|
DDL DML DCL JTCL

CREATE GRANT COMMIT
ALTER INSERT REVOKE ROLLBACK
DROP UPDATE SAVEPOINT
TRUNCATE DELETE SET TRANSACTION
COMMENT MERGE
RENAME CALL

EXPLAIN PLAN

LOCK TABLE

3/7/23 Heiko Paulheim

Insertion into a Relation
e

* Add a new tuple to course

insert into course
values ('CS-437’, 'Database Systems’, 'Comp. Sci.’, 4);

COWYSE

conrse id

title

dept name |
credits

* or equivalently
insert into course (course _id, title, dept_name, credits)
values ('CS-437’, 'Database Systems’, 'Comp. Sci.’, 4);

* Add a new tuple to student with tot creds set to null

insert into student
values ('3003’, 'Green’, 'Finance’, null);

3/7/23 Heiko Paulheim

Insertion of Data from Other Tables
e

* Add all instructors to the student relation with tot_creds set to O

insert into student
select ID, name, dept_name, 0
from instructor

* As in the deletion example, the select from where statement is
evaluated fully before any of its results are inserted into the relation

Otherwise queries like
insert into table1 select * from fable1
would cause problems

3/7/23 Heiko Paulheim

Inserting Data into Relations with Constraints
-

» Effect of primary key constraints:
— insert into instructor values (‘10211’, 'Smith’, 'Biology’, 66000);
— insert into instructor values (‘10211’, 'Einstein’, 'Physics’, 95000);
— ...and we defined ID the primary key!

* Effect of not null constraints
— insert into instructor values (‘10211’, null, 'Biology’, 66000);

* Recap: DBMS takes care of data integrity

3/7/23 Heiko Paulheim

Caveats with NOT NULL Constraints

 Rationale;:

— Each course takes place at a specific room and time slot
— We’'ll create a not null constraint on those fields 5“‘”?;”

COHFSE |
— Note: no online courses here

ser id

| Y vvw

—h %)

2 EEG

3@%

R 1§
I]un‘

e Use case: time slot_id

— First: enter all courses in the system
— Second: run clever time and room allocation algorithm
* Which will then fill all the buildings and time slots

3/7/23 Heiko Paulheim

Caveats with NOT NULL Constraints (ctd.)

* Example: every employee needs a substitute

— create table employee (
ID varchar(5),

name varchar(20) not null,

substitute varchar(5) not null,

primary key (/ID),

foreign key (substitute) references employee(ID));

* What do you think?

3/7/23 Heiko Paulheim

Updating Data
e

* Example: update the salary of a single person

update employee
set salary = 80000
where person _id = 43743

* Example: update all salaries by 5%

— update employee
set salary = salary * 1.05

* Example: moving all people from a department to a new building

update employee
set building = ‘Taylor’
where dept _name = ‘Biology’

* Anatomy of an update query
— set defines which updates to carry out
— where defines which records to update (omitted = all records)

3/7/23 Heiko Paulheim

Updating Data
e
* Cut salaries above 100,000 by 5%, below 100,000 by 3%

_ N
 Write two update statements: S — thought
' experiment:
update instructor Tom’s salary
set salary = salary * 0.95 is 102,000

where salary > 100000;
update instructor

set salary = salary * 0.97

where salary <= 100000;

* Should rather be done using the case statement (next slide)

3/7/23 Heiko Paulheim

Conditional Updates with case Statement

* Cut salaries above 100,000 by 5%, below 100,000 by 3%

update instructor
set salary = case
when salary > 100000 then salary * 0.95
else salary * 0.97
end

3/7/23 Heiko Paulheim

Updates with Subqueries
e

* Recompute and update tot_creds value for all students
update student S
set fot_cred = (select sum(credits)
from takes, course
where takes.course id = course.course _id
and S./D= takes.ID.and takes.grade <>'F’
and takes.grade is not null);

* Sets fot creds to null for students
who have not taken or passed any course

* |Instead of sum(credits), use:

case
when sum(credits) is not null then sum(credits)
else 0

end

3/7/23 Heiko Paulheim

Deleting from a Relation

* Delete
— Remove all tuples from the student relation
— delete from instructor
— May be refined (e.g., only removing specific tuples)
* delete from instructor where ...

