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Outline

* Today

— Overview of The SQL Query
Language

— Basic Query Structure
— Set Operations

— Join Operators

— Null Values

— Aggregate Functions
— Nested Subqueries
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Next week

Data Definition

Data Types in SQL
Modifications of the database
Views

Integrity Constraints

Roles & Rights
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— Data manipulation (DML):
reading from & writing to tables

e SQLis both a DDL and a DML
— The language that most DBMS speak

query processor

lbuﬁer manager I I file manager authorization transaction
and integrity manager
manager

storage manager

disk storage

I data dictionary l

statistical data
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 |BM SEQUEL language developed as part of System R project
at the IBM San Jose Research Laboratory

— Structured English QUEry Language

 Renamed Structured Query Language (SQL)
 ANSI and ISO standard SQL:

SQL-86 Naming became
SQL-89 Y2K compliant! ;-)
SQL-92

SQL:1999
SQL:2003

American National Standards Institute

=il |nternational

Iso Organization for

N Zl Standardization

 Commercial + free systems offer most, if not all, SQL-92 features

— plus varying feature sets from later standards and special proprietary

features

— Not all examples here may work on your particular system!
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Parts of SQL: The Big Picture

SQL
Commands

—
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DDL
CREATE

ALTER
DROP
TRUNCATE
COMMENT

RENAME

DML
SELECT

INSERT
UPDATE
DELETE
MERGE

CALL

EXPLAIN PLAN

LOCK TABLE

DCL
GRANT

REVOKE
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Source: https://www.w3schools.in/mysgl/ddI-dmli-dcl/

TCL
COMMIT
ROLLBACK
SAVEPOINT
SET TRANSACTION


https://www.w3schools.in/mysql/ddl-dml-dcl/
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Reading Data

* The select clause lists the attributes desired in the result of
a query

 Example: find the names of all instructors:
SELECT name
FROM instructor

* Inrelational algebra:

— |1, (instructor)
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A Note on Case Sensitivity

 SQL is completely case insensitive
— select = SELECT = SelLeCt

e Also for names of relations and attributes
— instructor = Instructor = INSTRUCTOR
— name = NAME = nAmE

Each relation / attribute can only exist once

— Hence, two relations named instructor and Instructor
would not be feasible

e (Case sensitivity does not apply to values!

— i.e., “Einstein” and “einstein” are different values!
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Renaming Columns in a Select

* Columns can be renamed during selection
SELECT name, salary as payment
FROM instructor

* Inrelational algebra
— a composition of projection and renaming:

- P paymenté& salary (Hname,salary (instructor))
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e An asterisk in the select clause denotes “all attributes”
SELECT *
FROM instructor

* An attribute can be a literal with no FROM clause, possibly
renamed
SELECT ‘437’ FOO

SELECT ‘437° AS FOO | 437

name role

Smith Instructor

e An attribute can be a literal with FROM clause | Einstein | Instructor

SELECT name, ‘Instructor’ AS role FROM instructor

UNION Johnson | Student

SELECT name, ‘Student’ AS role FROM student
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Duplicates

e Difference to relational algebra

— Sets do not contain duplicates!
* SQL allows duplicates in relations as well as in query results
B

unless we define a constraint
(see later)
4\

* To force the elimination of duplicates,
insert the keyword DISTINCT after SELECT.

e Find the department names of all instructors,

and remove duplicates

SELECT DISTINCT dept_name
FROM instructor
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 The SELECT clause can contain arithmetic expressions
involving the operation, +, —, *, and /, and operating on
constants or attributes of tuples

— Here, we leave relational algebra!

e The query
SELECT /D, name, salary/12

FROM instructor
would return a relation that is the same as the instructor relation,
except that the value of the attribute salary is divided by 12

e Combined with renaming:

— SELECT ID, name, salary/12 AS monthly salary
FROM instructor
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Reading Parts of a Relation

e So far, we have always read an entire relation
e Usually, we are interested only in a small portion
 The WHERE clause restricts which parts of the table to read

* To find all instructors in Comp. Sci. dept
SELECT name
FROM instructor
WHERE dept _name = ‘Comp. Sci.'
* Inrelational algebra: combination of selection and
projection

