T MANNHEIM

Database Technology
SQL Part 1

LT;T:V =
*.::”w.g‘

I U“”lj”tt“tt”tﬁ,
TYYYYT

Heiko Paulheim

Outline

* Today
— Overview of The SQL Query Language
— Basic Query Structure
— Set Operations
— Join Operators
— Null Values
— Aggregate Functions
— Nested Subqueries

* Next week
— Data Definition
— Data Types in SQL
— Modifications of the database
— Views
— Integrity Constraints
— Roles & Rights

2/19/24 Heiko Paulheim

Recap: Database Systems
-

(tgfé;’se ;;:;is application SOP?:;‘;ated database
web {lsers) ’ programmers (analysts) administrators
use write use use

* Users and applications interact
with databases

— By issuing queries @D @; @D
— Data definition (DDL): S SR SN, % S, S
defining, altering, deleting tables compiler and| e, [ceries | [DDL nterpreter

i / linker " E
— Data manipulation (DML): I A ;

. g object code and organizer
reading from & writing to tables 4<_.querg;;;gaﬁon i |
* SQL is both a DDL and a DML e e

uffer manager ile manager authorization transaction
— The language that most DBMS speak e/ lfemms iy | | ‘o

storage manager

—

data dictionary
statistical data

disk storage

2/19/24 Heiko Paulheim

History

* |IBM SEQUEL language developed as part of System R project
at the IBM San Jose Research Laboratory

— Structured English QUEry Language
* Renamed Structured Query Language (SQL)

* ANSI and ISO standard SQL;
- SQL-86 ANSI |

— SQL-89 Naming became
Ssase Mg compiants S0 Pt
— SQL:1999 N\~ Zl Standardization

— SQL:2003
* Commercial + free systems offer most, if not all, SQL-92 features

— plus varying feature sets from later standards and special proprietary
features

— Not all examples here may work on your particular system!

2/19/24 Heiko Paulheim

Parts of SQL: The Big Picture
-

SQL
Commands

DDL DML DCL TCL

CREATE SELECT GRANT COMMIT
ALTER INSERT REVOKE ROLLBACK
DROP UPDATE SAVEPOINT
TRUNCATE DELETE SET TRANSACTION
COMMENT MERGE
RENAME CALL

EXPLAIN PLAN

LOCK TABLE

Source: https://www.w3schools.in/mysqgl/ddl-dml-dcl/

2/19/24 Heiko Paulheim

Reading Data
e

* The select clause lists the attributes desired in the result of a query

* Example: find the names of all instructors:
select name
from instructor

* In relational algebra:
— I1..... (instructor)

2/19/24 Heiko Paulheim

A Note on Case Sensitivity
e

* SQL is completely case insensitive
— select = SELECT = SelLeCt

* Also for names of relations and attributes
— instructor = Instructor = INSTRUCTOR
— name = NAME = nAmE

* Each relation / attribute can only exist once

— Hence, two relations named instructor and Instructor
would not be feasible

* Case sensitivity does not apply to values!
— i.e., “Einstein” and “einstein” are different values!

2/19/24 Heiko Paulheim

Renaming Columns in a Select
-

* Columns can be renamed during selection
* select name, salary as payment from instructor

* In relational algebra
— a composition of projection and renaming:

IO payment— salary (Hname,salary (inStrUCtor))

2/19/24 Heiko Paulheim

The Select Clause
e

* An asterisk in the select clause denotes “all attributes”
select * from instructor

* An attribute can be a literal with no from clause, possibly renamed

select ‘437 FOO
select ‘437" as FOO 437
* An attribute can be a literal with from clause ”a"_‘e role
select name, ‘Instructor’ as role from instructor UL Instructor
Einstein Instructor

union

select name, ‘Student’ as role from student
Johnson Student

2/19/24 Heiko Paulheim

Duplicates
e

* Difference to relational algebra
— Sets do not contain duplicates!

* SQL allows duplicates in relations as well as in query results

* To force the elimination of duplicates, insert the keyword distinct
after select.
* Find the department names of all instructors, and remove duplicates

select distinct dept name
from instructor

2/19/24 Heiko Paulheim

Arithmetics in the Selection
e

* The select clause can contain arithmetic expressions involving the
operation, +, —, *, and /, and operating on constants or attributes of
tuples

— Here, we leave relational algebral

* The query

select ID, name, salary/12 from instructor

would return a relation that is the same as the instructor relation,
except that the value of the attribute salary is divided by 12

* Combined with renaming:
— select ID, name, salary/12 as monthly salary

2/19/24 Heiko Paulheim

Reading Parts of a Relation
e

* So far, we have always read an entire relation
* Usually, we are interested only in a small portion
* The where clause restricts which parts of the table to read

* To find all instructors in Comp. Sci. dept

select name
from instructor
where dept name = ‘Comp. Sci.'

