
Database Technology
Transactions & Concurrency

Heiko Paulheim

5/10/23 Heiko Paulheim 2

Flashback to First Lecture

• We already stumbled upon transactions

Prof. Smith
Dr. Stevens
Prof. Miller

Dr. Hawkins
Prof. Brown
Prof. Wilson

File: active lecturers File: retired lecturers

Delete from file: active lecturers

Add to file: retired lecturers

Computer crashes here

5/10/23 Heiko Paulheim 3

Flashback to First Lecture

• ...and we already stumbled upon concurrency

Read num_current_participants
from file

If num_current_participants
< limit

Then
add participant to file

Read num_current_participants
from file

If num_current_participants
< limit

Then
add participant to file

User 1

User 2

5/10/23 Heiko Paulheim 4

Flashback to First Lecture

• One of the tasks of a DBMS:

– handle transactions

– take care of concurrency

5/10/23 Heiko Paulheim 5

Today’s Lecture

• Transactions

– Concurrent Executions

– Serializability

– Recoverability

– Testing for Serializability

– Transaction Definition in SQL

• Protocols for Concurrent Execution

– Lock-Based Protocols

– Timestamp-Based Protocols

– Validation-Based Protocols

– Handling Insert and Delete Operations

– Concurrency in Index Structures

5/10/23 Heiko Paulheim 6

Concept of a Transaction

• A transaction is a unit of program execution that accesses and
possibly updates various data items

• E.g., transaction to transfer $50 from account A to account B:
1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

• Two main issues to deal with:

– Failures of various kinds, such as hardware failures and system crashes

– Concurrent (=parallel) execution of multiple transactions

5/10/23 Heiko Paulheim 7

Requirements for Transactions

• Atomicity requirement
– If the transaction fails after writing to account A and before writing to account B,

money will be “lost” leading to an inconsistent database state

– Failure could be due to software or hardware

– DBMS should ensure that updates of a partially executed transaction
are not reflected in the database

• Durability requirement
– once the user has been notified that the transaction has completed,

• i.e., the transfer of the $50 has taken place,

– the updates to the database by the transaction must persist

• even if there are software or hardware failures

5/10/23 Heiko Paulheim 8

Requirements for Transactions

• Consistency requirement
– The sum of A and B is unchanged by the execution of the transaction

– In general, consistency requirements include

• Explicitly specified integrity constraints, e.g., primary keys and foreign keys

• Implicit integrity constraints

– e.g., sum of balances of all accounts, minus sum of loan amounts must
equal value of cash-in-hand

• A transaction, when starting to execute, must see a consistent database

• During transaction execution the database may be temporarily inconsistent

• When the transaction completes successfully the database must be consistent

– Erroneous transaction logic can lead to inconsistency

5/10/23 Heiko Paulheim 9

Requirements for Transactions

• Isolation requirement

– if between steps 3 and 6, another transaction T2 is allowed to access the
partially updated database, it will see an inconsistent database

 T1 T2

1. read(A)

2. A := A – 50

3. write(A)
 read(A), read(B), print(A+B)

4. read(B)

5. B := B + 50

6. write(B)

• Isolation can be ensured trivially by running transactions serially

– i.e., one after the other

– however, parallel execution is often desired due to performance benefits

5/10/23 Heiko Paulheim 10

ACID Properties

• Atomicity: Either all operations of the transaction are properly
reflected in the database, or none

• Consistency: Execution of a full transaction preserves the
consistency of the database

• Isolation: Although multiple transactions may execute concurrently,
each transaction must be unaware of other concurrently executing
transactions

– Intermediate transaction results must be hidden from other concurrently
executed transactions

– i.e., for every pair of transactions Ti and Tj, it appears to Ti that either Tj,
finished execution before Ti started, or Tj started execution after Ti finished

• Durability: After a transaction completes successfully, the changes it
has made to the database persist, even if there are system failures

