Organization

UNIVERSITY OF MANNHEIM Data and Web Science Group

CS460 Databases for Data Scientists

Hello

UNIVERSITY OF MANNHEIM Data and Web Science Group

- Dr. Sven Hertling
 - Substitute Professor for Data Science
- Research Interests:
 - Knowledge Graph Integration
 - KGs in combination with Large Language Models
 - Information Extraction
- Room: B6 26, B0.21
- eMail: sven.hertling@uni-mannheim.de
- Sven will teach the lectures

Hello

UNIVERSITY
OF MANNHEIM
Data and Web Science Group

- M.Sc. Franz Krause
 - Graduate Research Associate
- Research Interests:
 - Machine Learning Applications on Linked Data
 - Dynamization of Knowledge Graph Embeddings
 - Knowledge Graph Application and Implementation in Industrial Settings
 - Applied Graph Theory
- Room: B6 26, B 0.02
- eMail: <u>franz.krause@uni-mannheim.de</u>
- Franz will teach the exercise

Introduction and Course Outline

- Administration
- Introduction to Database Technology
 - Concept and (brief) history of relational databases
 - Introduction to the relational model

Course Organization

- Lecture
 - Database concepts
 - Theory of relational algebra, relational modeling, query processing
 - Introduction to SQL
- Exercise
 - Creating example databases
 - Hands-on experience
- Final exam

Course Contents and Schedule

Lecture (Tuesday)

Yc		Or	\sim	2	> r	$\overline{}$
)u	aп	e	ΙIt	31	=

Dute	zectare (raesaay)	zacios (iralicoady)
10.02.	no lecture	no exercise
17.02.	Introduction	Introduction
24.02.	SQL Part 1	SQL Part 1
03.03.	SQL Part 2	SQL Part 2
10.03.	ER Models	ER Models
17.03.	Normal Forms	Normal Forms
24.03.	Index and Hashing	Index and Hashing
31.03.	DB Architectures	DB Architectures
07.04.	Query Processing	Query Processing + Intro Easter Eggcercise
14.04.	Holiday	Holiday
21.04.	Holiday	Holiday
28.04.	Query Optimization	Query Optimization
05.05.	Transactions and Concurrency	Transactions and Concurrency
12.05.	Recovery	Recovery
19.05.	Application Development	Application Development
26.05.	NoSQL + Q&A	NoSQL + Q&A

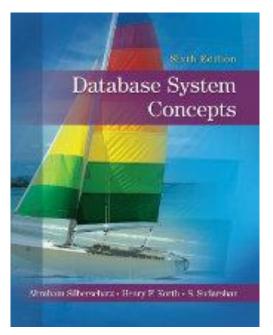
Exercise (Wednesday)

you'll get a larger eggxercise assignment here

Course Organization

- Lecture Webpage: Slides, Announcements, Web Links
 - https://www.uni-mannheim.de/dws/teaching/coursedetails/courses-for-master-candidates/cs-460-databases-for-datascientists/
 - hint: look at version tags!
- Time and Location

Course Organization



- Additional Material
 - ILIAS eLearning System, https://ilias.uni-mannheim.de/
- Remote teaching

For those who can't be there, we provide video recordings in ILIAS

(from 2021, but they are widely identical)

- This course (and the majority of the slides) are based on the book
 - Silberschatz et al.: Database System Concepts
- Several copies are available in the library
- Additional material online
 - www.db-book.com

Questions?