* In relational algebra: combination of selection and projection

TCname(Gdept_name = ‘Comp. Sci.’(r))

2/19/24 Heiko Paulheim

Reading Parts of a Relation
e

* Comparison results can be combined using the logical connectives
and, or, and not

select name
from instructor
where dept name = ‘Comp. Sci.' and salary > 90000

TCname(Gdept_name = ‘Comp. Sci.’ A salary>90000(r))

* Can be combined with results of arithmetic expressions

select name, salary/12 as monthly salary
from instructor
where dept name = ‘Comp. Sci.' and monthly salary > 7500

2/19/24 Heiko Paulheim

Searching in Texts
-

* So far, we have handled exact equality in selections

* Sometimes, we want to search differently
— All books that contain “database’
— All authors starting with “S”

* In SQL: comparing with like and two special characters:
— = any arbitrary character
— % = any number of arbitrary characters
— masking with backslash
select ... where fitle like ‘Y%database%’

most SQL engineﬂ
don’t check types

select ... where author like ‘S%’
select ... where amount like ‘100\%’

2/19/24 Heiko Paulheim

Reading Data from Multiple Tables

Example: find all instructors and the courses they teach

select * from instructor, teaches
— this generates the cartesian product, i.e., instructor x teaches

— result: generates every possible ingtructor — teaches pair, with all
attributes from both relations

-
Common attributes (e.g., ID), the attributes |9 the resulting table are
renamed using the relation name P

— e.qg., instructor.ID, teaches.ID :
\ﬁbut is that useful?
A

,,,,,i_/\\

Relational algebra notation:

= Phstuctor.i p(INStructor) teaches)

X p teaches.ID «— ID(

2/19/24 Heiko Paulheim

Cartesian Product
e

instructor teaches

ID name dept_name salary ID | course_id | sec_id | semester | year
10101 | Srinivasan| Comp. Sci. 65000 10101 | CS-101 1 Fall 2009
12121 | Wu Finance 90000 10101 | C5-315 1 Spring 2010
15151 . . 2009
29999 Inst.ID| name dept_name | salary | teaches.ID| course_id |sec_id| semester| year 5010
32343 || 10101 |Srinivasan|Comp. Sci|65000| 10101 [CS-101 | 1 | Fall ~ |2009| | 2010
AAAAA 10101 [Srinivasan|Comp. Sci/ 65000 | 10101 (CS-315 1 Spring |2010] | 2009

10101 |Srinivasan|Comp. Sci| 65000 10101 CS-347 1 Fall 2009

10101 |Srinivasan|Comp. Sci| 65000 12121 FIN-201 1 Spring | 2010

10101 |Srinivasan|Comp. Sci| 65000 15151 MU-199 | 1 Spring | 2010

10101 |Srinivasan|Comp. Sci| 65000 22222 PHY-101 | 1 Fall 2009

12121 |Wu Finance 90000 | 10101 CS-101 1 Fall 2009

12121 |Wu Finance 90000 10101 (CS-315 1 Spring | 2010

12121 |Wu Pinance |90000| 10101 CS-347 1 Fall 2009

12121 |Wu Pinance |[90000| 12121 FIN-201 1 Spring | 2010

12121 |[Wu Finance 90000 | 15151 MU-199 1 Spring | 2010

12121 |Wu Pinance |[90000| 22222 PHY-101 | 1 Fall 2009

2/19/24

Heiko Paulheim

Cartesian Products with Selection
e

* Find the names of all instructors who have taught some course and
the course id

select name, course_id
from instructor , teaches
where instructor.ID = teaches.ID

* Relational algebra:

7Tname,course_id((jinstructor.ID=teaches.lD(pmstructor.,D - ,D((inStrUCtor) X Prioaches.iD ID(teaCheS))))