T (instructor))

name(Gdept_name = ‘Comp. Sci.
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Reading Parts of a Relation

 Comparison results can be combined using the logical
connectives AND, OR, and NOT
SELECT name
FROM instructor
WHERE dept_name = ‘Comp. Sci.” AND salary > 90000

7-cname(csdept_name = ‘Comp. Sci.” A saIary>9OOOO(In5trUCtor))

 Can be combined with results of arithmetic expressions

SELECT name, salary/12 AS monthly salary
FROM instructor
WHERE dept_name = ‘Comp. Sci.” AND monthly salary > 7500
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Searching in Texts

e So far, we have handled exact equality in selections
 Sometimes, we want to search differently

— All books that contain “database”

— All authors starting with “S”

* InSQL: comparing with LIKE and two special characters:
— __ =any arbitrary character
— % = any number of arbitrary characters
— masking with backslash
— SELECT ... WHERE title LIKE ‘%database%’
— SELECT ... WHERE author LIKE ‘S%’ 4”‘05'( SQL engineil
_ SELECT ... WHERE amount LIKE ‘100\ %’ = ~-32nt check types
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Example: find all instructors and the courses they teach
SELECT * FROM instructor, teaches

— this generates the cartesian product, i.e., instructor x teaches

— result: generates every possible instructor — teaches pair, with all
attributes from both relations <—=——

but is that useful?

Common attributes (e.g., ID), the attributes in the resulting
table are renamed using the relation name

— e.g., instructor.ID, teaches.ID

Relational algebra notation:

~ Finstructor.ID ¢ ,D(/nstructor) X pteaches./D < ID(teaChes)
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name dept_name salary ID | course_id | sec_id | semester | year
Srinivasan | Comp. Sci. 65000 10101 | CS-101 1 Fall 2009
Wu Finance 90000 10101 | C5-315 1 Spring 2010
Inst.ID| name dept_name |salary | teaches.ID| course_id |sec_id| semester| year ;8(1)3

10101 |Srinivasan|Comp. Sci| 65000 | 10101 CS-101 1 Fall 2009 2010

10101 |Srinivasan|Comp. Sci| 65000| 10101 CS-315 1 Spring |2010]| I 2009

10101 |Srinivasan|Comp. Sci| 65000| 10101 | CS-347 1 Fall 2009

10101 |Srinivasan{Comp. Sci| 65000 12121 FIN-201 1 Spring | 2010

10101 [Srinivasan|Comp. Sci| 65000 15151 | MU-199 | 1 Spring | 2010

10101 [Srinivasan|Comp. Sci| 65000 | 22222 PHY-101 | 1 Fall 2009

12121 |Wu Finance |90000| 10101 |Cs-101 | 1 | Fall {2009

12121 [Wu Finance 90000 | 10101 CS-315 1 Spring | 2010

12121 |Wu Pinance 90000 | 10101 (CS-347 1 Fall 2009

12121 |Wu Pinance 90000 12121 FIN-201 1 Spring | 2010

12121 [Wu Finance 90000 | 15151 MU-199 1 Spring | 2010

12121 |Wu Pinance 90000 | 22222 PHY-101 | 1 Fall 2009

16
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* Find the names of all instructors who
have taught some course and the course_id
SELECT name, course_id
FROM instructor, teaches
WHERE instructor.ID = teaches.ID

e Relational algebra:

ﬂname, Course_id(o-instructor.ID=teaches.ID(pinstructor_/D & ID( ( instructo r) X pteaches.ID <& /D(tea ch ES) ) ) )
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instructor teaches
1D name dept_name salary course_id | sec_id semester year
10101 | Srinivasan | Comp. Sci. 65000 10101 | CS-101 1 Fall 2009
12121 | Wu Finance 90000 10101 | CS-315 1 Spring 2010
15151 et 1D P l s 1D > ” 2009
29999 nst. name ept_name | salary | teaches. course_ia |sec_id| semester| year 2010
32343 || 10101 |Srinivasan|Comp. Scif65000| 10101 [CS-101 | 1 | Fall ~ |2009| | 2010
10101 |Srinivasan|Comp. Sci| 65000| 10101 CS-315 1 Spring |2010]| I 2009
10101 |Srinivasan|Comp. Sci| 65000| 10101 (CS-347 1 Fall 2009
4 N1 N1 [ PR ol | i ORI ¢, P PaVavaN 1791791 TINT NNO1 - [ LI N1 0
_l.U_lU.l LTI VAol \_,Ulllt/ [W4 = O5UUU P Gyann gy § 1 1IN UL N B L}t.}.l_lllb e\ L
+HHETTSrintrasanTCemp—Se65000T—5+54 ot 2w aas . Sprive—2046-
10101 1Srinivasan (_'nmp Scil 50001 22227 PHY-101 1 Eall 2009
o3 Was inance—| 9000010101 cS1or—| 1+ | Eall [2000
12424 W Einance—-90000+—H0H1—C5-315 . Spripe 2010
12424k Rinoneoloooon 10101 1CC 247 1 Eall 2000
12121 |Wu Pinance 90000 | 12121 FIN-201 1 Spring | 2010
; ;!; ;!1 1A/11 Einanco ()OOCO 15151 1\'/[TT | 99 1 QPring 211
12121 1A/ 11 Pinancao OOOOO NN PHY 101 1 EAall ‘7””9_
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* Find the names of all instructors in the Finance department
who have taught some course, together with the course _id
SELECT name, course_id
FROM instructor , teaches
WHERE instructor.ID = teaches.ID AND instructor. dept_name = ‘Finance’

ﬂname,course_id(Ginstructor.ID=teaches.ID/\ dept_name=’Finance’(pinstructor,/D <& ,D(lnstructor) X pteaches.ID & /D(teaCheS)))
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instructor teaches

1D name dept_name salary ID course_id | sec_id semester year
10101 | Srinivasan| Comp. Sci. | 65000 10101 | C5-101 1 Fall 2009
12121 | Wu Finance 90000 10101 | CS-315 1 Spring 2010
15151 . . 2009
29999 || [nstID| name dept_name |salary | teaches.ID| course_id |sec_id| semester| year 2010
32343 | ~Hto-{SrimivasarComp-Ser68000 08— €S- +0t—T—+—1F=att—712669- | 2010
AAAAA PEROTROR .2 D0 P fali ool 10101 O Aq- 4 . faYat Wa) 2009
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+HHTSrinirasanTComp—Se-65806 5154 M99 + Sprire—2040-

10101 1Srinivasan (_'nmp Scil 50001 22227 PHY-101 1 Eall 2009

12424 Haanee S5600-—10101 =510 4 Eall 12000

124241 A Einanece—-90000-+—0104 £S-315 1 SO0

e RREE Rinance—I00000-—10101 s 2347 1 Eall 2009

12121 [Wu Pinance |[90000| 12121 FIN-201 1 Spring | 2010

12121 1WA Ej 15151 MILL] Sari 2010

1 11 1nanco ()OCOO v 99 1 Prnﬁg
12121 A1 Pinanco OOOOO 272227 PHEY_101 1 Eall ‘7””9_
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Cartesian Product of a Table with
Itself

* Find the names of all instructors who have a higher salary
than some instructor in ‘Comp. Sci’.
— We need the same table twice
— So, we have to use it under different names

— SELECT DISTINCT T.name
FROM instructor AS T, instructor AS S
WHERE T.salary > S.salary AND S.dept_name = ‘Comp. Sci.’

”Iname(GIsa/arwS.sa/ary A S.dept_name="Comp. Sci.’ (pT(instructor) X ps(instructor)))

 What happens if we omit the distinct here?
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Join Operations

* Join operations
— take two relations
— return as new relation as their result

* Ajoin operation
— is a Cartesian product

— requires that tuples in the two relations match (under some condition)
— specifies the attributes that are present in the result of the join

 The join operations are typically used as subquery expressions
in the FROM clause
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Join Operations

e Recap: We have already seen a form of joins:
* Ajoin operation

—, is a Cartesian product

— requires that tuples in the two relations match (under some condition)

— specifies the attributes that are present in the result of the join

* Find the names of all instructors who
have taught some course and the course_id