Introduction

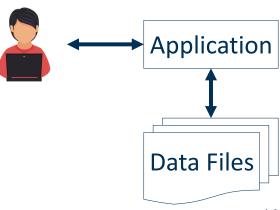
UNIVERSITY OF MANNHEIM Data and Web Science Group

CS460 Database Technology

Outline

- The Need for Databases
- Data Models
- Relational Databases
- Database Design
- Storage Manager
- Query Processing
- Transaction Manager
- Introduction to the Relational Model

Data Base Management Systems (DBMS)



- DBMS contains information about a particular organization
 - Collection of interrelated data
 - Set of programs to access the data
 - An environment that is both convenient and efficient to use
- Database Applications:
 - Banking: transactions
 - Airlines: reservations, schedules
 - Universities: registration, grades
 - Sales: customers, products, purchases
 - Online retailers: order tracking, customized recommendations
 - Manufacturing: production, inventory, orders, supply chain
 - Human resources: employee records, salaries, tax deductions
- Databases can be very large
- Databases touch all aspects of our lives

University Database Example

- Application program examples
 - Add new students, instructors, and courses
 - Register students for courses, and generate time tables
 - Assign grades to students, compute grade point averages (GPA) and generate transcripts
- In the early days, database applications were built directly on top of file systems

Drawbacks of Using File Systems to Store Data

- Data redundancy and inconsistency
 - Multiple file formats, duplication of information in different files
- Difficulty in accessing data
 - Need to write a new program to carry out each new task
- Data isolation
 - Multiple files and formats
- Integrity problems
 - Integrity constraints (e.g., GPA > 0) become "buried" in program code rather than being stated explicitly
 - Hard to add new constraints or change existing ones

Drawbacks of Using File Systems to Store Data

- Atomicity of updates
 - Failures may leave database in an inconsistent state with partial updates carried out
 - Example: Transfer of funds from one account to another should either complete or not happen at all
- Concurrent access by multiple users
 - Concurrent access needed for performance
 - Uncontrolled concurrent accesses can lead to inconsistencies
 - Example: Two people reading a balance (say 100) and updating it by withdrawing money (say 50 each) at the same time
- Security problems
 - Hard to provide user access to some, but not all, data

Data Consistency: Example

- File system: one file per lecture
- Change of E-Mail address
 - Needs to be changed in all the files
 - If we forget one, the data becomes inconsistent
- Problem: E-Mail is stored redundantly
 - i.e., once per lecture

Lecture: Databases for Data Scientists

Instructor: Sven Hertling

E-Mail: sven.hertling@uni-mannheim.de

• • •

Data Integrity: Example

- Example: ZIP code has to be a five digit number
- As an application developer, would you prefer
 - Adding a single check in each part of the application where a ZIP code is entered
 - student applications
 - contracts with employees
 - travel reimbursement
 - ...
 - Adding the check at a single point
 (i.e., before the data is written into the database)

Atomicity of Updates: Example

Example piece of (pseudo) code: retiring a lecturer

Delete from file: active lecturers Computer crashes here

Add to file: retired lecturers

File: active lecturers

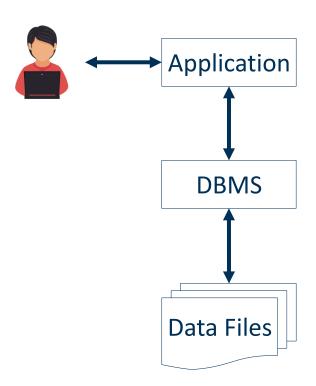
Prof. Smith Dr. Stevens Prof. Miller

File: retired lecturers

Dr. Hawkins Prof. Brown Prof. Wilson

Concurrency: Example

Example: register for a course if there are places left


User 1

User 2

Idea of Database Management Systems

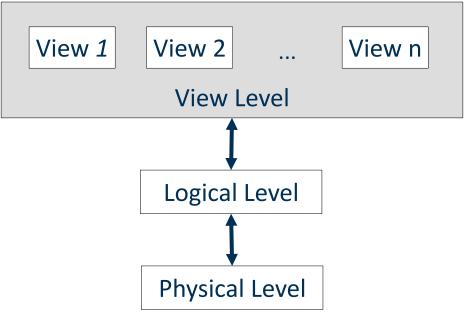
- Introduce a level of abstraction
- Handle issues of...
 - consistency
 - integrity
 - transaction atomicity
 - concurrency
 - security
 - **—** ...
- ... in a centralized fashion