2/19/24 Heiko Paulheim

Cartesian Product

2/19/24

Heiko Paulheim

instructor teaches

ID name dept_name salary ID | course_id | sec_id | semester | year
10101 | Srinivasan| Comp. Sci. 65000 10101 | CS-101 1 Fall 2009
12121 | Wu Finance 90000 10101 | CS-315 1 Spring 2010
15151 . . 2009
29999 Inst.ID| name dept_name | salary | teaches.ID| course_id |sec_id| semester| year 5010
32343 |1 10101 |Srinivasan|Comp. Sci| 65000 10101 |CS-101 | 1 | Fall |2009| | 2010
AAAAA 10101 [Srinivasan|Comp. Sci/ 65000 | 10101 (CS-315 1 Spring |2010] | 2009

10101 |Srinivasan|Comp. Sci| 65000 10101 CS-347 1 Fall 2009

TOTOTSTITveasar CULL[P. St B0 2124 THN=201 T SPLiué 2610

TUTUL STITTIvasdarT CUMLP. STt DoUUU 515 N=1T99 T Splillé FAVERY,

10— SHRIvasantComPprSe-65000-—=22222— 01— Eall 2000

2124V Frrarree 980001016+ E5-161 1 Fedt 2009

oW Firerree—90000—10164 5315 + Sprive—260+6

24241 Piratree—t90066T+0+64 E5=34F + okt 2009

12121 [Wu Pinance |[90000| 12121 FIN-201 1 Spring | 2010

S s o e Firanee 90006—+o+54 =0 1 Serivre—20+0

Fogod—A Ripairee——-90000-—22222 PHA-0——1 Fat 2009

Cartesian Products with Selection
e

* Find the names of all instructors in the Finance department who
have taught some course, together with the course id
select name, course_id

from instructor , teaches
where instructor.ID = teaches.ID and instructor. dept_name = ‘Finance’

ﬂname,course_id(Oinstructor.ID=teaches.ID 2 dept—”ame=’Fi”ance’(pinstructor. D — ID(

(inStrUCtOr) X pteaches.lD — ID(teaCheS))))

2/19/24 Heiko Paulheim

Cartesian Product
e

instructor teaches
ID name dept_name salary ID course_id | sec_id sewmester year

10101 | Srinivasan | Comp. Sci. | 65000 10101 | CS-101 1 Fall 2009
12121 | Wu Finance 90000 10101 | CS-315 1 Spring 2010
15151 ; . 2009

Inst.ID| name dept_name | salary | teaches.ID| course_id |sec_id| semester| year
22222 = — = 2010
32343 | e Srtrivasam ComtpSebr65000— €S+ Tl ——2009- | 2010

T SririvasantComp—Sei-65000—+04+604 5345 1 Sprne—-20+0- | 2009

4 A A | f Vs (lagd [=FaVaV¥al 111 011 (C A7 -1 .11 laTATATO]

TUILrur u% LT LIJ- AT OOUUY TULTOUT | TR i o 4 T T oIl r panwa v

TOTOTSTITveasar CULL[P. St B0 2124 THN=201 T SPLiué 2610

TOTOT STV asarT CUMLP. STt 76101019 S SSAREA NM=199 T Splillé 2016

10— SHRIvasantComPprSe-65000-—=22222— 01— Eall 2000

P - TAT N I B P2 e W tPa Y 1M1 01 ranl el IWat.| A T _11 laFATYATA

12121 ¥V ulb B N I L HUuUuy 1TV L s U 1 Lol IS

P W TAT I PN 4 /1101 Vit S R B -1 s % {100

TZ1Z1L [Yv o TITCIICC 9UUUU TUTUTL A e n g T JHLIITE, ravEnv;

A A A AT 1) FaVaVaVaVal 1 11 11 AT -1 .11 s YATATE

) P e Yy u X LTI Uy LTUVAIRST W STTTS 1 PEECENE v A wary

12121 |Wu Pinance 90000 | 12121 FIN-201 1 Spring | 2010

4 My TAT, . i B FaVaVaVaVal 1101 RARATT 100 | C'“P-:“ 1.0

J_L_LLJ_ ¥¥ i [P SR N NN N) }UUUU [BT e N IVL L/ X A7 L L}t/ J.J.Lb LS

4 A A 1AL, i B faVaVaVaVal alelals L] DITN 111 1 .11 s TATATO]

TZ1TZT L s T IO TCE PAVAVINIY) = r= TITLT TUOT T T OIrT ravav)

2/19/24 Heiko Paulheim

Cartesian Product of a Table with Itself
e

* Find the names of all instructors who have a higher salary than
some instructor in ‘Comp. Sci'.

