
University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

CS460 Database Technology

1

SQL Part 1



University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Outline

• Today
– Overview of The SQL Query 

Language

– Basic Query Structure

– Set Operations

– Join Operators

– Null Values

– Aggregate Functions

– Nested Subqueries

• Next week
– Data Definition

– Data Types in SQL

– Modifications of the database

– Views

– Integrity Constraints

– Roles & Rights
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Recap: Database Systems

• Users and applications interact
with databases
– By issuing queries

– Data definition (DDL): 
defining, altering, deleting tables

– Data manipulation (DML):
reading from & writing to tables

• SQL is both a DDL and a DML
– The language that most DBMS speak

3



University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

History

• IBM SEQUEL language developed as part of System R project 
at the IBM San Jose Research Laboratory

– Structured English QUEry Language

• Renamed Structured Query Language (SQL)

• ANSI and ISO standard SQL:

– SQL-86

– SQL-89

– SQL-92

– SQL:1999

– SQL:2003

• Commercial + free systems offer most, if not all, SQL-92 features

– plus varying feature sets from later standards and special proprietary 
features

– Not all examples here may work on your particular system!

4

Naming became
Y2K compliant! ;-)
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Parts of SQL: The Big Picture
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Source: https://www.w3schools.in/mysql/ddl-dml-dcl/

https://www.w3schools.in/mysql/ddl-dml-dcl/
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Reading Data

• The select clause lists the attributes desired in the result of 
a query

• Example: find the names of all instructors:
SELECT name
FROM instructor

• In relational algebra:

– name (instructor)

6
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A Note on Case Sensitivity

• SQL is completely case insensitive
– select = SELECT = SeLeCt

• Also for names of relations and attributes
– instructor = Instructor = INSTRUCTOR

– name = NAME = nAmE

• Each relation / attribute can only exist once
– Hence, two relations named instructor and Instructor

would not be feasible

• Case sensitivity does not apply to values!
– i.e., “Einstein” and “einstein” are different values!
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Renaming Columns in a Select

• Columns can be renamed during selection

SELECT name, salary as payment

FROM instructor

• In relational algebra
– a composition of projection and renaming:
–  payment← salary (name,salary (instructor))

8
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The Select Clause

• An asterisk in the select clause denotes “all attributes”
SELECT *

FROM instructor

• An attribute can be a literal with no FROM clause, possibly 
renamed
SELECT ‘437’

SELECT ‘437’ AS FOO

• An attribute can be a literal with FROM clause
SELECT name, ‘Instructor’ AS role FROM instructor

UNION

SELECT name, ‘Student’ AS role FROM student

9

name role

Smith Instructor

Einstein Instructor

... ...

Johnson Student

... ...

FOO

437
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Duplicates

• Difference to relational algebra
– Sets do not contain duplicates!

• SQL allows duplicates in relations as well as in query results

• To force the elimination of duplicates, 
insert the keyword DISTINCT after SELECT.

• Find the department names of all instructors, 
and remove duplicates

SELECT DISTINCT dept_name

FROM instructor

10

unless we define a constraint
(see later)
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Arithmetics in the Selection

• The SELECT clause can contain arithmetic expressions 
involving the operation, +, –, , and /, and operating on 
constants or attributes of tuples
– Here, we leave relational algebra!

• The query
SELECT ID, name, salary/12

FROM instructor
would return a relation that is the same as the instructor relation, 
except that the value of the attribute salary is divided by 12

• Combined with renaming:
– SELECT ID, name, salary/12  AS monthly_salary

FROM instructor
11
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Reading Parts of a Relation

• So far, we have always read an entire relation

• Usually, we are interested only in a small portion

• The WHERE clause restricts which parts of the table to read

• To find all instructors in Comp. Sci. dept
SELECT name

FROM instructor
WHERE dept_name = ‘Comp. Sci.'