5/10/23 Heiko Paulheim 11

Transaction States

• Active: the initial state; transaction stays active while it is executing

• Partially committed: after the final statement has been executed

• Failed: after discovery that normal execution can no longer proceed

• Aborted: after the transaction has been rolled back and the
database restored to its state prior to the start of the transaction.
Actions to be taken:

– Restart the transaction (can be done only if no internal logical error)

– Kill the transaction

• Committed: after successful completion

5/10/23 Heiko Paulheim 12

Concurrent Execution of Transactions

• Multiple transactions are allowed to run concurrently in the system

– Increased processor and disk utilization, leading to better
transaction throughput

• e.g., one transaction can be using the CPU while another is reading
from or writing to the disk

– Reduced average response time for transactions

• e.g., short transactions need not wait behind long ones

• Concurrency control schemes

– mechanisms to achieve isolation

– control the interaction among the concurrent transactions

– prevent them from destroying the consistency of the database

5/10/23 Heiko Paulheim 13

Schedules

• Schedule

– a sequence of instructions that specifies the chronological order
in which instructions of concurrent transactions are executed

– A schedule for a set of transactions must consist of all instructions of
those transactions

– Must preserve the order in which the instructions appear in each
individual transaction

• A transaction that successfully completes its execution will have a
commit instructions as the last statement

– By default, a transaction is assumed to execute commit instruction
as its last step

• A transaction that fails to successfully complete its execution will
have an abort instruction as the last statement

5/10/23 Heiko Paulheim 14

Schedule Example: Serial Schedule

• Let T1 transfer $50 from A to B, and T2 transfer $20 of the balance from B to A

• Serial schedule: T1 is executed as a whole, followed by T2 :

T
1

T
2

read(A)
A = A – 50
write(A)
read(B)
B = B + 50
write(B)
commit

read(A)
A = A + 20
write(A)
read(B)
B = B - 20
write(B)
commit

A = 200

A = 150

B = 400

B = 450
A = 150

A = 170

B = 450

B = 430

5/10/23 Heiko Paulheim 15

Schedule Example: Intertwined Schedule

• Let T1 transfer $50 from A to B, and T2 transfer $20 of the balance from B to A

• Intertwined schedule: parts of T1 are executed, interrupted by parts of T2

– the sum A+B is maintained

T
1

T
2

read(A)
A = A – 50
write(A)

read(B)
B = B + 50
write(B)
commit

read(A)
A = A + 20
write(A)

read(B)
B = B - 20
write(B)
commit

A = 200

A = 150

B = 400

B = 450

A = 150

A = 170

B = 450

B = 430

5/10/23 Heiko Paulheim 16

Schedule Examples: Wrong Schedule

• Let T1 transfer $50 from A to B, and T2 transfer $20 of the balance from B to A

• The sum of A and B is not maintained!

T
1

T
2

read(A)
A = A – 50

write(A)
read(B)
B = B + 50
write(B)
commit

read(A)
A = A + 20
write(A)

read(B)
B = B - 20
write(B)
commit

A = 200

A = 150

B = 400

B = 450

A = 200

A = 220

B = 450

B = 430

5/10/23 Heiko Paulheim 17

Serializability

• Basic assumption: transactions preserve database consistency

– i.e., serial execution of a set of transactions
also preserves database consistency

• A (possibly concurrent) schedule is serializable if its outcome
is equivalent to a serial schedule

– We ignore operations other than read and write instructions

– Transactions may perform arbitrary computations on data inbetween

– Our simplified schedules consist of only read and write instructions

5/10/23 Heiko Paulheim 18

Conflicting Transactions

• Let li and lj be two Instructions of transactions Ti and Tj respectively

• Instructions li and lj conflict

– if and only if there exists some data item Q accessed by both li and lj,
and at least one of these instructions wrote Q

● 1. li = read(Q), lj = read(Q). → No conflict
2. li = read(Q), lj = write(Q). → Conflict
3. li = write(Q), lj = read(Q). → Conflict
4. li = write(Q), lj = write(Q). → Conflict
5. li = write(Q), lj = write(R). → No conflict
6. li = read(Q), lj = write(R). → No conflict

• Implications on serializability:

– Non-conflicting instructions can be executed in any order

– A conflict between li and lj forces a temporal order between them

5/10/23 Heiko Paulheim 19

Conflict Equivalence and Serializability

• If a schedule S can be transformed into a schedule S´ by a series of
swaps of non-conflicting instructions, we say that S and S´ are
conflict equivalent.