Levels of Abstraction

- Physical level: describes how a record (e.g., instructor) is stored
- Logical level: describes data stored in database, and the relationships among the data

```
type instructor = record

ID : string;
  name : string;
  dept_name : string;
  salary : integer;
end;
```


- View level: application programs hide details of data types
 - Views can also hide information (such as an employee's salary) for security purposes

Levels of Abstraction

- Architecture of a Database Management System
 - Applications interact with different views
- Decoupling

Logical & physical level may be changed without changing the application

Data Models

- A collection of tools for describing
 - Data
 - Data relationships
 - Data semantics
 - Data constraints
- Relational model
- Entity-Relationship data model (mainly for database design)
- Object-based data models (Object-oriented and Object-relational)
- Semistructured data model (XML, JSON)
- Other older models:
 - Network model
 - Hierarchical model

The Relational Model

All data is stored in tables

	Columns			
			4	
ID	name	dept_name	salary	
22222	Einstein	Physics	95000 ←	
12121	Wu	Finance	90000 /	
32343	El Said	History	60000 /	
45565	Katz	Comp. Sci.	75000 /	
98345	Kim	Elec. Eng.	80000 /	
76766	Crick	Biology	72000 /	
10101	Srinivasan	Comp. Sci.	65000 /	
58583	Califieri	History	62000 /	
83821	Brandt	Comp. Sci.	92000 /	
15151	Mozart	Music	40000 /	
33456	Gold	Physics	87000 /	
76543	Singh	Finance	80000	

(a) The instructor table

A database consists of multiple tables

A database consists of multiple tables

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

dept_name	building	budget
Comp. Sci.	Taylor	100000
Biology	Watson	90000
Elec. Eng.	Taylor	85000
Music	Packard	80000
Finance	Painter	120000
History	Painter	50000
Physics	Watson	70000

(b) The department table

⁽a) The instructor table

Data Definition Language (DDL)

Specification notation for defining the database schema

```
Example: create table instructor (

ID char(5),

name varchar(20),

dept_name varchar(20),

salary numeric(8,2))
```

- DDL compiler generates a set of table templates stored in a data dictionary
- Data dictionary contains metadata (i.e., data about data)
 - Database schema
 - Integrity constraints
 - Primary key (ID uniquely identifies instructors)
 - Authorization
- Who can access what

Data Manipulation Language (DML)

- Language for accessing and manipulating the data organized by the appropriate data model
 - DML also known as query language
- Two classes of languages
 - Pure used for proving properties about computational power and for optimization
 - Relational Algebra
 - Tuple relational calculus
 - Domain relational calculus
 - Commercial used in commercial systems
 - SQL is the most widely used commercial language

Structured Query Language (SQL)

- The most widely used commercial language
- SQL is NOT a Turing machine equivalent language
- To be able to compute complex functions, SQL is usually embedded in some higher-level language
- Application programs generally access databases through one of
 - Language extensions to allow embedded SQL
 - Application program interfaces (e.g., ODBC/JDBC) which allow SQL queries to be sent to a database

Database Design

- Logical Design Deciding on the database schema
- Database design requires that we find a "good" collection of relation schemas
 - Business decision What attributes should we record in the database?
 - Computer Science decision What relation schemas should we have and how should the attributes be distributed among the various relation schemas?
- Physical Design Deciding on the physical layout of the database

Database Design

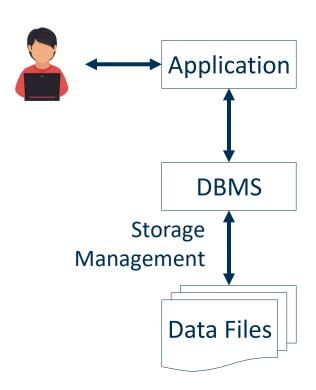
Is there any problem with this relation?