— We need the same table twice
— So, we have to use it under different names

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = ‘Comp. Sci.’

7TT,name ((7 T.salary>S.salary n S.dept_name="Comp. Sci.’ (p-,-(| nstructo r) X IOS(I nstructo r)))

* What happens if we omit the distinct here?

2/19/24 Heiko Paulheim

Join Operations
e

* Join operations

— take two relations

— return as new relation as their result
* Ajoin operation

— is a Cartesian product

— requires that tuples in the two relations match (under some
condition)

— specifies the attributes that are present in the result of the join

* The join operations are typically used as subquery expressions in
the from clause

2/19/24 Heiko Paulheim

Join Operations
e

* Recap: We have already seen a form of joins:
* Ajoin operation
— is a Cartesian product

— requires that/tuples in the two relations match (under some
condition)

— specifies the attributes that are present in the result of the join

* Find the names ofi{instructors o have taught some course and

the course id
select namejjcourse _id

from instructor, teach
where instructor.ID = teaches.ID

2/19/24 Heiko Paulheim

Outer Joins

Consider the two relations below

Desired:

— List all courses with their prerequisites

— Note: course CS-315 has no prerequisites

2/19/24

course_id title dept_name | credits
BIO-301 | Genetics Biology 4
CS5-190 [Game Design| Comp. Sci. 4
(CS-315 |Robotics Comp. Sci. 3
course_id | prereq_id
BIO-301 | BIO-101
C5-190 C5-101
CS-347 C5-101

Heiko Paulheim

Outer Joins
e

* List all courses with their prerequisites

select C.course _id, C.title, C.credits, C.dept_name, P.course_id
from course as C, prereq as P
where C.course _id = P.course _id

course_id title dept_name | credits course_id | prereq_id

BIO-301 | Genetics Biology 4 BIO-301 | BIO-101

CS-190 | Game Design| Comp. Sci. 4 CS-190 | CS-101

(CS-315 |Robotics Comp. Sci. 3 CS-347 CS-101
C.course _id C.title C.credits C.dept_name P.course id
BlIO-301 Genetics 4 Biology BlIO-101
CS-190 Game Design 4 Comp. Sci. CS-101

2/19/24 Heiko Paulheim

Outer Joins
e

* List all courses with their prerequisites

select C.course_id, C.title, C.credits, C.dept _name, P.prereq_id
from course as C left outer join prereq as P
on C.course_id = P.course_id

course_id title dept_name | credits course_id | prereq_id

BIO-301 | Genetics Biology 4 BIO-301 | BIO-101

CS-190 | Game Design| Comp. Sci. 4 CS-190 | CS-101

(CS-315 |Robotics Comp. Sci. 3 Cs-347 | CS-101
C.course_id C.title C.credits C.dept_name P.prered_id
BlIO-301 Genetics 4 Biology BlIO-101
CS-190 Game Design 4 Comp. Sci. CS-101
CS-315 Robotics 3 Comp. Sci. null

2/19/24 Heiko Paulheim

Join Operations

* Join type — defines how tuples in each relation that do not match
any tuple in the other relation (based on the join condition) are

N 7
treated { for the moment:
— inner join: ignore - keyword for “a blank cell”
-

— outer join: fill with null values™

* Join condition — defines which tuples in the two relations match,
and what attributes are present in the result of the join

— explicit: on clause
— implicit: natural keyword

Join types Join Conditions
inner join natural

left outer join on < predicate>
right outer join using (A1, Ay, ..., A))
full outer join

2/19/24 Heiko Paulheim

Outer Joins
e

* List all courses with their prerequisites

select C.course_id, C.title, C.credits, C.dept _name, P.prereq_id
from course as C right outer join prereq as P
on C.course_id = P.course_id

course_id title dept_name | credits course_id | prereq_id
BIO-301 | Genetics Biology 4 BIO-301 | BIO-101

CS-190 | Game Design| Comp. Sci. 4 CS-190 | CS-101

(CS-315 |Robotics Comp. Sci. 3 CS-347 CS-101
C.course_id C.title C.credits C.dept_name P.prereqg_id
BlIO-301 Genetics 4 Biology BlIO-101
CS-190 Game Design 4 Comp. Sci. CS-101
CS-347 null null null CS-101