• We say that a schedule S is conflict serializable if it is conflict
equivalent to a serial schedule

S S’

5/10/23 Heiko Paulheim 20

Conflict Equivalence and Serializability

• Example of a schedule that is not conflict serializable:

• write(Q) in T4 conflicts both with read(Q) and with write(Q) in T3

– i.e., we are unable to swap instructions in the above schedule to obtain
either the serial schedule < T3, T4 >, or the serial schedule < T4, T3 >

5/10/23 Heiko Paulheim 21

Precedence Graph

• Consider some schedule of a set of transactions T1, T2, ..., Tn

• Precedence graph: a directed graph where the vertices are the
transactions (names)

– We draw an arc from Ti to Tj if the two transaction conflict,
and Ti accessed the data item on which the conflict arose earlier

– We may label the arc by the item that was accessed

• Example:

T3 T4

Q

Q

5/10/23 Heiko Paulheim 22

Testing for Conflict Serializability

• A schedule is conflict serializable

– if and only if its precedence graph is acyclic

– serializability order can be obtained
by a topological sorting of the graph

• i.e., a linear order consistent with the
partial order of the graph

• Example: both (b) and (c) are possible
partial orders of (a)

• Cycle-detection algorithms in O(n²) exist

– where n is the number of vertices in the
graph

– better algorithms are in O(n+e)
where e is the number of edges

5/10/23 Heiko Paulheim 23

Recoverable Schedules

• Consider the following schedule:

• What happens if T8 should abort after T9 commits?

– T9 would have read (and possibly shown to the user) an inconsistent database
state

– The DBMS should avoid those cases

• A schedule is recoverable if the following holds:

– if a transaction Tj reads a data item previously written by a transaction Ti , then
the commit operation of Ti must appear before the commit operation of Tj

5/10/23 Heiko Paulheim 24

Cascading Rollbacks

• Consider the following schedule:

• On the abort of T10

– all three transactions need to be rolled back

– can mean undoing a significant amount of work

5/10/23 Heiko Paulheim 25

Cascadeless Schedules

• A schedule is cascadeless if and only if

– for each pair of transactions Ti and Tj such that Tj reads a data item
previously written by Ti,

– the commit operation of Ti appears before the read operation of Tj

• Every cascadeless schedule is also recoverable

– the reverse need not hold

• It is desirable to restrict the schedules to those that are cascadeless

5/10/23 Heiko Paulheim 26

Levels of Consistency

• Serializable: default

• Repeatable read:

– only committed records to be read

– successive reads of same record
must return the same value

– transactions may not be serializable

• Read committed:

– only committed records can be read,

– successive reads of record may return different
(but committed) values

• Read uncommitted:

– even uncommitted records may be read

in
cr

ea
se

d
co

ns
is

te
nc

y

increas ed para llelism

5/10/23 Heiko Paulheim 27

Transaction Definition in SQL

• Data manipulation language must include a construct for specifying
the set of actions that comprise a transaction

• In SQL

– a transaction begins implicitly

– A transaction ends by:

• Commit work commits current transaction and begins a new one

• Rollback work causes current transaction to abort

• In almost all database systems, by default, every SQL statement
also commits implicitly if it executes successfully

– implicit commit can be turned off by a database directive

– e.g., in JDBC, connection.setAutoCommit(false);

5/10/23 Heiko Paulheim 28

Concurrency Control in DBMS

• A database must provide a mechanism that will ensure that all
possible schedules are both:

– Conflict serializable

– Recoverable and preferably cascadeless

• A policy in which only one transaction can execute at a time
generates serial schedules

– but provides a poor degree of parallelism

• Concurrency control protocols have to trade off

– degree of parallelism they achieve

– amount of overhead they incur

5/10/23 Heiko Paulheim 29

Locks

• A lock is a mechanism to control concurrent access to a data item

• Data items can be locked in two modes :

 1. exclusive (X) mode. Data item can be both read as well as
 written. X-lock is requested using lock-X instruction

 2. shared (S) mode. Data item can only be read. S-lock is
 requested using lock-S instruction

• Lock requests are made to the concurrency-control manager

– by the application accessing the database

– transaction can proceed only after request is granted

5/10/23 Heiko Paulheim 30

Requesting and Granting Locks

• Transactions request locks

– can be granted if the requested lock is compatible

• Compatibility:

– Any number of transactions can hold
shared locks on an item

– If any transaction holds an exclusive on the item,
no other transaction may hold any lock on the item

• If a lock cannot be granted

– the requesting transaction has to wait until all incompatible locks are
released

already granted

re
qu

es
te

d

5/10/23 Heiko Paulheim 31

Lock-based Protocols

• Example of two transactions performing locking:

• Only T2 is serializable

– in T1, if A and B get updated in-between the read of A and B,
the displayed sum would be inconsistent

• A locking protocol is a set of rules followed by all transactions

– Locking protocols restrict the set of possible schedules

T2:
lock-S(A);
lock-S(B);
read(A);
read(B);
display(A+B);
unlock(A);
unlock(B);

T1:
lock-S(A);
read(A);
unlock(A);
lock-S(B);
read(B);
unlock(B);
display(A+B);

5/10/23 Heiko Paulheim 32

The Two-Phase Locking Protocol

• Protocol that ensures conflict serializable schedules

• Runs in two phases

• Phase 1: Growing Phase

– Transaction may obtain and “upgrade” shared to exclusive locks

– Transaction may not release locks

• Phase 2: Shrinking Phase

– Transaction may release and “downgrade” exclusive to shared locks

– Transaction may not obtain locks

• The protocol assures serializability

– It can be proved that the transactions can be serialized in the order of
their lock points,

– i.e., the point where a transaction acquired its final lock

5/10/23 Heiko Paulheim 33

Automatic Acquisition of Locks

• A transaction Ti issues the standard read/write instruction, without

explicit locking calls

• The operation read(D) is processed by the DBMS as:

 if Ti has a lock on D

 read(D)
 else

 if necessary wait until no other
 transaction has a lock-X on D

 grant Ti a lock-S on D;

 read(D)

5/10/23 Heiko Paulheim 34

Automatic Acquisition of Locks

• A transaction Ti issues the standard read/write instruction, without

explicit locking calls

• The operation write(D) is processed by the DBMS as:

 if Ti has a lock-X on D

 write(D)
 else
 if necessary wait until no other transaction has any

 lock on D,

 if Ti has a lock-S on D
 upgrade lock on D to lock-X
 else
 grant Ti a lock-X on D

 write(D)
● All locks are released after commit or abort

5/10/23 Heiko Paulheim 35

Deadlocks

• Consider the partial schedule

• Neither T3 nor T4 can make progress

– executing lock-S(B) causes T4 to wait for T3 to release its lock on ,

– executing lock-X(A) causes T3 to wait for T4 to release its lock on A

• Such a situation is called a deadlock

– to handle the problem, one of T3 or T4 must be rolled back and its locks
released

5/10/23 Heiko Paulheim 36

Deadlocks & Starvation

• Two-phase locking protocol

– guarantees serializability

– does not ensure freedom from deadlocks

• In addition to deadlocks, there is a possibility of starvation:

– A transaction may be waiting for an X-lock on an item

– while a sequence of other transactions request and are granted an S-
lock on the same item