ID	пате	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

Database Engines

- Essential building blocks of database engines
 - Storage manager
 - Query processor
 - Transaction manager

Storage Management


 Provides the interface between the low-level data stored in the database and the application programs and queries submitted to the system

Tasks

- Interaction with the OS file manager
- Efficient storing, retrieving, and updating of data

Issues:

- Storage access
- File organization
- Indexing and hashing

Query Processor

Tasks

Parsing and translation

Optimization Evaluation relational-algebra parser and query expression translator optimizer query evaluation engine execution plan output statistics data about data

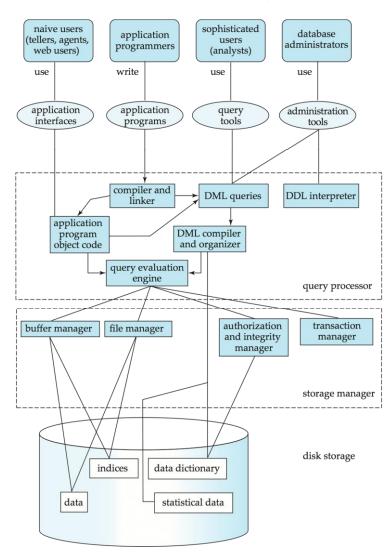
Query Processor

- Alternative ways of evaluating a given query
 - Evaluation order
 - Equivalent expressions
 - Different algorithms for each operation
- Cost difference between a good and a bad way of evaluating a query can be enormous
- Need to estimate the cost of operations
 - Depends critically on statistical information about relations which the database must maintain
 - Need to estimate statistics for intermediate results to compute cost of complex expressions

Transaction Management

- What if the system fails?
- What if more than one user is concurrently updating the same data?
- Transaction
 - a collection of operations
 - that performs a single logical function in a database application
- Transaction management component
 - ensures that the database remains in a consistent (correct) state
 - despite system failures (e.g., power failures and system crashes)
 - transaction failures
- Concurrency control manager
 - controls the interaction among the concurrent transactions
 - ensures the consistency of the database

Database Users

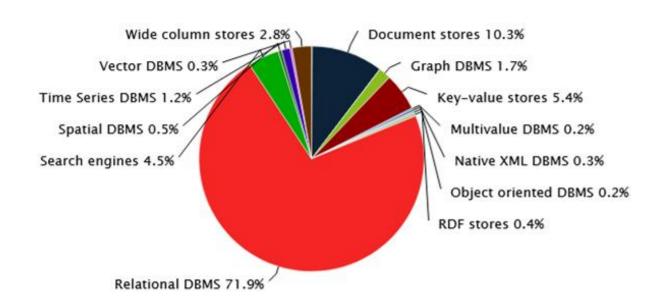


- "Naive" users
 - Use program interfaces, e.g., university portal
- Application programmers
 - Write application programs
- Sophisticated users (e.g., analysts)
 - Use query tools
 - Create custom reports
- Database administrators
 - Use administration tools
 - May alter the database structure
 - May grant and revoke rights

Database System Internals

- Various levels of abstraction
 - Users interact with tools
 - Query processor interacts with storage manager
 - Storage manager interacts with disk storage

Database Architecture



- Design decisions of a database system and application:
 - Centralized
 - Client-server
 - Parallel (multi-processor)
 - Distributed
- Each of those comes with its own requirements
- Needs different solutions, e.g., for security, concurrency handling, etc.