2/19/24 Heiko Paulheim

Outer Joins
e

* List all courses with their prerequisites

select C.course_id, C.title, C.credits, C.dept _name, P.prereq_id
from course as C full outer join prereq as P
on C.course_id = P.course_id

course_id title dept_name | credits course_id | prereq_id

BIO-301 | Genetics Biology 4 BIO-301 | BIO-101

CS-190 | Game Design| Comp. Sci. 4 CS-190 | CS-101

(CS-315 |Robotics Comp. Sci. 3 CS-347 CS-101
C.course_id C.title C.credits C.dept_name P.prered_id
BIO-301 Genetics 4 Biology BlIO-101
CS-190 Game Design 4 Comp. Sci. CS-101
CS-347 null null null CS-101
CS-315 Robotics 3 Comp. Sci. null

2/19/24 Heiko Paulheim

Join Types at a Glance

SELECT <select_list= SELECT <select_lisc>
FROM TableA A FROM TableA A
LEFT JOIN TableB B RIGHT JOIN TableB B
0N AKey = B.Key OMN AKey = B.Key
SELECT <sclect_lisi>
FROM TablcA A
INMER JOIN Tablell B
O AKey = B.Key
SELECT <sclect_list™ SELECT <select_list=>
FROM TableA A FROM TableA A

LEFT JOIN TaklcB B
O™ A Key = B.Eey
WHERE B.Eey IS NULL

RIGHT JOIMN TablcB B
0OM AKey = B.Key
WHERE A.Key IS MULL

SELECT =schect_list=
SELECT =sclect_list> FROM TableA A

FROM TableA A FULL OUTER JOIN TableB B
FULL OUTER JOIN TableB B O™ AKey = B.Key

OM AKey = B.Key WHERE AKey 5 NULL
0L MotTati, 2008 OR B.Key 15 NULL

https://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

2/19/24 Heiko Paulheim

Ordering Results
e

* Recap: Relational Algebra works on sets
— li.e., it does not have orderings

* For database applications, ordering is often useful, e.g.,

— list students ordered by names
select id,name
from student
order by name

— list instructors ordered by department first, then by name
select id,name,dept name
from instructor
order by dept name, name

2/19/24 Heiko Paulheim

Limiting Results
-

* Find the three lecturers with the highest salaries

select id,name,salary
from instructor
order by salary desc
limit 3;

* Note: the desc keyword creates a descending ordering

* asc also exists and creates an ascending ordering
— also the default when not specifiying the direction

2/19/24 Heiko Paulheim

Paging with LIMIT and OFFSET
-

* Applications, e.g., Web applications, often offer a paged view

* Example:
— Display student list on pages of 100 students
— with navigation (next page, previous page)

select id name
from student
order by name
limit 100
offset 100;

* offset 100 means: skip the first 100 entries
— i.e., this query would create the second page

* Note: offset should only be used with order by
— otherwise, the results are not deterministic

2/19/24 Heiko Paulheim

Set Operations

* All courses that are offered in HWS 2017 and FSS 2018

(select course id from section where sem = ‘HWS’ and year = 2017)
intersect
(select course id from section where sem = ‘FSS’ and year = 2018)

ﬂcourse_id(Gsem=’HWS’/\ year=2017(seCti0n)) M ﬂcourse_id(Gsem=’FSS’/\ year=2018(seCti0n))

* All courses that are offered in HWS 2017 but not in FSS 2018

(select course_id from section where sem = ‘HWS’ and year = 2017)
except
(select course_id from section where sem = ‘FSS’ and year = 2018)

ﬂcourse_id(GsemeWS’/\ year=2017(S€Ction)) - ﬂcourse_id(Gsem=’FSS’/\ year=2018(SeCti0n))

2/19/24 Heiko Paulheim

Set Operations

* All courses that are offered in HWS 2017 or FSS 2018

(select course id from section where sem = ‘HWS’ and year = 2017)
union
(select course id from section where sem = ‘FSS’ and year = 2018)

ﬂcourse_id(Gsem=’HWS’/\ year=2017(seCti0n)) . ﬂcourse_id(Usem=’FSS’/\ year=2018(seCti0n))

* Alternative solution

(select course_id from section where
((sem = "HWS’ and year = 2017) or (sem = ‘FSS’ and year = 2018))

7Tcourse_id(O(sem="HWS’ 2 year=2017) v (sem="FSS’ A year=2018)) (SeCtion))

2/19/24 Heiko Paulheim

Aggregate Functions — Examples

Find the average salary of instructors in the Computer Science
department

— select avg (salary)
from instructor
where dept_name='Comp. Sci.’;