• Starvation occurs if the concurrency control manager is badly
designed

– The same transaction is repeatedly rolled back due to deadlocks

– Concurrency control manager can be designed to prevent starvation

5/10/23 Heiko Paulheim 37

Deadlocks

• The potential for deadlock exists in most locking protocols

– but there are prevention mechanisms (see later)

• When a deadlock occurs

– rollbacks are necessary

– there is a possibility of cascading roll-backs

• but cascading rollbacks can be expensive

• Cascading roll-back is possible under two-phase locking

• Modified protocol called strict two-phase locking

– a transaction must hold all its exclusive locks until it commits/aborts

– avoids cascading rollbacks

5/10/23 Heiko Paulheim 38

Implementation of Locking

• A lock manager can be implemented as a separate process

– transactions send lock and unlock requests to the lock manager

– lock manager replies to a lock request by sending a lock grant message

– or a message asking the transaction to roll back, in case of a deadlock

– The requesting transaction waits until its request is answered

• The lock manager maintains a data-structure called a lock table to
record granted locks and pending requests

– The lock table is usually implemented as an in-memory hash table
indexed on the name of the data item being locked

5/10/23 Heiko Paulheim 39

Lock Table

• Dark blue rectangles indicate granted locks; light
blue indicate waiting requests

– Lock table also records the type of lock
granted or requested

• New request is added to the end of the queue of
requests for the data item

– granted if it is compatible with all earlier locks

• Unlock requests result in the request being
deleted

– later requests are checked to see
if they can now be granted

• If transaction aborts, all waiting or granted
requests of the transaction are deleted

– lock manager may keep an index of locks
held by each transaction, to implement this
efficiently

5/10/23 Heiko Paulheim 40

Deadlock Prevention

• System is deadlocked:

– there is a set of transactions such that every transaction in the set
is waiting for another transaction in the set

• Deadlock prevention protocols

– ensure that the system will never enter into a deadlock state

• Some prevention strategies :

– Require that each transaction locks all its data items before it begins
execution (predeclaration)

– Impose partial ordering of all data items and require that a transaction
can lock data items only in the order specified by the partial order

5/10/23 Heiko Paulheim 41

Deadlock Prevention

• timeout-based schemes

– transactions wait for a lock only for a specified amount of time

• if the lock has not been granted within that time → roll back

– simple to implement; but starvation is possible

– also difficult to determine good value of the timeout interval

• wait-die scheme

– older transaction may wait for younger one to release data item

– younger transactions never wait for older ones

• they are rolled back instead

– a transaction may die several times before acquiring needed data item

• wound-wait scheme

– older transaction wounds (forces rollback) of younger transaction

• instead of waiting for it

– younger transactions may wait for older ones

– may cause fewer rollbacks than wait-die scheme

•

5/10/23 Heiko Paulheim 42

Deadlock Detection

• Deadlocks can be detected using a wait-for graph, which consists of
a pair G = (V,E)

– V is a set of vertices (all the transactions in the system)

– E is a set of edges; each element is an ordered pair Ti Tj.

– Edge from Ti to Tj implies that Ti is waiting for Tj to release a data item

• Ti requests a lock on a data item currently being locked by Tj,

– the edge Ti  Tj is inserted in the wait-for graph

• Tj releases lock on a data item needed by Ti, or Ti is rolled back

– the edge Ti  Tj is removed from the wait-for graph

• System is in a deadlock state ↔ the wait-for graph has a cycle

– invoke a deadlock-detection algorithm periodically to look for cycles

5/10/23 Heiko Paulheim 43

Deadlock Detection

Wait-for graph without a cycle Wait-for graph with a cycle

5/10/23 Heiko Paulheim 44

Deadlock Recovery

• When deadlock is detected :

– some transaction will have to rolled back (made a victim)