SELECT name, course_id <+
FROM instructor, teaches
WHERE instructor.ID = teaches.ID +
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e Consider the two relations below
e Desired:

— List all courses with their prerequisites
— Note: course CS-315 has no prerequisites

course_id title dept_name | credits
BIO-301 | Genetics Biology 4
C5-190 [Game Design| Comp. Sci. 4
(CS-315 |Robotics Comp. Sci. 3

course_id | prereq_id
BIO-301 | BIO-101

CS-190 | C5-101
C5-347 | C5-101

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 24



List all courses with their prerequisites
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g \UNIVERSITY

SELECT C.course _id, C.title, C.credits, C.dept_name, P.course _id
FROM course AS C, prereq AS P

WHERE C.course _id = P.course_id

course_id title dept_name | credits course_id | prereq_id
BIO-301 | Genetics Biology 4 BIO-301 | BIO-101
CS5-190 | Game Design| Comp. Sci. 4 CS-190 | CS-101
(CS-315 |Robotics Comp. Sci. 3 CS-347 CS-101
C.course_id | C.title C.credits | C.dept_name | P.course_id
BIO-301 Genetics 4 Biology BIO-101
CS-190 Game Design |4 Comp. Sci. CS-101

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025
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e List all courses with their prerequisites

SELECT C.course_id, C.title, C.credits, C.dept_name, P.prereq_id
FROM course AS C LEFT OUTER JOIN prereq AS P ON C.course_id = P.course_id

course_id title dept_name | credits course_id | prereq_id
BIO-301 | Genetics Biology 4 BIO-301 | BIO-101
CS5-190 | Game Design| Comp. Sci. 4 CS-190 CS-101
CS-315 |Robotics Comp. Sci. 3 Cs-347 | CS-101
C.course_id | C.title C.credits | C.dept_name | P.course _id
BIO-301 Genetics 4 Biology BIO-101
CS-190 Game Design | 4 Comp. Sci. CS-101
CS-315 Robotics 3 Comp. Sci. NULL
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* Join type — defines how tuples in each relation that do not
match any tuple in the other relation (based on the join
condition) are treated for the moment:

— INNER JOIN: ignore — _keyword for “a blank cell”

(—

— OUTER JOIN: fill with NULL values

* Join condition — defines which tuples in the two relations
match, and what attributes are present in the result of the
join

— explicit: ON clause
— implicit: NATURAL keyword

Join types Join Conditions
inner join natural

left outer join on < predicate>
right outer join using (A1, Ay, ..., A,)
full outer join
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e List all courses with their prerequisites

SELECT C.course_id, C.title, C.credits, C.dept_name, P.prereq_id
FROM course AS C RIGHT OUTER JOIN prereq AS P on C.course_id = P.course_id

course_id title dept_name | credits course_id | prereq_id
BIO-301 | Genetics Biology 4 BIO-301 | BIO-101
CS5-190 | Game Design| Comp. Sci. 4 CS-190 CS-101
CS-315 |Robotics Comp. Sci. 3 Cs-347 | CS-101
C.course_id | C.title C.credits | C.dept_name | P.course_id
BIO-301 Genetics 4 Biology BIO-101
CS-190 Game Design | 4 Comp. Sci. CS-101
CS-347 NULL NULL NULL CS-101
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e List all courses with their prerequisites
SELECT C.course_id, C.title, C.credits, C.dept_name, P.prereq_id
FROM course AS C FULL OUTER JOIN prereq AS P ON C.course_id = P.course_id

course_id title dept_name | credits course_id | prereq_id
BIO-301 | Genetics Biology 4 BIO-301 | BIO-101
CS5-190 | Game Design| Comp. Sci. 4 CS-190 CS-101
CS-315 | Robotics Comp. Sci. 3 Cs-347 | CS-101
C.course_id | C.title C.credits | C.dept_name | P.course_id
BIO-301 Genetics 4 Biology BIO-101
CS-190 Game Design | 4 Comp. Sci. CS-101
CS-347 NULL NULL NULL CS-101
CS-315 Robotics 3 Comp. Sci. NULL
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Join Types at a Glance

