o) T
SQL Part 1 & §§¥§§S§§EIM
CS460 Database Technology

_;m)7 S

lJ il Ul

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 1

Outline

* Today

— Overview of The SQL Query
Language

— Basic Query Structure
— Set Operations

— Join Operators

— Null Values

— Aggregate Functions
— Nested Subqueries

e
%i?ﬁﬁ; UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Next week

Data Definition

Data Types in SQL
Modifications of the database
Views

Integrity Constraints

Roles & Rights

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 2

e
iiﬁa; UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Recap: Database Systems

(t(:;laelr‘;e : gS:rr\is application Sopl::;csated d::ltgbase
web hsers) ’ programmers (analysts) administrators
use

e Users and applications interact use wite
with databases Cpiaar e (e
— By issuing queries

— Data definition (DDL):
defining, altering, deleting tables

administration
tools

e i e T e e e]

compiler and | .

DML queries DDL interpreter

|

|

|

F linker) |

] |

application |
program DML compiler !
|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
I
|
E
! object code and organizer
I
I
I
I
I
I
I

1 query evaluation J

engine

— Data manipulation (DML):
reading from & writing to tables

e SQLis both a DDL and a DML
— The language that most DBMS speak

query processor

lbuﬁer manager I I file manager authorization transaction
and integrity manager
manager

storage manager

disk storage

I data dictionary l

statistical data

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 3

History

e
%i?'ﬁﬁ; UNIVERSITY
OF MANNHEIM

Data and Web Science Group

 |BM SEQUEL language developed as part of System R project
at the IBM San Jose Research Laboratory

— Structured English QUEry Language

 Renamed Structured Query Language (SQL)
 ANSI and ISO standard SQL:

SQL-86 Naming became
SQL-89 Y2K compliant! ;-)
SQL-92

SQL:1999
SQL:2003

American National Standards Institute

=il |nternational

Iso Organization for

N Zl Standardization

 Commercial + free systems offer most, if not all, SQL-92 features

— plus varying feature sets from later standards and special proprietary

features

— Not all examples here may work on your particular system!

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Parts of SQL: The Big Picture

SQL
Commands

—

e
iiﬁﬁ; UNIVERSITY
OF MANNHEIM

Data and Web Science Group

DDL
CREATE

ALTER
DROP
TRUNCATE
COMMENT

RENAME

DML
SELECT

INSERT
UPDATE
DELETE
MERGE

CALL

EXPLAIN PLAN

LOCK TABLE

DCL
GRANT

REVOKE

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025
Source: https://www.w3schools.in/mysgl/ddI-dmli-dcl/

TCL
COMMIT
ROLLBACK
SAVEPOINT
SET TRANSACTION

https://www.w3schools.in/mysql/ddl-dml-dcl/

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Reading Data

* The select clause lists the attributes desired in the result of
a query

 Example: find the names of all instructors:
SELECT name
FROM instructor

* Inrelational algebra:

— |1, (instructor)

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 6

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

A Note on Case Sensitivity

 SQL is completely case insensitive
— select = SELECT = SelLeCt

e Also for names of relations and attributes
— instructor = Instructor = INSTRUCTOR
— name = NAME = nAmE

Each relation / attribute can only exist once

— Hence, two relations named instructor and Instructor
would not be feasible

e (Case sensitivity does not apply to values!

— i.e., “Einstein” and “einstein” are different values!

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 7

Renaming Columns in a Select

* Columns can be renamed during selection
SELECT name, salary as payment
FROM instructor

* Inrelational algebra
— a composition of projection and renaming:

- P paymenté& salary (Hname,salary (instructor))

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

) T

m]_]

(e

UNIVERSITY
OF MANNHEIM

Data and Web Science Group

e
e \UNIVERSITY

The Select Clause 7 OF MANNHEIM

Data and Web Science Group

e An asterisk in the select clause denotes “all attributes”
SELECT *
FROM instructor

* An attribute can be a literal with no FROM clause, possibly
renamed
SELECT ‘437’ FOO

SELECT ‘437° AS FOO | 437

name role

Smith Instructor

e An attribute can be a literal with FROM clause | Einstein | Instructor

SELECT name, ‘Instructor’ AS role FROM instructor

UNION Johnson | Student

SELECT name, ‘Student’ AS role FROM student

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 9

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Duplicates

e Difference to relational algebra

— Sets do not contain duplicates!
* SQL allows duplicates in relations as well as in query results
B

unless we define a constraint
(see later)
4\

* To force the elimination of duplicates,
insert the keyword DISTINCT after SELECT.