– select that transaction as victim that will incur minimum cost

• Rollback – determine how far to roll back transaction

– Total rollback: Abort the transaction and then restart it

– More effective: roll back transaction only as far as necessary to break
deadlock

• Starvation happens if same transaction is always chosen as victim

– Solution: include the number of rollbacks in the cost factor to avoid
starvation

5/10/23 Heiko Paulheim 45

Timestamp-based Scheduling

• Each transaction is issued a timestamp when it enters the system

– timestamps must be free of duplicates

• The protocol manages concurrent execution such that the time-
stamps determine the serializability order

• In order to assure such behavior, the protocol maintains
two timestamp values for each data Q:

– W-timestamp(Q) is the largest time-stamp of any transaction that
executed write(Q) successfully

– R-timestamp(Q) is the largest time-stamp of any transaction that
executed read(Q) successfully

5/10/23 Heiko Paulheim 46

Timestamp-based Scheduling

• Transaction Ti issues a read(Q)

– if TS(Ti) > W-timestamp(Q)

• execute read operation, set R-timestamp(Q) to max(R-timestamp(Q),TS(Ti))

– if TS(Ti)  W-timestamp(Q),
then Ti needs to read a value of Q that was already overwritten

→ reject read, rollback Ti

• Transaction Ti issues write(Q)

– if TS(Ti) < R-timestamp(Q),
then the value of Q that Ti is producing was read previously

→ reject write, rollback Ti

– if TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q

→ reject write, rollback Ti

– Otherwise, execute write and set W-timestamp(Q) to TS(Ti)

Thomas Write Rule:
we can also simply

ignore this write

5/10/23 Heiko Paulheim 47

Timestamp-based Scheduling

• The timestamp-ordering protocol guarantees serializability since all
the arcs in the precedence graph are of the form

 Thus, there will be no cycles in the precedence graph

• Timestamp protocol ensures freedom from deadlock

– no transaction ever waits, there are only rollbacks

• But the schedule may not be cascade-free

– and may not even be recoverable

5/10/23 Heiko Paulheim 48

Validation Based Protocol

• Execution of transaction Ti is done in three phases

 1. Read and execution phase: Transaction Ti writes only to
 temporary local variables

 2. Validation phase: Transaction Ti performs a ''validation test'' to
 determine if local variables can be written without violating
 serializability

 3. Write phase: If Ti is validated, the updates are applied to the database;
 otherwise, Ti is rolled back

• The three phases of concurrently executing transactions can be interleaved

– but each transaction must go through the three phases in that order

• Assume for simplicity that the validation and write phase occur together,
atomically and serially

– i.e., only one transaction executes validation/write at a time.

• Also called as optimistic concurrency control since transaction executes fully
in the hope that all will go well during validation

5/10/23 Heiko Paulheim 49

Validation Based Protocol

• Each transaction Ti has 3 timestamps

– Start(Ti) : the time when Ti started its execution

– Validation(Ti): the time when Ti entered its validation phase

– Finish(Ti) : the time when Ti finished its write phase

• Serializability order is determined by timestamp given at validation
time; this is done to increase concurrency.

– Thus, TS(Ti) is given the value of Validation(Ti)

• This protocol is useful and gives greater degree of concurrency

– if probability of conflicts is low

– serializability order is not pre-decided

– relatively few transactions will have to be rolled back

5/10/23 Heiko Paulheim 50

Validation Test for Transaction Tj

• If for all Ti with TS (Ti) < TS (Tj) either one of the following condition
holds:

– finish(Ti) < start(Tj)

– start(Tj) < finish(Ti) < validation(Tj) and the set of data items written by
Ti does not intersect with the set of data items read by Tj

then validation succeeds and Tj can be committed

– otherwise, validation fails and Tj is aborted

• Explanation: Either the first condition is satisfied, i.e., there is no
overlapped execution, or the second condition is satisfied, i.e.,

– the writes of Tj do not affect reads of Ti since they occur after Ti has
finished its reads