G

i

3/7/23 Heiko Paulheim

Deleting from a Relation
-

* Delete all instructors from the Finance department

delete from instructor
where dept _name= "Finance’;

* Delete all tuples in the instructor relation for those instructors
associated with a department located in the Watson building

where clause may
contain everythin
also usable for select

delete from instructor

where dept _name in (select dept name=® a» <@
from department o
where building = "Watson’);

3/7/23 Heiko Paulheim

Deleting from a Relation
-

* Delete all instructors whose salary is less than the average salary of
instructors

delete from instructor
where salary < (select avg (salary)
from instructor);

ID name dept_name salary
o . . 22222 | Einstein Physics 95000
This would delete five tuples 515 | Wy o ST
— But then, the average changes! |=32343— £ Samd History 68666—
45565 | Katz Comp. Sci. 75000
98345 | Kim Elec. Eng. 80000
_ ik Biokopy———72000—
* How does the query behave if the et —Corrp—e— —5H00
deletion is processed one by one? S8 ~Catifrert History 62006—
83821 | Brandt Comp. Sci. | 92000
T St—r-viozart Nierste +0660—
33456 | Gold Physics 87000
76543 | Singh Finance 80000

3/7/23 Heiko Paulheim

Deleting from a Relation
-

* Delete all instructors whose salary is less than the average salary of
instructors

delete from instructor
where salary < (select avg (salary)
from instructor);

* Processing this query in SQL
— First, the select query is evaluated
* |.e., the result is now treated as a constant
— Then, the delete statement is executed

3/7/23 Heiko Paulheim

DELETE vs. TRUNCATE
E——

* All records from a table can also be removed using
truncate table instructor;
Difference to
delete from instructor;

* delete keeps the table and deletes only the data
* truncate drops and re-creates the table

— much faster Description
— but cannot be undone TRUNCATE TABLE empties a table completely. It requires the Drop

privilege (before 5.1.16, it required the DELETE privilege) See

* delete is DML, truncate is DDL GRANT
— Different rights may be necessary (see later!)

3/7/23 Heiko Paulheim

Back to DML...

* We have seen
— Basic DDL: how do we define tables?
— SELECT: how do we read from tables?

SQL
Commands

DDL DML DCL TCL

CREATE CsELECT) GRANT COMMIT

ALTER @ REVOKE ROLLBACK

DROP @ SAVEPOINT
TRUNCATE @ SET TRANSACTION

COMMENT MERGE
RENAME CALL
EXPLAIN PLAN
LOCK TABLE

3/7/23 Heiko Paulheim

Views
e

* Recap: logical database model

— The relations in the database and their attributes
* Views:

— Virtual relations

— Different from those in the database

— But with the same data

— ...hide data from users

* Example: instructors’ names and departments without salaries, i.e.,
select ID, name, dept name
from instructor

3/7/23 Heiko Paulheim

Views
S

* Example: some users may see employees with salaries,
others only without salary

* How about two tables
— One with salaries

— One without salaries
e 7

3/7/23 Heiko Paulheim

Defining Views
-

* Aview is defined using the create view statement:
create view v as < query expression >

— <query expression> is any legal SQL expression
— the view name is represented by v

* Once the view has been created
— It can be addressed as v as any other relations

— it will always contain the data read by the SQL expression
* live, not at the time of definition!