• In relational algebra: combination of selection and 
projection

name(dept_name = ‘Comp. Sci.’(instructor))

12
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Reading Parts of a Relation

• Comparison results can be combined using the logical 
connectives AND, OR, and NOT

SELECT name

FROM instructor

WHERE dept_name = ‘Comp. Sci.’ AND salary > 90000

name(dept_name = ‘Comp. Sci.’ ʌ salary>90000(instructor))

• Can be combined with results of arithmetic expressions
SELECT name, salary/12  AS monthly_salary
FROM instructor
WHERE dept_name = ‘Comp. Sci.’ AND monthly_salary > 7500

13
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Searching in Texts

• So far, we have handled exact equality in selections

• Sometimes, we want to search differently
– All books that contain “database”

– All authors starting with “S”

– …

• In SQL: comparing with LIKE and two special characters:
– _ = any arbitrary character

– % = any number of arbitrary characters

– masking with backslash

– SELECT … WHERE title LIKE ‘%database%’

– SELECT … WHERE author LIKE ‘S%’

– SELECT … WHERE amount LIKE ‘100\%’

14

most SQL engines
don’t check types
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Reading Data from Multiple Tables

• Example: find all instructors and the courses they teach

• SELECT  FROM instructor, teaches
– this generates the cartesian product, i.e., instructor x teaches

– result: generates every possible instructor – teaches pair, with all 
attributes from both relations

• Common attributes (e.g., ID), the attributes in the resulting 
table are renamed using the relation name
– e.g., instructor.ID, teaches.ID

• Relational algebra notation:

– instructor.ID ← ID(instructor) x teaches.ID ← ID(teaches)

15

but is that useful?
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Cartesian Product

16
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Cartesian Products with Selection

• Find the names of all instructors who
have taught some course and the course_id

SELECT name, course_id

FROM instructor, teaches

WHERE instructor.ID = teaches.ID

• Relational algebra:
name,course_id(instructor.ID=teaches.ID(instructor.ID ← ID((instructor) x teaches.ID ← ID(teaches))))

17
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Cartesian Product

18

instructor teaches
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Cartesian Products with Selection

• Find the names of all instructors in the Finance department
who have taught some course, together with the course_id
SELECT name, course_id

FROM instructor , teaches

WHERE instructor.ID = teaches.ID AND instructor. dept_name = ‘Finance’

name,course_id(instructor.ID=teaches.ID ʌ dept_name=’Finance’(instructor.ID ← ID(instructor) x teaches.ID ← ID(teaches)))

19
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Cartesian Product

20

instructor teaches
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Cartesian Product of a Table with 
Itself

• Find the names of all instructors who have a higher salary 
than some instructor in ‘Comp. Sci’.
– We need the same table twice

– So, we have to use it under different names

– SELECT DISTINCT T.name
FROM instructor AS T, instructor AS S
WHERE T.salary > S.salary AND S.dept_name = ‘Comp. Sci.’

T,name(T.salary>S.salary ʌ S.dept_name=’Comp. Sci.’ (T(instructor) x S(instructor)))

• What happens if we omit the distinct here?

21
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Join Operations

• Join operations
– take two relations

– return as new relation as their result

• A join operation
– is a Cartesian product

– requires that tuples in the two relations match (under some condition)

– specifies the attributes that are present in the result of the join

• The join operations are typically used as subquery expressions 
in the FROM clause

22
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Join Operations

• Recap: We have already seen a form of joins:

• A join operation
– is a Cartesian product

– requires that tuples in the two relations match (under some condition)

– specifies the attributes that are present in the result of the join

• Find the names of all instructors who
have taught some course and the course_id

SELECT name, course_id
FROM instructor, teaches
WHERE instructor.ID = teaches.ID

23
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Outer Joins

• Consider the two relations below

• Desired:
– List all courses with their prerequisites

– Note: course CS-315 has no prerequisites

24
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Outer Joins

• List all courses with their prerequisites
SELECT C.course_id, C.title, C.credits, C.dept_name, P.course_id

FROM course AS C, prereq AS P

WHERE C.course_id = P.course_id

25

C.course_id C.title C.credits C.dept_name P.course_id

BIO-301 Genetics 4 Biology BIO-101

CS-190 Game Design 4 Comp. Sci. CS-101
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Outer Joins