SQL JOINS

SELECT <select_list>
FROM TableA A
LEFT JOIN TableB B
ON AKey = B.Key

SELECT <seclect_list>
FROM TablcA A
RIGHT JOIN TableB B
ON AKcy = B.Key

SELECT <sclect_list>
FROM TablcA A
INNER JOIN TabicB B
ON A.Key = B.Key

SELECT <sclect_list> SELECT <select_list>
FROM TableA A FROM TableA A

LEFT JOIN TableB B RIGHT JOIN TablcB B
ON AKcy = B.Key ON A.Key = B.Key
WHERE B.Key IS NULL WHERE A.Key IS NULL

SELECT <sclect_list>

FROM TableA A

FULL OUTER JOIN TableB B
ON A.Key = B.Key

SELECT <sclect list>
FROM TableA A
FULL OUTER JOIN TablcB B

ON A.Key = B.Key WHERE A.Key IS NULL
©CL Moffatt, 008 OR B.Key IS NULL
University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 30
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Ordering Results

* Recap: Relational Algebra works on sets

— i.e., it does not have orderings

* For database applications, ordering is often useful, e.g.,

— list students ordered by names
SELECT id,name
FROM  student
ORDER BY name

— list instructors ordered by department first, then by name
SELECT id,name,dept_name
FROM instructor
ORDER BY dept_name, name
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Limiting Results

* Find the three lecturers with the highest salaries

SELECT id,name,salary
FROM instructor
ORDER BY salary DESC
LIMIT 3;

* Note: the DESC keyword creates a descending ordering

* ASC also exists and creates an ascending ordering
— also the default when not specifiying the direction
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* Applications, e.g., Web applications, often offer a paged view
* Example:
— Display student list on pages of 100 students
— with navigation (next page, previous page)
SELECT id,name
FROM student
ORDER BY name
LIMIT 100
OFFSET 100;
 OFFSET 100 means: skip the first 100 entries
— i.e., this query would create the second page
* Note: offset should only be used with order by
— otherwise, the results are not deterministic
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Set Operations

e All courses that are offered in HWS 2017 and FSS 2018

(SELECT course_id FROM section WHERE sem = ‘HWS’ AND year = 2017)
INTERSECT
(SELECT course_id FROM section WHERE sem = ‘FSS’ AND year = 2018)

”course_id(o-semz’HWS’/\ year=2017(SECtion)) M ﬂcourse_id(asemz’FSS’/\ year=2018(seCtion))

e All courses that are offered in HWS 2017 but not in FSS 2018

(SELECT course_id FROM section WHERE sem = ‘HWS’ AND year = 2017)
EXCEPT
(SELECT course_id FROM section WHERE sem = ‘FSS’ AND year = 2018)

ﬂcourse_id(gsemz’HWS’/\ year=2017(SECtion)) - ﬂcourse_id(asemfFSS’/\ year=2018(seCtion))
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Set Operations

e All courses that are offered in HWS 2017 or FSS 2018

(SELECT course_id FROM section WHERE sem = ‘HWS’ AND year = 2017)
UNION

(SELECT course_id FROM section WHERE sem = ‘FSS’ AND year = 2018)

7T,

course_id(o-sem=’H WS’ a year=2017 (SECtiO n ) ) U ﬂcourse_id(asemﬂFSS’ A yealr=2018(sectio n ) )

* Alternative solution
SELECT course_id
FROM section
WHERE (sem = ‘HWS’ AND year = 2017) OR (sem = ‘FSS’” AND year = 2018)
”course_id( O(sem="HWS’ 1 year=2017) v (sem="FSS’ a year=2018)) (section))

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 35



e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Aggregate Functions — Examples

* Find the average salary of instructors in the Computer
Science department

— SELECT AVG (salary)
FROM instructor
WHERE dept_name=’'Comp. Sci.