_IVE
ON AIR

3/7/23 Heiko Paulheim

Example Views
e

* Instructors without their salary

create view faculty as
select ID, name, dept name
from instructor

* Using the view:/find all instructors in the Biology department
select name
from faculty
where dept _name = ‘Biology’;

* Create a view of department salary totals

create view departments_total salary(dept _name, total salary)
as

select dept _name, sum (salary)

from instructor

group by dept _name;

3/7/23 Heiko Paulheim

Updating Views
-

* Definition of a simple view (recap: instructors without salaries):

instrictor

create view faculty as D +
select ID, name, dept name
from instructor

name
—| dept_name
salary

* Add a new tuple to faculty view which we defined earlier
insert into faculty values ('30765’, 'Green’, 'Music’);

* This insertion must be represented by the insertion of the tuple
('30765’, 'Green’, 'Music’, null)

into the instructor relation = -

- /y\

This can onIy work

if salary is not defm
wt null!

3/7/23 Heiko Paulheim

Updating Views
-

 (Consider the view

.) instrictoy
create view biology faculty as D T
select ID,name _| T i
from faculty L

where dept _name = ‘Biology’;

* and

insert into biology faculty
values (43278,'Smith’);

* Would this lead to
insert into instructor values (43278,'Smith’,’Biology’,null);

3/7/23 Heiko Paulheim

Updating Views
-

* Most where constraints cannot be translated into a value to insert

* Consider
where dept _name = ‘Biology’ or dept _name = ‘Physics’

or
where salary > 50000

* Hence, where clauses are typically not translated into a value

3/7/23 Heiko Paulheim

Updating Views
-

* Other example used before

create view departments_total salary(dept _name, total salary)
as

select dept name, sum (salary)

from instructor

group by dept _name;

* What should happen upon

update departments total salary
set total salary = total salary * 1.05
where dept _name = “Comp. Sci.”;

3/7/23 Heiko Paulheim

Updating Views
-

* create view instructor _info as
select /D, name, building
from instructor, department
where instructor.dept_name= department.dept name,;

* insert into instructor _info values ('69987°, 'White’, "Taylor’);
— which department, if multiple departments are in Taylor?

— what if no department is in Taylor? department

dept_rame
buidding
budget

instrictor

D —
name
dept_name
salary

3/7/23 Heiko Paulheim

Updateable Views
e

* A view is called updateable if
— The from clause has only one database relation

— The select clause contains only attribute names of the relation,
and does not have any expressions, aggregates, or distinct
specification

— Any attribute not listed in the select clause can be set to null
— The query does not have a group by or having clause

* Most DMBS only allow updates on such views!

3/7/23 Heiko Paulheim

Materialized vs. Non-Materialized Views
eSS

* Normal views are not materialized

— When issuing a select against a view, the underlying data
is created on the fly

— Pro: guarantees recent and non-redundant data, saves space

— Con: some views may be expensive to compute
(e.g., extensive use of aggregates)

* Materializing a view: create a physical table containing all the
tuples in the result of the query defining the view

— If relations used in the query are updated, the materialized view result
becomes out of date

— Need to maintain the view, by updating the view whenever the
underlying relations are updated

3/7/23 Heiko Paulheim

Integrity Constraints
-

* Data errors may occur due to, e.g.,
— Accidental wrong entries in form fields
— Faulty application program code
— Deliberate attacks

* Integrity constraints
— guard against damage to the database

— ensuring that authorized changes to the database do not result in a loss
of data consistency

* Examples
— A checking account must have a balance greater than $10,000.00

— A salary of a bank employee must be at least $4.00 an hour
— A customer must have a (non-null) phone number

3/7/23 Heiko Paulheim

Integrity Constraints on a Single Relation
-

* We have already encountered
— not null
— primary and foreign key
* We will get to know
— unique
— check (P), where P is a predicate

3/7/23 Heiko Paulheim

NOT NULL and UNIQUE Constraints
e

* not null
— Declare name and budget to be not null

name varchar(20) not null
budget numeric(12,2) not null

« unique (A4, A, ..., A,)
— The unique specification states that the attributes A1, A2, ... Am
form a candidate key

— Candidate keys are permitted to be null
(in contrast to primary keys)