• List all courses with their prerequisites

SELECT C.course_id, C.title, C.credits, C.dept_name, P.prereq_id

FROM course AS C LEFT OUTER JOIN prereq AS P ON C.course_id = P.course_id

26

C.course_id C.title C.credits C.dept_name P.course_id

BIO-301 Genetics 4 Biology BIO-101

CS-190 Game Design 4 Comp. Sci. CS-101

CS-315 Robotics 3 Comp. Sci. NULL
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Join Operations

• Join type – defines how tuples in each relation that do not 
match any tuple in the other relation (based on the join 
condition) are treated
– INNER JOIN: ignore

– OUTER JOIN: fill with NULL values

• Join condition – defines which tuples in the two relations 
match, and what attributes are present in the result of the 
join
– explicit: ON clause

– implicit: NATURAL keyword

27

for the moment:
keyword for “a blank cell”
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Outer Joins

• List all courses with their prerequisites
SELECT C.course_id, C.title, C.credits, C.dept_name, P.prereq_id

FROM course AS C RIGHT OUTER JOIN prereq AS P on C.course_id = P.course_id

28

C.course_id C.title C.credits C.dept_name P.course_id

BIO-301 Genetics 4 Biology BIO-101

CS-190 Game Design 4 Comp. Sci. CS-101

CS-347 NULL NULL NULL CS-101
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Outer Joins

• List all courses with their prerequisites
SELECT C.course_id, C.title, C.credits, C.dept_name, P.prereq_id

FROM course AS C FULL OUTER JOIN prereq AS P ON C.course_id = P.course_id

29

C.course_id C.title C.credits C.dept_name P.course_id

BIO-301 Genetics 4 Biology BIO-101

CS-190 Game Design 4 Comp. Sci. CS-101

CS-347 NULL NULL NULL CS-101

CS-315 Robotics 3 Comp. Sci. NULL
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Join Types at a Glance

30

Source: https://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

https://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins
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Ordering Results

• Recap: Relational Algebra works on sets
– i.e., it does not have orderings

• For database applications, ordering is often useful, e.g.,
– list students ordered by names

SELECT id,name
FROM student
ORDER BY name

– list instructors ordered by department first, then by name
SELECT id,name,dept_name
FROM instructor
ORDER BY dept_name, name

31
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Limiting Results

• Find the three lecturers with the highest salaries
SELECT id,name,salary
FROM instructor
ORDER BY salary DESC
LIMIT 3;

• Note: the DESC keyword creates a descending ordering

• ASC also exists and creates an ascending ordering
– also the default when not specifiying the direction

32
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Paging with LIMIT and OFFSET

• Applications, e.g., Web applications, often offer a paged view

• Example:

– Display student list on pages of 100 students

– with navigation (next page, previous page)

SELECT id,name

FROM student

ORDER BY name

LIMIT 100

OFFSET 100;

• OFFSET 100 means: skip the first 100 entries

– i.e., this query would create the second page

• Note: offset should only be used with order by

– otherwise, the results are not deterministic
33
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Set Operations

• All courses that are offered in HWS 2017 and FSS 2018
(SELECT course_id FROM section WHERE sem = ‘HWS’ AND year = 2017)
INTERSECT
(SELECT course_id FROM section WHERE sem = ‘FSS’ AND year = 2018)

course_id(sem=’HWS’ ʌ year=2017(section))  course_id(sem=’FSS’ ʌ year=2018(section))

• All courses that are offered in HWS 2017 but not in FSS 2018
(SELECT course_id FROM section WHERE sem = ‘HWS’ AND year = 2017)
EXCEPT
(SELECT course_id FROM section WHERE sem = ‘FSS’ AND year = 2018)

course_id(sem=’HWS’ ʌ year=2017(section)) – course_id(sem=’FSS’ ʌ year=2018(section))