Find the number of tuples in the course relation

— select count (*)
from course;

Find the total number of instructors who teach a course in the

Spring 2010 semester o y>d/
_y - - y do we nee
— select count (distinct /D) = = distinct here? ;
from teaches e

where semester = 'Spring’ and year = 2010;

2/19/24 Heiko Paulheim

Aggregate Functions with Group By

* Find the average salary of instructors in each department

— select dept_name, avg (salary) as avg_salary
from instructor
group by dept name;

dept_name

avg_;alal‘y

Biology 72000
Comp. Sci. | 77333
Elec. Eng. | 80000
Finance 85000
History 61000
Music 40000
Physics 91000

ID | name dept_name | salary
76766 | Crick Biology 72000
45565 | Katz Comp. Sci. | 75000
10101 | Srinivasan | Comp. Sci. | 65000
83821 [Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. | 80000
12121 {Wu Finance 90000
76543 | Singh Finance 80000
32343 | El Said History 60000
58583 | Califieri History 62000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
22222 | Einstein Physics 95000

2/19/24

Heiko Paulheim

Aggregate Functions with Group By
-

* Attributes in select clause outside of aggregate functions must

appear in group by list T e
[* erroneous query */
select dept_name, ID, avg (salary)
from instructor
group by dept name;

| ID | name | depl_name |Salary |

76766 | Crick Biology 72000 dept_name avg(salary)
45565 | Katz Comp. Sci. | 75000 Biol

10101 | Srinivasan | Comp. Sci. | 65000 CIO OSYS) 72000
83821 |Brandt | Comp. Sci. | 92000 omp. >¢l. | 77333
98345 | Kim Elec. Eng. | 80000 Elec. Eng. | 80000
12121 |Wu Finance 90000 Finance 85000
76543 | Singh Finance 80000 HiStOl‘y 61000

32343 |El S.a?d. H?story 60000 Mitsic 40000
58583 | Califieri History 62000 _

15151 [Mozart | Music | 40000 Physics | 91000
33456 | Gold Physics 87000
22222 |Einstein Physics 95000

2/19/24 Heiko Paulheim

Conditions on Aggregate Values
e

* Find the names and average salaries of all departments whose

average salary is greater than 42000 Y 4
!

— select dept _name, avg (salary) as avg salary V' 4
from instructor y. o 4
group by dept_name
where avg salary > 42000;

* Problem:
— Aggregation is performed after selection and projection

— Hence, the variable avg salary is not available
when the where clause is evaluated

— The above query will not work

2/19/24 Heiko Paulheim

Conditions on Aggregate Values
e

* Find the names and average salaries of all departments whose
average salary is greater than 42000

— select dept _name, avg (salary) as avg salary
from instructor
group by dept_name
having avg salary > 42000;

performance!

* The having clause is evaluated after the aggregation
* Hence, it is different from the where clause

* Rule of thumb
— Conditions on aggregate values can only be defined using having

2/19/24 Heiko Paulheim

NULL Values
e

* null signifies an unknown value or that a value does not exist

* |tis possible for tuples to have a null value, denoted by null, for
some of their attributes

— can be forbidden by a not null constraint
— keys can never be null!

* The result of any arithmetic expression involving null is null
* Example: 5 + null returns null

* The predicate is null can be used to check for null values
* Example: Find all instructors whose salary is null.

select name
from instructor
where salary is null

2/19/24 Heiko Paulheim

NULL Values and Three Valued Logic
e

* Three values — true, false, unknown
* Any comparison with null returns unknown

— Example: 5 <null or null <>null or null =null

* Three-valued logic using the value unknown:

— OR: (unknown or true) = true,
(unknown or false) = unknown
(unknown or unknown) = unknown

— AND: (true and unknown) = unknown,
(false and unknown) = false,
(unknown and unknown) = unknown

— NOT: (not unknown) = unknown
* “P is unknown” evaluates to true if predicate P evaluates to unknown

* Result of where clause predicate is treated as false if it evaluates to
unknown

2/19/24 Heiko Paulheim

Aggregates and NULL Values
-

* Total all salaries

select sum (salary)
from instructor

— Above statement ignores null amounts
— Result is null if there is no non-null amount

* All aggregate operations except count(*) ignore tuples with null

values on the aggregated attributes [ID [name | depl_name | salary |
. . . 76766 | Crick Biology 72000
What if collection has only null values? o565 | Kk Comp. Sci. | 75000