3/7/23 Heiko Paulheim

The CHECK Constraint

* check (P)
— where P is a predicate

* Example: ensure that semester is either fall or spring

create table section (
course_id varchar (8),
sec_id varchar (8),
semester varchar (6),
year numeric (4,0),
building varchar (15),
room_number varchar (7),
time slot id varchar (4),
primary key (course _id, sec id, semester, year),
check (semesterin ('Fall’, 'Spring’))

);

3/7/23 Heiko Paulheim

Foreign Keys and Referential Integrity

‘ department
° Example dept_name
. building
— instructors have a department budget
— each department should also appear
In the department relation
. g . instrictor
* Definition: o .
— Let A be a set of attributes dep_nams
Sl

— Let R and S be two relations that contain attributes A and where
A is the primary key of S

— Ais said to be a foreign key of R if for any values of A
appearing in R these values also appearin S

3/7/23 Heiko Paulheim

Cascading Actions in Referential Integrity
e

‘ departrent
° Example dept_name
. building
— instructors have a department budget
— each department should also appear
In the department relation
. . . . instructory
How to ensure referential integrity? o g
— i.e., what happens if a department is deleted hd e
salary

from the department relation
* Possible approaches

— Reject the deletion<\\f default action ﬁ

s o

— Delete all instructors as well
— Set the department of those instructors to null

3/7/23 Heiko Paulheim

Cascading Actions in Referential Integrity
e

* (Cascading updates ‘ d;'t;fr::f
— If a foreign key is changed (e.g., renaming a department) Zﬁﬁé?g
— ...then rename in all referring relations
* (Cascading deletions _
— If a foreign key is deleted (e.g., deleting a department) E”mt
— ...then delete all rows in referring relations E%”M

* create table instructor (

dept_name varchar(20),

foreign key (dept _name) references department
on delete cascade
on update cascade,

)

3/7/23 Heiko Paulheim

Cascading Actions in Referential Integrity

* Cascading deletions may run over several tables

...S0 we should be very careful!

student

k4

F 3

I
e
Cr

3/7/23

Y

department

o
bu;

takes
D
.
s
5€ ¥
grade
section COUYSE
W course id ” B congie 4
L Sec id " ﬁ title
—m 5 P
e be - titie_siot credits
|| room_no time slpt id
time_slot_id day
start time
end_time
classroot | %
L building]
| FOGIE_HO
capacity tegches

%

msfmcfor

/

Heiko Paulheim

Cascading Actions in Referential Integrity
e

* set null for updates
— If a foreign key is changed (e.g., renaming a department)
— ...then set null for all referring relations
* set null for deletions
— If a foreign key is deleted (e.g., deleting a department)
— ...then set null in referring relations
* create table instructor (

dept_name varchar(20),

foreign key (dept _name) references department
on delete set null,
on update set null,

)

3/7/23 Heiko Paulheim

Authorization
e

* Rights for accessing a database may differ
— Only administrators may change the schema

* Rights for accessing a database can be very fine grained
— Not everybody may see a persons’ salary
— Not everybody may alter a person’s salary
— Nobody may alter their own salary

— Special restrictions may apply for entering salaries
over a certain upper bound

3/7/23 Heiko Paulheim

Authorization
e

* Forms of authorization on parts of the database:
— Read - allows reading, but not modification of data

— Insert - allows insertion of new data, but not modification of
existing data

— Update - allows modification, but not deletion of data
— Delete - allows deletion of data

* Forms of authorization to modify the database schema
— Index - allows creation and deletion of indices
— Resources - allows creation of new relations
— Alteration - allows addition or deletion of attributes in a relation
— Drop, Truncate - allows deletion of relations

3/7/23 Heiko Paulheim

Authorization Specification in SQL
e

* The grant statement is used to confer authorization
grant <privilege list>
on <relation name or view name> to <user list>
* <user list> is:
— auser-id
— public, which allows all valid users the privilege granted
— A role (more on this later)