The Relational Model

- Recent past: much research on novel models
 - graph databases, key value stores (NoSQL), ...
 - the relational model is still the most prevalent

History of Database Systems

- 1950s and early 1960s:
 - Data processing using magnetic tapes for storage
 - Tapes provided only sequential access
 - Punched cards for input
- Late 1960s and 1970s:
 - Hard disks allow direct access to data
 - Network and hierarchical data models in widespread use
 - Ted Codd defines the relational data model
 - would later win the ACM Turing Award for this work
 - IBM Research begins System R prototype
 - UC Berkeley begins Ingres prototype
 - High-performance (for the era) transaction processing

History of Database Systems

• 1980s:

- Research relational prototypes evolve into commercial systems
- SQL becomes industrial standard
- Parallel and distributed database systems
- Object-oriented database systems

• 1990s:

- Large decision support and data-mining applications
- Large multi-terabyte data warehouses
- Emergence of Web commerce

History of Database Systems

- Early 2000s:
 - XML and XQuery standards
 - Automated database administration
- Later 2000s:
 - Giant data storage systems
 - Google BigTable, Yahoo PNuts, Amazon, ...

The Relational Model

All data is stored in tables

	Columns		
			7
ID	name	dept_name	salary
22222	Einstein	Physics	95000 ←Rows
12121	Wu	Finance	90000 /
32343	El Said	History	60000 /
45565	Katz	Comp. Sci.	75000 /
98345	Kim	Elec. Eng.	80000 /
76766	Crick	Biology	72000 /
10101	Srinivasan	Comp. Sci.	65000 /
58583	Califieri	History	62000 /
83821	Brandt	Comp. Sci.	92000 /
15151	Mozart	Music	40000 /
33456	Gold	Physics	87000 /
76543	Singh	Finance	80000

(a) The instructor table

Attribute Values

- The set of allowed values for each attribute is called the domain of the attribute
- Attribute values are (normally) required to be atomic
 - i.e., indivisible
 - e.g., break down address into street, number, ZIP code, city, ...
- The special value null is a member of every domain
 - indicates that the value is "unknown"
 - The null value causes complications in the definition of many operations

Atomic vs. Non-atomic Values

- Are the following attributes of a person atomic?
 - Address
 - Name
 - Age
 - Birth date
 - Birth place
 - Height
 - Salary
 - E-Mail address
- Typical database design question:
 - Would you rather store the birth date, the age, or both?

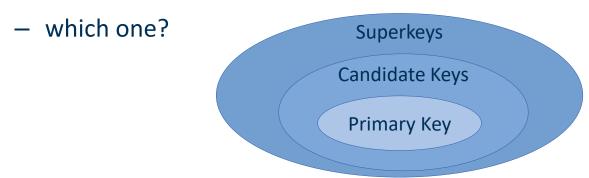
Relation Schema and Instance

- $A_1, A_2, ..., A_n$ are attributes
- $R = (A_1, A_2, ..., A_n)$ is a relation schema
- Example:

instructor = (ID, name, dept_name, salary)

- Formally, given domains D_1 , D_2 , D_n , a **relation** r is a subset of $D_1 \times D_2 \times ... \times D_n$
- Thus, a relation is a set of *n*-tuples $(a_1, a_2, ..., a_n)$ where each $a_i \in D_i$
- The current values (relation instance) of a relation are specified by a table
- An element t of r is a tuple, represented by a row in a table

Order of Tuples


- We consider relations as sets
 - i.e., order of tuples is irrelevant (may be stored in an arbitrary order)
- Example: instructor relation with unordered tuples

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

Superkeys, Candidate Keys, Primary Keys

- Let $K \subset R$
- K is a superkey of R if values for K are sufficient to identify a unique tuple of each possible relation r(R)
 - Example: {ID} and {ID,name} are both superkeys of instructor.
- Superkey K is a candidate key if K is minimal
 - Example: {ID} is a candidate key for Instructor
- One of the candidate keys is selected to be the primary key.