10101 | Srinivasan | Comp. Sci. | null

— count returns 0 83821 |Brandt | Comp. Sci. | 92000

— all other aggregates return null 98345 | Kim Elec. Eng. | 80000
12121 | Wu Finance null
76543 | Singh Finance 80000

32343 | El Said History 60000
58583 | Califieri History null
15151 | Mozart Music 40000
33456 | Gold Physics 87000
22222 |Einstein Physics null

2/19/24 Heiko Paulheim

Subqueries
e

* SQL provides a mechanism for the nesting of subqueries. A subquery is a
select-from-where expression that is nested within another query.

* The nesting can be done in the following SQL query

select A, A, ..., A
fromr,r, .., r,
where P

n

as follows:
- A, can be replaced be a subquery that generates a single value
« r, can be replaced by any valid subquery
* P can be replaced with an expression of the form:
B <operation> (subquery)
Where B is an attribute and <operation> to be defined later

2/19/24 Heiko Paulheim 44

Subqueries in the WHERE Clause
e

* A common use of subqueries is to perform tests:
— for set membership
— for set comparisons
— for set cardinality

2/19/24 Heiko Paulheim

Test for Set Membership
e

* Find courses offered this term by lectures from the biology
department

select distinct course _id
from teaches
where semester = 'Spring’ and year= 2022 and
ID in (select ID from instructor where dept_name = ‘Biology’);

* Find courses offered this term before 9 am or after 5 pm

select distinct course id
from section
where semester = 'Spring’ and year= 2022 and
time_slot_id not in (select time_slot _id from time_slot
where end_time >=9 and start_time <= 17);

2/19/24 Heiko Paulheim

Test for Set Membership
e

* Find the total number of (distinct) courses offered by instructors in
the biology department

select count(distinct course id)
from teaches
where semester = 'Spring’ and year= 2022 and
ID in (select ID from instructor where dept_name = ‘Biology’);

* Note: in all of those cases,
other (sometimes simpler) solutions are possible

— In SQL, there are often different ways to solve a problem
— A question of personal taste
— But also: a question of performance...

2/19/24 Heiko Paulheim

Test for Set Membership

* Find the total number of (distinct) courses offered by instructors in

the biology department creates\;

select count(distinct course id) temporary
from teaches o \Q tab
where semester = ’'Spring’ and year=2022and , @

ID in (select ID from instructor where dept_name = ‘Biology’);

select count (distinct course _id)
from teaches, instructor
where teaches.ID = instructor.ID and instructor.department = ‘Biology’;

®

®

@ e
computes
CarteS|an

prod U/CQ/

2/19/24 Heiko Paulheim

Set Comparison with SOME
e

* Find names of instructors with salary greater than
that of some (at least one) instructor in the Biology department

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept name = 'Biology’;

* Same query using > some clause

select name
from instructor
where salary > some (select salary
from instructor
where dept name = 'Biology’);

2/19/24 Heiko Paulheim

Set Comparison with ALL
e

* Find names of instructors with salary greater than
that of all instructors in the Biology department
select name
from instructor
where salary > all (select salary

from instructor
where dept name = 'Biology’);

* Note: we could also achieve this with MIN and MAX aggregates in the
subqueries

2/19/24 Heiko Paulheim

Definition: Comparisons with SOME
e

* F <comp>some r < 3t e r such that (F <comp>t)
Where <comp> can be: <, <, >, =, #

0
(5<some | § |)=true
6 (read: 5 <some tuple in the relation)
0
(5<some | § |)="false
0
(O=some| 5 |)=true
0
(5#some | J |)=true (since 0 # 5)

(= some) =in
However, (= some);é not in

2/19/24 Heiko Paulheim

Definition: Comparisons with ALL
e

* F<comp>allreVvier (F<comp>t)

0

(b<all | § |)=false
6
6

(5<all [10Q]|)=true
4

(o=all| 5 |)="false
4

(5%all| 6 |)=true (since 5+ 4 and 5 # 6)

(= all) = not in
However, (= all) £ in

2/19/24 Heiko Paulheim

Existential Quantification in Subqueries
e

* Select all courses offered this year which are taken by at least one
student

— select course id
from section
where semester = 'Spring’ and year = 2022 and
exists (select *
from takes
where takes.course id = section.course_id
and takes.sec id = section.sec id
and takes.semester = section.semester),