* Granting a privilege on a view does not imply granting any
privileges on the underlying relations

* The grantor of the privilege must already hold the privilege on the
specified item (or be the database administrator)

3/7/23 Heiko Paulheim

Privilege Definition in SQL
e

* select: allows read access to relation,or the ability to query using
the view

— Example: grant users U,, U,, and U, select authorization on the
instructor relation:

grant select on instructorto U,, U,, U,
* Insert: the ability to insert tuples
* update: the ability to update using the SQL update statement
* delete: the ability to delete tuples.
* all privileges: used as a short form for all the allowable privileges

3/7/23 Heiko Paulheim

Revoking Privileges
-

* The revoke statement is used to revoke authorization.

revoke <privilege list>

on <relation name or view name> from <user list>
* Example:

revoke select on branch from U, U,, U,

* <privilege-list> may be all to revoke all privileges the revokee may
hold

* If <user list> includes public, all users lose the privilege except those
granted it explicitly

* If the same privilege was granted twice to the same user by different
grantees, the user may retain the privilege after the revocation

* All privileges that depend on the privilege being revoked are also
revoked

3/7/23 Heiko Paulheim

Revoking Privileges
-

* Scenario 1:
— grant select on instructor to john, mary
— revoke select on instructor from john
— Mary retains right

* Scenario 2:
— grant select on instructor to public
— grant all on instructor to john
— revoke all on instructor from public
— John retains right, since he has been granted the right explicitly

3/7/23 Heiko Paulheim

Roles
e

* Databases may have many users
— e.g., all students and employees of a university

* Managing privileges for all those individually can be difficult
— User groups (also called: roles) are more handy
— Example roles
* Student
Instructor

Secretary
* Dean

3/7/23 Heiko Paulheim

Roles
e

* Creating roles and assigning them to individual users
— create role instructor;
— grant instructor to Amit;

* Granting privileges to roles
— grant select on takes to instructor,

* Roles can form hierarchies
— i.e., a role inherits from other roles
create role teaching assistant
grant teaching_assistant to instructor,
— Instructor inherits all privileges of teaching assistant

3/7/23 Heiko Paulheim

Roles: Example

Employee grant select on department
grant employee to ~ grant employee
teaching assistant to admin staff
Teaching Assistant Admin Staff grant all on takes

grant teachihg_assistanf“v,

grant read on takes

to instructor

Instructor

grant all on section

3/7/23 Heiko Paulheim

Roles on Views
eSS

* Example: Geology department members can administrate their own
staff, but not others

create view geo _instructor as
(select *

from instructor

where dept name = ’'Geology’);

grant select on geo instructor to geo_staff
* Suppose that a geo staff member issues

select *
from geo_instructor;

* What if
— geo_staff does not have permissions on instructor?
— creator of view did not have some permissions on instructor?

3/7/23 Heiko Paulheim

Wrap-up
e

SQL
Commands
DDL DML DCL TCL

CREATE SELECT GRANT COMMIT
ALTER INSERT REVOKE ROLLBACK
DROP UPDATE SAVEPOINT
TRUNCATE DELETE SET TRANSACTION
COMMENT MERGE
RENAME CALL

EXPLAIN PLAN

LOCK TABLE

Source: https://www.w3schools.in/mysqgl/ddl-dml-dcl/

3/7/23 Heiko Paulheim

Wrap-up
e

* Today, we have seen
— How to manipulate data in databases
— i.e., insert, update, and delete statements

* Views

— are used to provide different subsets
and/or aggregations of data

— updateable views
— materialized views

3/7/23 Heiko Paulheim

Wrap-up
e

* Integrity constraints
— unique and not null constraints
— cascading updates and deletions

* Access rights
— can be fine grained
— can be bound to user groups and roles
— roles may inherit from each other

3/7/23 Heiko Paulheim

Questions?

s

&

3/7/23 Heiko Paulheim