34
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Set Operations

• All courses that are offered in HWS 2017 or FSS 2018
(SELECT course_id FROM section WHERE sem = ‘HWS’ AND year = 2017)
UNION
(SELECT course_id FROM section WHERE sem = ‘FSS’ AND year = 2018)

course_id(sem=’HWS’ ʌ year=2017(section))  course_id(sem=’FSS’ ʌ year=2018(section))

• Alternative solution
SELECT course_id

FROM section

WHERE (sem = ‘HWS’ AND year = 2017) OR (sem = ‘FSS’ AND year = 2018)

course_id((sem=’HWS’ ʌ year=2017) v (sem=’FSS’ ʌ year=2018)) (section))

35
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Aggregate Functions – Examples

• Find the average salary of instructors in the Computer 
Science department
– SELECT AVG (salary)

FROM instructor
WHERE dept_name= ’Comp. Sci.’

• Find the number of tuples in the course relation
– SELECT COUNT (*)

FROM course

• Find the total number of instructors who teach a course in 
the Spring 2010 semester
– SELECT COUNT (DISTINCT ID)

FROM teaches
WHERE semester = ’Spring’ AND year = 2010

36

Why do we need 
distinct here?
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Aggregate Functions with Group By

• Find the average salary of instructors in each department

SELECT dept_name, AVG (salary) AS avg_salary
FROM instructor
GROUP BY dept_name

37
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Aggregate Functions with Group By

• Attributes in SELECT clause outside of aggregate functions 
must appear in GROUP BY list

/* erroneous query */
SELECT dept_name, ID, AVG (salary) AS avg_salary
FROM instructor
GROUP BY dept_name;

38

why?

Avg_salary
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Conditions on Aggregate Values

• Find the names and average salaries of all departments 
whose average salary is greater than 42000
– SELECT dept_name, AVG (salary) AS avg_salary

FROM instructor
GROUP BY dept_name
WHERE avg_salary > 42000;

• Problem:
– Aggregation is performed after selection and projection

– Hence, the variable avg_salary is not available 
when the where clause is evaluated

• → The above query will not work

39
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Conditions on Aggregate Values

• Find the names and average salaries of all departments 
whose average salary is greater than 42000
– SELECT dept_name, AVG (salary) AS avg_salary

FROM instructor
GROUP BY dept_name
HAVING avg_salary > 42000;

• The having clause is evaluated after the aggregation

• Hence, it is different from the where clause

• Rule of thumb
– Conditions on aggregate values can only be defined using having

40

performance!
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NULL Values

• null signifies an unknown value or that a value does not exist

• It is possible for tuples to have a null value, denoted by null, for some of 
their attributes

– can be forbidden by a not null constraint

– keys can never be null!

• The result of any arithmetic expression involving null is null

• Example:  5 + null returns null

• The predicate  is null can be used to check for null values

• Example: Find all instructors whose salary is null

SELECT name
FROM instructor
WHERE salary IS NULL

41
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NULL Values and Three Valued Logic

• Three values – true, false, unknown

• Any comparison with null returns unknown

– Example: 5 < null   or   null <> null    or    null = null

• Three-valued logic using the value unknown:

– OR: (unknown OR true)   = true,
(unknown OR false)  = unknown
(unknown OR unknown) = unknown

– AND: (true AND unknown)  = unknown,    
(false AND unknown) = false,
(unknown AND unknown) = unknown

– NOT:  (NOT unknown) = unknown

• “P IS UNKNOWN” evaluates to true if predicate P evaluates to unknown

• Result of WHERE clause predicate is treated as false
if it evaluates to unknown

42
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Aggregates and NULL Values

• Total all salaries
SELECT SUM (salary )

FROM instructor

– Above statement ignores null amounts

– Result is null if there is no non-null amount

• All aggregate operations except COUNT(*)
ignore tuples with null values
on the aggregated attributes

• What if collection has only null values?
– count returns 0

– all other aggregates return null

43
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Subqueries

• SQL provides a mechanism for the nesting of subqueries. A subquery is 
a SELECT-FROM-WHERE expression that is nested within another query

• The nesting can be done in the following SQL query
SELECT A1, A2, ..., An

FROM r1, r2, ..., rm

WHERE P

as follows:

• Ai   can be replaced be a subquery that generates a single value

• ri can be replaced by any valid subquery

• P can be replaced with an expression of the form:

B <operation> (subquery)

Where B is an attribute and <operation> to be defined later

44
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Subqueries in the WHERE Clause

• A common use of subqueries is to perform tests:
– for set membership

– for set comparisons

– for set cardinality

45
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Test for Set Membership

• Find courses offered this term by lectures
from the biology department
SELECT DISTINCT course_id

FROM teaches

WHERE semester = ’Spring’ AND year= 2022 AND ID IN (

SELECT ID
FROM instructor
WHERE dept_name = ‘Biology’

)

46
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Test for Set Membership

• Find courses offered this term before 9 am or after 5 pm
SELECT DISTINCT course_id

FROM section

WHERE semester = ’Spring’ AND year= 2022 AND time_slot_id NOT IN (
SELECT time_slot_id

FROM time_slot

WHERE end_time >= 9 AND start_time <= 17

)

47
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Test for Set Membership

• Find the total number of (distinct) courses offered by 
instructors in the biology department

SELECT COUNT(DISTINCT course_id)

FROM teaches 

WHERE semester = ’Spring’ AND year= 2022 AND ID IN (

SELECT ID

FROM instructor

WHERE dept_name = ‘Biology’

)

• Note: in all of those cases, 
other (sometimes simpler) solutions are possible
– In SQL, there are often different ways to solve a problem

– A question of personal taste

– But also: a question of performance...
48
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Test for Set Membership

• Find the total number of (distinct) courses offered by 
instructors in the biology department

SELECT COUNT(DISTINCT course_id)

FROM teaches 

WHERE semester = ’Spring’ AND year= 2022 AND ID IN (

SELECT ID

FROM instructor

WHERE dept_name = ‘Biology’

)

vs.

SELECT COUNT (DISTINCT course_id)

FROM teaches, instructor

WHERE teaches.ID = instructor.ID AND instructor.department = ‘Biology’

49

computes
cartesian
product

creates a
temporary

table
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Set Comparison with SOME

• Find names of instructors with salary greater than 
that of some (at least one) instructor in the Biology 
department
SELECT DISTINCT T.name

FROM instructor AS T, instructor AS S

WHERE T.salary > S.salary AND S.dept name = ’Biology’

• Same query using > SOME clause
SELECT name

FROM instructor

WHERE salary > SOME (SELECT salary

FROM instructor

WHERE dept name = ’Biology’)

50
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Set Comparison with ALL

• Find names of instructors with salary greater than 
that of all instructors in the Biology department
SELECT name

FROM instructor

WHERE salary > ALL (SELECT salary

FROM instructor

WHERE dept name = ’Biology’)

• Note: we could also achieve this with MIN and MAX 
aggregates in the subqueries

51
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Definition: Comparisons with SOME

• F <comp> SOME r   t  r such that (F <comp> t )
Where <comp> can be:      = 

52

0
5
6

(5 < SOME ) = true

0
5

0

) = false

5

0
5(5  SOME ) = true (since 0  5)

(read:  5 < some tuple in the relation)

(5 < SOME

) = true(5 = SOME

(= SOME)  IN
However, ( SOME)  not in
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Definition: Comparisons with ALL

• F <comp> ALL r   t  r (F <comp> t)

53

0
5
6

(5 < ALL ) = false

6
10

4

) = true

5

4
6(5  ALL ) = true (since 5  4 and 5  6)

(5 < ALL

) = false(5 = ALL

( ALL)  NOT IN
However, (= ALL)  IN
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Existential Quantification in 
Subqueries

• Select all courses offered this year which are taken by at 
least one student
– SELECT course_id

FROM section
WHERE semester = ’Spring’ AND year = 2022 AND EXISTS (

SELECT *
FROM takes
WHERE takes.course_id = section.course_id

AND takes.sec_id = section.sec_id
AND takes.semester = section.semester )