Foreign Key

- Foreign key constraint: Value in one relation must appear in
 - another
 - Referencing relation
 - Referenced relation
 - Example dept_name in instructor
 is a foreign key from instructor
 referencing department
- Foreign keys reduce redundancy
 - information about *department* need not be stored with every instructor

ID	пате	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Cømp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	B iology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

(a) The instructor table

dept_name	building	budget
Comp. Sci.	Taylor	100000
Biology	Watson	90000
Elec. Eng.	Taylor	85000
Music	Packard	80000
Finance	Painter	120000
History	Painter	50000
Physics	Watson	70000

(b) The department table

Example University Database

Relational Query Languages

- Procedural vs. non-procedural, or declarative
- "Pure" languages:
 - Relational algebra
 - Tuple relational calculus
 - Domain relational calculus
- The above three pure languages are equivalent in computing power
- We will concentrate on relational algebra
 - Not Turing machine equivalent
 - Consists of six basic operations

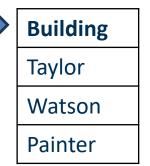
Selection of Rows

- $\sigma_{\text{Building=Taylor ^ Budget>80000}}$ (departments)

Department	Building	Budget
Comp. Sci.	Taylor	100000
Biology	Watson	90000
Elec. Eng.	Taylor	85000
Music	Taylor	80000
Finance	Painter	120000
History	Painter	50000
Physics	Watson	70000

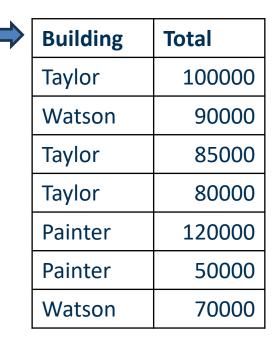
Department	Building	Budget
Comp. Sci.	Taylor	100000
Elec. Eng.	Taylor	85000

- Projection (Selection of Columns)
 - $-\prod_{\text{Building,Budget}}$ (departments)


Department	Building	Budget
Comp. Sci.	Taylor	100000
Biology	Watson	90000
Elec. Eng.	Taylor	85000
Music	Taylor	80000
Finance	Painter	120000
History	Painter	50000
Physics	Watson	70000

- Projection (Selection of Columns) ctd.
 - $-\prod_{\text{Building}} (\text{departments})$

Department	Building	Budget
Comp. Sci.	Taylor	100000
Biology	Watson	90000
Elec. Eng.	Taylor	85000
Music	Taylor	80000
Finance	Painter	120000
History	Painter	50000
Physics	Watson	70000



Remember: Relations are sets

- Projection with Renaming
 - $\prod_{\text{Building,Budget -> Total}}$ (departments)

Department	Building	Budget
Comp. Sci.	Taylor	100000
Biology	Watson	90000
Elec. Eng.	Taylor	85000
Music	Taylor	80000
Finance	Painter	120000
History	Painter	50000
Physics	Watson	70000

- Set Union of Two Relations tech_departments and humanities_departments
 - tech_departments ∪ humanities_departments

Department	Building	Budget
Comp. Sci.	Taylor	100000
Biology	Watson	90000
Elec. Eng.	Taylor	85000
Physics	Watson	70000

Department	Building	Budget
Literature	Taylor	80000
History	Painter	50000

Department	Building	Budget
Comp. Sci.	Taylor	100000
Biology	Watson	90000
Elec. Eng.	Taylor	85000
Physics	Watson	70000
Literature	Taylor	80000
History	Painter	50000

- Set Difference of Two Relations departments and humanities_departments
 - departments humanities_departments

Department	Building	Budget
Comp. Sci.	Taylor	100000
Biology	Watson	90000
Elec. Eng.	Taylor	85000
Literature	Taylor	80000
Finance	Painter	120000
History	Painter	50000
Physics	Watson	70000

Comp. Sci.	laylor	100000
Biology	Watson	90000
Elec. Eng.	Taylor	85000
Finance	Painter	120000