* Find the number of tuples in the course relation
— SELECT COUNT (*)
FROM course

 Find the total number of instructors who teach a course in
the Spring 2010 semester

— SELECT COUNT (DISTINCT ID) = — —— Why do we need
FROM teaches distinct here?
WHERE semester =’Spring’ AND year = 2010
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Aggregate Functions with Group By

* Find the average salary of instructors in each department

SELECT dept _name, AVG (salary) AS avg _salary
FROM instructor
GROUP BY dept_name

| ID | name | dept_name | salary | | dept_name | salary |
76766 | Crick Biology 72000 Biology 72000
45565 | Katz Comp. Sci. | 75000 Comp. Sci. | 77333
10101 | Srinivasan | Comp. Sci. | 65000 Elec. Eng. | 80000
83821 | Brandt Comp. Sci. | 92000 Finance 85000
98345 | Kim Elec. Eng. | 80000 History 61000
12121 |Wu Finance 90000 Music 40000
76543 | Singh Finance 80000 Physics 91000

32343 | El Said History 60000
58583 | Califieri History 62000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
22222 | Einstein Physics 95000
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Aggregate Functions with Group By

e Attributes in SELECT clause ou’gside of aggregate functions
must appear in GROUPBY list < o

/* erroneous query */

SELECT dept _name, ID, AVG (salary) AS avg_salary
FROM instructor

GROUP BY dept_name;

| ID | name | dept_name | salary | | dept_name |Avg_salary|
76766 | Crick Biology 72000 Biology 72000
45565 | Katz Comp. Sci. | 75000 Comp. Sci. | 77333
10101 | Srinivasan | Comp. Sci. | 65000 Elec. Eng. | 80000
83821 | Brandt Comp Sci. | 92000 Finance 85000
08345 | Kim Elec. Eng. | 80000 History 61000
12121 | Wu Finance 90000 Music 40000
76543 | Singh Finance 0000 Physics 91000

32343 | El Said History 60000
58583 | Califieri History 62000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
22222 | Einstein Physics 95000
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* Find the names and average salaries of all departments
whose average salary is greater than 42000 /

— SELECT dept_name, AVG (salary) AS avg_salary /=~
FROM instructor
GROUP BY dept_name  :§;
WHERE avg_salary > 42000; /

* Problem:
— Aggregation is performed after selection and projection

— Hence, the variable avg_salary is not available
when the where clause is evaluated

e - The above query will not work
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Conditions on Aggregate Values

* Find the names and average salaries of all departments
whose average salary is greater than 42000

— SELECT dept_name, AVG (salary) AS avg_salary
FROM instructor
GROUP BY dept_name

HAVING avg_salary > 42000; | performance! I

The having clause is evaluated after the aggregation

 Hence, it is different from the where clause

Rule of thumb

— Conditions on aggregate values can only be defined using having
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* nullsignifies an unknown value or that a value does not exist

e |tis possible for tuples to have a null value, denoted by null, for some of
their attributes

— can be forbidden by a not null constraint

— keys can never be null!
* The result of any arithmetic expression involving null is null
e Example: 5+ null returns null

* The predicate is null can be used to check for null values
* Example: Find all instructors whose salary is null

SELECT name
FROM instructor
WHERE salary IS NULL
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NULL Values and Three Valued Logic

 Three values — true, false, unknown

* Any comparison with null returns unknown
— Example: 5<null or null<>null or null=null

Three-valued logic using the value unknown:

— OR: (unknown OR true) = true,
(unknown OR false) = unknown
(unknown OR unknown) = unknown

— AND: (true AND unknown) = unknown,
(false AND unknown) = false,
(unknown AND unknown) = unknown

— NOT: (NOT unknown) = unknown
“P IS UNKNOWN” evaluates to true if predicate P evaluates to unknown

Result of WHERE clause predicate is treated as false
if it evaluates to unknown
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* Total all salaries
SELECT SUM (salary )
FROM instructor
— Above statement ignores null amounts
— Result is null if there is no non-null amount

« All aggregate operations except COUNT(*) L2 _Luame | depit name | salary |

. . 76766 | Crick Biology 72000
ignore tuples with null values 45565 | Katz Comp. 54 | 75000
] 10101 | Srinivasan | Comp. Sci. | 65000

on the aggregated attributes 83821 |Brandt | Comp. Sci. | 92000
98345 | Kim Elec. Eng. | 80000

. . 12121 | Wu Finance 90000

* What if collection has only null values? 76543 |Singh | Finance | 80000
32343 | El Said History 60000