• The EXISTS construct returns the value true
if the result of the subquery is not empty

– EXISTS r  r  Ø

– NOT EXISTS r  r = Ø

54



University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Subqueries with NOT EXISTS

• Find all students who have taken all courses offered in the 
Biology department

SELECT DISTINCT S.ID, S.name

FROM student AS S

WHERE NOT EXISTS ( (SELECT course_id
FROM course
WHERE dept_name = ’Biology’)

EXCEPT
(SELECT T.course_id
FROM takes AS T
WHERE S.ID = T.ID))

– First nested query lists all courses offered in Biology

– Second nested query lists all courses a particular student took

• Note that X – Y = Ø    X  Y

• Note: Cannot write this query using = all and its variants
55
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Test for Duplicate Tuples

• Find all courses that were offered at most once in 2009

SELECT T.course_id
FROM course AS T
WHERE UNQIUE (SELECT R.course_id

FROM section as R
WHERE T.course_id= R.course_id AND

R.year = 2009)

• The unique construct evaluates to “true” if a given subquery 
contains no duplicates

• With not unique, we could query for courses that were 
offered more than once

56
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Subqueries in the FROM Clause

• So far, we have considered subqueries in the where clause

• Find the average instructors’ salaries of those departments 
where the average salary is greater than $42,000.”

SELECT dept_name, avg_salary
FROM (

SELECT dept_name, AVG (salary) AS avg_salary
FROM instructor
GROUP BY dept_name

)
WHERE avg_salary > 42000;

• Note that we do not need to use the having clause
– why?
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Creating Temporary Relations
Using WITH

• Find all departments with the maximum budget 

WITH max_budget (value) AS (
SELECT MAX(budget)
FROM department

)
SELECT department.name
FROM department, max_budget
WHERE department.budget = max_budget.value

• The with clause provides a way of defining a temporary 
relation whose definition is available only to the query in 
which the with clause occurs
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this defines the structure
of the temporary relation

(datatypes are implicit)
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Creating Temporary Relations
Using WITH

• A more complex example involving two temporary 
relations:
WITH dept _total (dept_name, value) AS (

SELECT dept_name, SUM(salary)
FROM instructor
GROUP BY dept_name

),

dept_total_avg(value) as (

SELECT AVG(value)
FROM dept_total

)
select dept_name
from dept_total, dept_total_avg
where dept_total.value > dept_total_avg.value

59

Find all departments where the total 
salary is greater than the average of 
the total salary at all departments
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Scalar Subqueries in the SELECT Part

• List all departments along with the number of instructors in 
each department
SELECT dept_name, (

SELECT COUNT(*) 
FROM instructor 
WHERE department.dept_name = instructor.dept_name

)AS num_instructors

FROM department;

• Scalar subqueries return a single result
– More specifically: a single tuple

• Runtime error if subquery returns more than one result 
tuple
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Summary of Subqueries

• SELECT queries are the most often used part of SQL

• Their basic structure is simple, but subqueries are a powerful means to 
make them quite expressive

SELECT A1, A2, ..., An

FROM r1, r2, ..., rm

WHERE P

• Subqueries in SELECT part (A1, A2, ..., An)

– Scalar subqueries (single values, like aggregates)

• Subqueries in FROM part (r1, r2, ..., rm)

– Temporary relations (can also be defined using WITH)

• Subqueries in WHERE part (P)

– Set comparisons, empty sets, test for duplicates

– Universal and existential quantification

61



University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

• The tool support of SQL varies

• what we have covered here 
is standard SQL

– Supported by most tools
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Summary: SQL SELECT at a Glance



University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Parts of SQL: The Big Picture
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Source: https://www.w3schools.in/mysql/ddl-dml-dcl/

https://www.w3schools.in/mysql/ddl-dml-dcl/


University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

• SQL is a standarized language for 
relational databases

– DML: Data Manipulation 
Language

• DML

– Read data from tables using 
SELECT

• Coming Up:

– Writing data to tables

– Creating and changing tables

– Rights & Roles

– …
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Summary and Take Aways
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Questions?
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