* The exists construct returns the value true
if the result of the subquery is not empty

— exists re r- 0
— notexistsr< r=@

2/19/24 Heiko Paulheim

Subqueries with NOT EXISTS
e

* Find all students who have taken all courses offered in the Biology
department

select distinct S./ID, S.name
from student as S
where not exists ((select course id
from course
where dept_name = 'Biology’)
except
(select T.course id
from takesas T
where S.ID = T.ID));

— First nested query lists all courses offered in Biology
— Second nested query lists all courses a particular student took

* NotethatX-Y=0 < XcY
* Note: Cannot write this query using = all and its variants

2/19/24 Heiko Paulheim

Test for Duplicate Tuples
e

* Find all courses that were offered at most once in 2009

select T.course id
from courseas T
where unique (select R.course id
from section as R
where T.course id= R.course id
and R.year = 2009);

* The unique construct evaluates to “true” if a given subquery
contains no duplicates

* With not unique, we could query for courses that were offered
more than once

2/19/24 Heiko Paulheim

Subqueries in the FROM Clause
e

* So far, we have considered subqueries in the where clause

* Find the average instructors’ salaries of those departments where
the average salary is greater than $42,000.”

select dept name, avg salary
from
(select dept _name, avg (salary) as avg_salary
from instructor
group by dept _name)
where avg salary > 42000;

* Note that we do not need to use the having clause
— why?

2/19/24 Heiko Paulheim

Creating Temporary Relations Using WITH
e

* Find all departments with the maximum budget

with max_budget (value) as | I

(select max(budget) — <% ~ this defines the structure

from department) ~ ofthe temporary relation\ 4
select department.name (datatypes are implicit)
from department, max_budget e

where department.budget = max_budget.value,

* The with clause provides a way of defining a temporary relation
whose definition is available only to the query in which the with
clause occurs

2/19/24 Heiko Paulheim

Creating Temporary Relations Using WITH
e

* A more complex example involving two temporary relations:

— Find all departments where the total salary is greater than the
average of the total salary at all departments
with
dept _total (dept _name, value) as

(select dept _name, sum(salary)
from instructor
group by dept_name),
dept _total avg(value) as
(select avg(value)
from dept total)
select dept name
from dept total, dept total avg
where dept total.value > dept total avg.value;

2/19/24 Heiko Paulheim

Scalar Subqueries in the SELECT Part
e

* List all departments along with the number of instructors in each
department

select dept _name,
(select count(™)
from instructor
where
department.dept_name = instructor.dept _name)
as num_instructors
from department;

* Scalar subqueries return a single result
— More specifically: a single tuple

* Runtime error if subquery returns more than one result tuple

2/19/24 Heiko Paulheim

Summary of Subqueries

« SELECT queries are the most often used part of SQL

* Their basic structure is simple, but subqueries are a powerful means
to make them quite expressive
select A, A,, ..., A

fromr,r,, ..., r,
where P

n

« Subqueries in select part (A,, A,, ..., A)

— Scalar subqueries (single values, like aggregates)
« Subqueries in from part (r, r,, ...,)

— Temporary relations (can also be defined using with)
* Subqueries in where part (P)

— Set comparisons, empty sets, test for duplicates
— Universal and existential quantification

2/19/24 Heiko Paulheim

Summary: SQL SELECT at a Glance

* The tool support of SQL varies D e e -~]

* what we have covered here L G —— m.m
is standard SQL H

— Supported by most tools

, |

(oroer)»(BY)-»—{ ordering term |
h'.

O N e S Gy Wiy
®

2/19/24 Heiko Paulheim

Recap: The Big Picture
-

SQL
Commands
|
|
DDL DML DCL TCL

CREATE GRANT COMMIT
ALTER INSERT REVOKE ROLLBACK
DROP UPDATE SAVEPOINT
TRUNCATE DELETE SET TRANSACTION
COMMENT MERGE
RENAME CALL

EXPLAIN PLAN

LOCK TABLE

Source: https://www.w3schools.in/mysqgl/ddl-dml-dcl/

2/19/24 Heiko Paulheim

Summary and Take Aways
-

* SAQL is a standarized language for relational databases
— DML: Data Manipulation Language

* DML
— Read data from tables using SELECT

* Coming Up:
— Writing data to tables
— Creating and changing tables
— Rights & Roles

2/19/24 Heiko Paulheim

Questions?

s

2/19/24 Heiko Paulheim