Building

Department	Building	Budget
Literature	Taylor	80000
History	Painter	50000

Biology	Watson	90
Elec. Eng.	Taylor	85
Finance	Painter	120
Physics	Watson	70

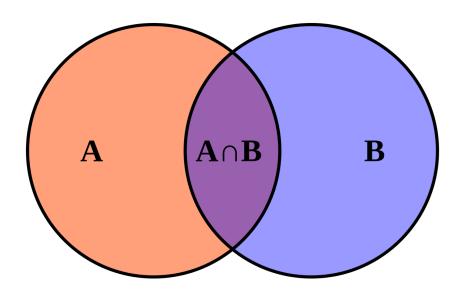
Department

Budget

- Set Intersection of Two Relations tech_departments and science_departments
 - tech_departments ∩ science_departments

Department	Building	Budget
Comp. Sci.	Taylor	100000
Biology	Watson	90000
Elec. Eng.	Taylor	85000
Physics	Watson	70000

Department	Building	Budget
Biology	Watson	90000
Math	Painter	30000
Astronomy	Taylor	75000
Physics	Watson	70000


Department	Building	Budget
Biology	Watson	90000
Physics	Watson	70000

A Note on Intersection

- Set intersection is not considered a basic operation
 - It can be expressed using set difference and union

$$- A \cap B = (A \cup B) - (A - B) - (B - A)$$

- Cartesian Product of Relations departments and deans
 - departments X deans

Department	Building	Budget
Comp. Sci.	Taylor	100000
Biology	Watson	90000
Elec. Eng.	Taylor	85000

Department	Name
Comp. Sci.	Smith
Biology	Johnson
Elec. Eng.	Miller

Department	Building	Budget	Department	Name
Comp. Sci.	Taylor	100000	Comp. Sci.	Smith
Comp. Sci.	Taylor	100000	Biology	Johnson
Comp. Sci.	Taylor	100000	Elec. Eng.	Miller
Biology	Watson	90000	Comp. Sci.	Smith
Biology	Watson	90000	Biology	Johnson
Biology	Watson	90000	Elec. Eng.	Miller
Elec. Eng.	Taylor	85000	Comp. Sci.	Smith
Elec. Eng.	Taylor	85000	Biology	Johnson
Elec. Eng.	Taylor	85000	Elec. Eng.	Miller

- departments X deans
- Note: column names must be unique!

departments. Department	Building	Budget	deans. Department	Name
Comp. Sci.	Taylor	100000	Comp. Sci.	Smith
Comp. Sci.	Taylor	100000	Biology	Johnson
Comp. Sci.	Taylor	100000	Elec. Eng.	Miller
Biology	Watson	90000	Comp. Sci.	Smith
Biology	Watson	90000	Biology	Johnson
Biology	Watson	90000	Elec. Eng.	Miller
Elec. Eng.	Taylor	85000	Comp. Sci.	Smith
Elec. Eng.	Taylor	85000	Biology	Johnson
Elec. Eng.	Taylor	85000	Elec. Eng.	Miller

From Cartesian Products to Joins

- A cartesian product alone is not very helpful
 - Typically, we want something different
 - i.e., a combination of a selection and a cartesian product
- $\sigma_{departments.Department=deans.Department}$ (departments X deans)
 - i.e., a list of departments with their respective deans

departments. Department	Building	Budget	deans. Department	Name
Comp. Sci.	Taylor	100000	Comp. Sci.	Smith
Biology	Watson	90000	Biology	Johnson
Elec. Eng.	Taylor	85000	Elec. Eng.	Miller

Composing Relational Algebra Operators

- Almost perfect...
 - ...but we only need one the department name once
 - ...and the column name Name is a bit uninformative
- $\Pi_{\text{departments.Department}} \rightarrow \text{Department, Building, Budget, Name} \rightarrow \text{Dean}$ $(\sigma_{\text{departments.Department=deans.Department}}(\text{departments X deans}))$

Department	Building	Budget	Dean
Comp. Sci.	Taylor	100000	Smith
Biology	Watson	90000	Johnson
Elec. Eng.	Taylor	85000	Miller

Natural Join

Let r and s be relations on schemas R and S respectively

DepartmentBuildingBudgetComp. Sci.Taylor100000BiologyWatson90000Elec. Eng.Taylor85000

Department

Comp. Sci.