— count returns O 58583 | Califieri | History | 62000
15151 | Mozart Music 40000

— all other aggregates return null 33456 | Gold Physics | 87000
22222 | Einstein Physics 95000
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Subqueries

e SQL provides a mechanism for the nesting of subqueries. A subquery is
a SELECT-FROM-WHERE expression that is nested within another query

* The nesting can be done in the following SQL query
SELECT A, A,, ..., A,
FROMr,, r,, ..., 1,
WHERE P
as follows:
* A, can bereplaced be a subquery that generates a single value
* r; can be replaced by any valid subquery
 Pcan be replaced with an expression of the form:
B <operation> (subquery)
Where B is an attribute and <operation> to be defined later

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 44



) T

Subqueries in the WHERE Clause #/0F MANNHEIM

Data and Web Science Group

e A common use of subqueries is to perform tests:
— for set membership
— for set comparisons
— for set cardinality
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* Find courses offered this term by lectures
from the biology department
SELECT DISTINCT course_id
FROM teaches
WHERE semester = 'Spring” AND year= 2022 AND /D IN (

SELECT /D
FROM instructor
WHERE dept_name = ‘Biology’
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* Find courses offered this term before 9 am or after 5 pm
SELECT DISTINCT course_id
FROM section

WHERE semester ='Spring’” AND year= 2022 AND time_slot_id NOT IN (
SELECT time_slot _id

FROM time_slot
WHERE end _time >=9 AND start_time <= 17
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Test for Set Membership

* Find the total number of (distinct) courses offered by

instructors in the biology department

SELECT COUNT(DISTINCT course_id)

FROM teaches

WHERE semester = ’Spring” AND year= 2022 AND /D IN (
SELECT /D
FROM instructor
WHERE dept_name = ‘Biology’

)

 Note: in all of those cases,
other (sometimes simpler) solutions are possible
— In SQL, there are often different ways to solve a problem
— A question of personal taste

— But also: a question of performance...
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Test for Set Membership

* Find the total number of (distinct) courses offered by

instructors in the biology department

SELECT COUNT(DISTINCT course_id)

FROM teaches

WHERE semester = 'Spring” AND year= 2022 AND /D IN
SELECT /D
FROM instructor O

Ccreates a

WHERE dept_name = ‘Biology’
)

VS. computes
cartesian

SELECT COUNT (DISTINCT course_id)
product

FROM teaches, instructor o O C
WHERE teaches.ID = instructor.ID AND instructor.department = ‘Biology’
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Set Comparison with SOME

* Find names of instructors with salary greater than
that of some (at least one) instructor in the Biology
department

SELECT DISTINCT T.name
FROM instructor AS T, instructor AS S
WHERE T.salary > S.salary AND S.dept name = 'Biology’

 Same query using > SOME clause
SELECT name
FROM instructor
WHERE salary > SOME (SELECT salary
FROM instructor
WHERE dept name = ’Biology’)
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Set Comparison with ALL

* Find names of instructors with salary greater than
that of all instructors in the Biology department
SELECT name
FROM instructor
WHERE salary > ALL (SELECT salary
FROM instructor
WHERE dept name =’Biology’)

 Note: we could also achieve this with MIN and MAX
aggregates in the subqueries
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e F<comp>SOME r< dt e r suchthat (F<comp>t)
Where <comp> can be: <, <, >, =, #

0
(5 < SOME 5 ) = true

(read: 5 < some tuple in the relation)

6
0
(5<SOME | § | )=false
0
(5=SOME | § | )=true
0
(5 # SOME 5 ) = true (since 0 # 5)
(= SOME) # IN

However, (= SOME) # not in
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Definition: Comparisons with ALL

e F<comp>ALLr< V ter (F<comp>t)

0
(5<ALL | § | )="false
6
6
(5<ALL |10/ )=true
4
(5=ALL| § | )=false
4
(5#ALL| 6 | )=true (since 57 4 and 5 # 6)
(# ALL) # NOT IN

However, (= ALL) = IN
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Existential Quantification in
Subqueries

e Select all courses offered this year which are taken by at

least one student

— SELECT course_id
FROM section
WHERE semester = 'Spring’ AND year = 2022 AND EXISTS (