– the writes of Ti do not affect reads of Tj since Tj does not read any item
written by Ti

5/10/23 Heiko Paulheim 51

Validation Test for Transaction Tj

• Example schedule using validation:

T25 has not written
anything read by T26

5/10/23 Heiko Paulheim 52

Insert and Delete Operations

• If two-phase locking is used :

– A delete operation may be performed only if the transaction deleting
the tuple has an exclusive lock on the tuple to be deleted

– A transaction that inserts a new tuple into the database
is given an exclusive lock on the tuple

• Insertions and deletions can lead to the phantom phenomenon

• A transaction that scans a relation

(e.g., read number of all accounts in Perryridge)

and a transaction that inserts a tuple in the relation

(e.g., insert a new account at Perryridge)

(conceptually) conflict in spite of not accessing any tuple in common

5/10/23 Heiko Paulheim 53

Insert and Delete Operations

• The transaction scanning the relation is reading information that indicates
what tuples the relation contains

– while a transaction inserting a tuple updates the same information

• The conflict should be detected, e.g., by locking the information

• One solution:

– Associate a data item with the relation, to represent the information about what
tuples the relation contains

– Transactions scanning the relation acquire a shared lock in the data item

– Transactions inserting or deleting a tuple acquire an exclusive lock on the data
item.
(Note: locks on the data item do not conflict with locks on individual tuples.)

• Above protocol provides very low concurrency for insertions/deletions

– Index locking protocols provide higher concurrency while preventing the
phantom phenomenon

– requiring locks on certain index buckets

5/10/23 Heiko Paulheim 54

Index Locking Protocol

• Index locking protocol

– Every relation must have at least one index

– A transaction can access tuples only after finding them
through one or more indices on the relation

• A transaction Ti that performs a lookup must lock all the index leaf
nodes that it accesses, in S-mode

– Even if the leaf node does not contain any tuple satisfying the index lookup
(e.g. for a range query, no tuple in a leaf is in the range)

• A transaction Ti that inserts, updates or deletes a tuple ti in a relation r

– must update all indices to r

– must obtain exclusive locks on all index leaf nodes affected by the
insert/update/delete

• The rules of the two-phase locking protocol must be observed

– Guarantees that phantom phenomenon does not occur

5/10/23 Heiko Paulheim 55

Concurrency in Index Structures

• Indices are unlike other database items

– their only job is to help in accessing the actual data

• Index structures are typically accessed very often

– much more than other database items

– Treating index-structures like other database items,
e.g. by 2-phase locking of index nodes can lead to low concurrency

• Special protocols for index structures

– e.g., locks on internal nodes are released early, instead of two-phase
fashion

– it is acceptable to have nonserializable concurrent access to an index as
long as the accuracy of the index is maintained

– in particular, the exact values read in an internal node of a
B+-tree are irrelevant so long as we end up in the correct leaf node

5/10/23 Heiko Paulheim 56

Concurrency in Index Structures

• Example of index concurrency protocol:Use crabbing instead of two-phase locking
on the nodes of the B+-tree, as follows

• During search/insertion/deletion:

– First lock the root node in shared mode

– After locking all required children of a node in shared mode, release the lock on
the parent node

• During insertion/deletion

– upgrade leaf node locks to exclusive mode

• When splitting or coalescing requires changes to a parent

– lock the parent in exclusive mode

• Above protocol can cause excessive deadlocks

– Searches coming down the tree deadlock with updates going up the tree

– Can abort and restart search, without affecting transaction

– Better protocols are available; e.g., the B-link tree protocol

• Intuition: release lock on parent before acquiring lock on child

5/10/23 Heiko Paulheim 57

Summary

• Parallel access to databases brings challenges

– easy solution: process one transaction after the other

– higher performance solution: support parallelism

• Transactions & Serializability

– Methods for generating serializations

• Locks & Deadlocks

• Protocols

– for “normal” data

– for indices

5/10/23 Heiko Paulheim 58

Questions?