Then, the "natural join" of relations r and s ($r \bowtie s$) is a relation on schema $R \cup S$ obtained as follows:

Consider each pair of tuples t_r from r and t_s from s.

i.e., r X s

- If t_r and t_s have the same value on each of the attributes in $R \cap S$, add a tuple t to the result, where

,	
	{Department}

• t has the same value as t_r on r

• t has the same value as t_s on s

Biology	Johnson	
Elec. Eng.	Miller	

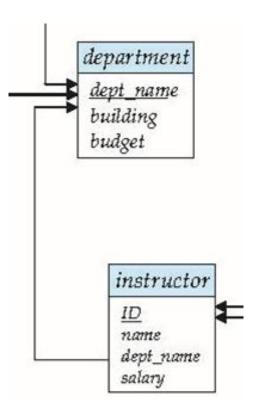
Name

Smith

Renaming Relations

- Consider this relation person:
 - Compile a list of persons,
 their supervisors and buildings

Person	Building	Supervisor
Smith	Taylor	Johnson
Kim	Watson	Johnson
Johnson	Taylor	Meyer
Meyer	Watson	n/a


- Problem: we need the same relation twice
 - ...but we have to distinguish its roles
- Solution: renaming
- $\sigma_{\text{supervisee}}$. Supervisor=supervisor. Person ($\rho_{\text{supervisee}}$ (person) $\times \rho_{\text{supervisor}}$ (person))

supervisee. Person	supervisee. Building	Supervisee. Supervisor	Supervisor. Person	Supervisor. Building	Supervisor. Supervisor
Smith	Where is Meyer?		Johnson	Taylor	Meyer
Kim	Watson Johnson	Johnson	Taylor	Meyer	
Johnson	Taylor	Meyer	Meyer	Watson	n/a

Natural Joins

- Natural Joins are frequently used
- e.g., list all instructors with their building

Notes on the Relational Model

- Each Query input is a table (or set of tables)
- Each query output is a table.
- All data in the output table appears in one of the input tables
- Relational Algebra is not Turing complete
- e.g., we cannot compute
 - SUM
 - AVG
 - MAX
 - MIN

Summary on Relational Algebra Operators

	Symbol (Name)	Example of Use
	σ (Selection)	$^{\circ}$ salary > = 85000 (instructor)
		Return rows of the input relation that satisfy the predicate.
	П (Projection)	П ID, salary ^(instructor)
		Output specified attributes from all rows of the input relation. Remove duplicate tuples from the output.
	x (Cartesian Product)	instructor x department
		Output all possible combinations of tuples from both relations.
	∪ (Union)	Π name $^{(instructor)} \cup \Pi$ name $^{(student)}$
		Output the union of tuples from the <i>two</i> input relations.
	- (Set Difference)	П name (instructor) – П name (student)
		Output the set difference of tuples from the two input relations.
	⊠ (Natural Join)	instructor ⋈ department
I		Output pairs of rows from the two input relations that have the same value on all attributes that have the same name.

is not a basic operator

Summary

- Database Management Systems are an abstraction layer
- Applications do not have to interact directly with the file system
- DBMS offer services including
 - Checking consistency
 - Ensuring integrity
 - Security
 - Handing concurrent data access

Summary

- Relational databases are composed of tables (relations)
- Tables can be understood as sets
- Sometimes, we need a combination of values from different tables
 - e.g., all employees with their building
 - e.g., all courses attended by a particular student
- The results of those are tables
 - Not necessarily the tables in the database
 - But: all values in the result tables are contained in the database
- With relational algebra, we transform tables into new tables
 - And hopefully get our results...

Questions?