SELECT *
FROM takes
WHERE takes.course_id = section.course_id
AND takes.sec _id = section.sec _id
AND takes.semester = section.semester )

 The EXISTS construct returns the value true
if the result of the subquery is not empty
— EXISTS re rd
— NOTEXISTSr< r=¢
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Subqueries with NOT EXISTS

* Find all students who have taken all courses offered in the

Biology department
SELECT DISTINCT S./D, S.name
FROM student AS S

WHERE NOT EXISTS ( (SELECT course_id
FROM course
WHERE dept_name =’Biology’)
EXCEPT
(SELECT T.course_id
FROM takes AS T
WHERE S./D = T.ID))

— First nested query lists all courses offered in Biology
— Second nested query lists all courses a particular student took

e NotethatX-Y=¢gd < XcVY
* Note: Cannot write this query using = all and its variants
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Test for Duplicate Tuples

* Find all courses that were offered at most once in 2009

SELECT T.course _id
FROM course AS T
WHERE UNQIUE (SELECT R.course_id
FROM section as R
WHERE T.course id= R.course _id AND

R.year = 2009)

* The unique construct evaluates to “true” if a given subquery
contains no duplicates

* With not unique, we could query for courses that were
offered more than once
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e So far, we have considered subqueries in the where clause

* Find the average instructors’ salaries of those departments
where the average salary is greater than $42,000.”

SELECT dept _name, avg_salary
FROM (

SELECT dept _name, AVG (salary) AS avg_salary
FROM instructor

GROUP BY dept_name

)
WHERE avg salary > 42000;

* Note that we do not need to use the having clause

— why?
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WITH max_budget (value) AS
SELECT MAX(budget) ==—
FROM department

this defines the structure
of the temporary relation
(datatypes are implicit)

)
SELECT department.name

FROM department, max_budget
WHERE department.budget = max_budget.value

* The with clause provides a way of defining a temporary
relation whose definition is available only to the query in
which the with clause occurs
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Creating Temporary Relations
Using WITH

* A more complex example involving two temporary
relations:
WITH dept _total (dept_name, value) AS (

SELECT dept_name, SUM(salary)
FROM instructor
GROUP BY dept_name Find all departments where the total

), salary is greater than the average of
the total salary at all departments

dept_total _avg(value) as (

SELECT AVG(value)
FROM dept_total

)

select dept _name
from dept total, dept _total avg

where dept_total.value > dept_total avg.value
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e List all departments along with the number of instructors in
each department
SELECT dept_name, (

SELECT COUNT(*)
FROM instructor
WHERE department.dept_name = instructor.dept_name

JAS num_instructors
FROM department;

e Scalar subqueries return a single result

— More specifically: a single tuple

 Runtime error if subquery returns more than one result
tuple
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Summary of Subqueries

SELECT queries are the most often used part of SQL

Their basic structure is simple, but subqueries are a powerful means to
make them quite expressive
SELECT A A,, ..., A,
FROMr,, r,, ..., I,
WHERE P
Subqueries in SELECT part (A, A,, ..., A,)
— Scalar subqueries (single values, like aggregates)
Subqueries in FROM part (ry, 15, ..., )
— Temporary relations (can also be defined using WITH)
Subqueries in WHERE part (P)
— Set comparisons, empty sets, test for duplicates
— Universal and existential quantification
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e The tool support of SQL varies B GO S e g e

* what we have covered here e L] =y
is standard SQL

— Supported by most tools
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DDL
CREATE

ALTER
DROP
TRUNCATE
COMMENT

RENAME

|

DML

INSERT
UPDATE
DELETE
MERGE

CALL

EXPLAIN PLAN

LOCK TABLE

DCL
GRANT

REVOKE

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025
Source: https://www.w3schools.in/mysgl/ddI-dmli-dcl/

TCL
COMMIT
ROLLBACK
SAVEPOINT
SET TRANSACTION
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Summary and Take Aways /01 MANNHE
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e SQL is a standarized language for
relational databases

— DML: Data Manipulation

Language
e DML
— Read data from tables using
SELECT
* Coming Up:

— Writing data to tables
— Creating and changing tables
— Rights & Roles
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Questions?
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