e Find the department names of all instructors,

and remove duplicates

SELECT DISTINCT dept_name
FROM instructor

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 10

) T

Arithmetics in the Selection B OF MANNHEIM

Data and Web Science Group

 The SELECT clause can contain arithmetic expressions
involving the operation, +, —, *, and /, and operating on
constants or attributes of tuples

— Here, we leave relational algebra!

e The query
SELECT /D, name, salary/12

FROM instructor
would return a relation that is the same as the instructor relation,
except that the value of the attribute salary is divided by 12

e Combined with renaming:

— SELECT ID, name, salary/12 AS monthly salary
FROM instructor

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 11

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Reading Parts of a Relation

e So far, we have always read an entire relation
e Usually, we are interested only in a small portion
 The WHERE clause restricts which parts of the table to read

* To find all instructors in Comp. Sci. dept
SELECT name
FROM instructor
WHERE dept _name = ‘Comp. Sci.'
* Inrelational algebra: combination of selection and
projection

T (instructor))

name(Gdept_name = ‘Comp. Sci.

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 12

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Reading Parts of a Relation

 Comparison results can be combined using the logical
connectives AND, OR, and NOT
SELECT name
FROM instructor
WHERE dept_name = ‘Comp. Sci.” AND salary > 90000

7-cname(csdept_name = ‘Comp. Sci.” A saIary>9OOOO(In5trUCtor))

 Can be combined with results of arithmetic expressions

SELECT name, salary/12 AS monthly salary
FROM instructor
WHERE dept_name = ‘Comp. Sci.” AND monthly salary > 7500

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 13

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Searching in Texts

e So far, we have handled exact equality in selections
 Sometimes, we want to search differently

— All books that contain “database”

— All authors starting with “S”

* InSQL: comparing with LIKE and two special characters:
— __ =any arbitrary character
— % = any number of arbitrary characters
— masking with backslash
— SELECT ... WHERE title LIKE ‘%database%’
— SELECT ... WHERE author LIKE ‘S%’ 4”‘05'(SQL engineil
_ SELECT ... WHERE amount LIKE ‘100\ %’ = ~-32nt check types

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 14

e
e \UNIVERSITY

Reading Data from Multiple Tables 8/ OF MANNHE M

Data and Web Science Group

Example: find all instructors and the courses they teach
SELECT * FROM instructor, teaches

— this generates the cartesian product, i.e., instructor x teaches

— result: generates every possible instructor — teaches pair, with all
attributes from both relations <—=——

but is that useful?

Common attributes (e.g., ID), the attributes in the resulting
table are renamed using the relation name

— e.g., instructor.ID, teaches.ID

Relational algebra notation:

~ Finstructor.ID ¢ ,D(/nstructor) X pteaches./D < ID(teaChes)

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 15

Cartesian Product

~n A -

) T

p_m lw] }
él (W[N]

UNIVERSITY

WY OF MANNHEIM

Data and Web Science Group

name dept_name salary ID | course_id | sec_id | semester | year
Srinivasan | Comp. Sci. 65000 10101 | CS-101 1 Fall 2009
Wu Finance 90000 10101 | C5-315 1 Spring 2010
Inst.ID| name dept_name |salary | teaches.ID| course_id |sec_id| semester| year ;8(1)3

10101 |Srinivasan|Comp. Sci| 65000 | 10101 CS-101 1 Fall 2009 2010

10101 |Srinivasan|Comp. Sci| 65000| 10101 CS-315 1 Spring |2010]| I 2009

10101 |Srinivasan|Comp. Sci| 65000| 10101 | CS-347 1 Fall 2009

10101 |Srinivasan{Comp. Sci| 65000 12121 FIN-201 1 Spring | 2010

10101 [Srinivasan|Comp. Sci| 65000 15151 | MU-199 | 1 Spring | 2010

10101 [Srinivasan|Comp. Sci| 65000 | 22222 PHY-101 | 1 Fall 2009

12121 |Wu Finance |90000| 10101 |Cs-101 | 1 | Fall {2009

12121 [Wu Finance 90000 | 10101 CS-315 1 Spring | 2010

12121 |Wu Pinance 90000 | 10101 (CS-347 1 Fall 2009

12121 |Wu Pinance 90000 12121 FIN-201 1 Spring | 2010

12121 [Wu Finance 90000 | 15151 MU-199 1 Spring | 2010

12121 |Wu Pinance 90000 | 22222 PHY-101 | 1 Fall 2009

16

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

e
e \UNIVERSITY

Cartesian Products with Selection B/0F MANNHE M

Data and Web Science Group

* Find the names of all instructors who
have taught some course and the course_id
SELECT name, course_id
FROM instructor, teaches
WHERE instructor.ID = teaches.ID

e Relational algebra:

ﬂname, Course_id(o-instructor.ID=teaches.ID(pinstructor_/D & ID((instructo r) X pteaches.ID <& /D(tea ch ES))))

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 17

) T

° %‘D'”; UNIVERSITY
Cartesian Product B/ OF MANNHEIM
instructor teaches
1D name dept_name salary course_id | sec_id semester year
10101 | Srinivasan | Comp. Sci. 65000 10101 | CS-101 1 Fall 2009
12121 | Wu Finance 90000 10101 | CS-315 1 Spring 2010
15151 et 1D P l s 1D > ” 2009
29999 nst. name ept_name | salary | teaches. course_ia |sec_id| semester| year 2010
32343 || 10101 |Srinivasan|Comp. Scif65000| 10101 [CS-101 | 1 | Fall ~ |2009| | 2010
10101 |Srinivasan|Comp. Sci| 65000| 10101 CS-315 1 Spring |2010]| I 2009
10101 |Srinivasan|Comp. Sci| 65000| 10101 (CS-347 1 Fall 2009
4 N1 N1 [PR ol | i ORI ¢, P PaVavaN 1791791 TINT NNO1 - [LI N1 0
_l.U_lU.l LTI VAol _,Ulllt/ [W4 = O5UUU P Gyann gy § 1 1IN UL N B L}t.}.l_lllb e\ L
+HHETTSrintrasanTCemp—Se65000T—5+54 ot 2w aas . Sprive—2046-
10101 1Srinivasan (_'nmp Scil 50001 22227 PHY-101 1 Eall 2009
o3 Was inance—| 9000010101 cS1or—| 1+ | Eall [2000
12424 W Einance—-90000+—H0H1—C5-315 . Spripe 2010
12424k Rinoneoloooon 10101 1CC 247 1 Eall 2000
12121 |Wu Pinance 90000 | 12121 FIN-201 1 Spring | 2010
; ;!; ;!1 1A/11 Einanco ()OOCO 15151 1\'/[TT | 99 1 QPring 211
12121 1A/ 11 Pinancao OOOOO NN PHY 101 1 EAall ‘7””9_
18

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

e
e \UNIVERSITY

Cartesian Products with Selection B/0F MANNHE M

Data and Web Science Group

* Find the names of all instructors in the Finance department
who have taught some course, together with the course _id
SELECT name, course_id
FROM instructor , teaches
WHERE instructor.ID = teaches.ID AND instructor. dept_name = ‘Finance’

ﬂname,course_id(Ginstructor.ID=teaches.ID/\ dept_name=’Finance’(pinstructor,/D <& ,D(lnstructor) X pteaches.ID & /D(teaCheS)))

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 19

Cartesian Product

) T

pl_w]_fw]

g

UNIVERSITY
OF MANNHEIM

Data and Web Science Group

instructor teaches

1D name dept_name salary ID course_id | sec_id semester year
10101 | Srinivasan| Comp. Sci. | 65000 10101 | C5-101 1 Fall 2009
12121 | Wu Finance 90000 10101 | CS-315 1 Spring 2010
15151 . . 2009
29999 || [nstID| name dept_name |salary | teaches.ID| course_id |sec_id| semester| year 2010
32343 | ~Hto-{SrimivasarComp-Ser68000 08— €S- +0t—T—+—1F=att—712669- | 2010
AAAAA PEROTROR .2 D0 P fali ool 10101 O Aq- 4 . faYat Wa) 2009

1UlUl JLITIHIEV AodlL _,UllltJ. SOl OSUUU 1UU1IVUl) T (N 1 g)tJllllé A vE ey

P WAV N = yanl {1 .. ann 1. 1101 yaalal ﬁéﬂ e T~ _11 [aYaYaYa)

1U1lUl JLITILV AOAdIL N ULL ltJ. SO, O5UUU 1UVUIVvUlL | Dl b o 4 1 1 dlil AR VA w4

EWaCWat Lt e | s CT LS PaVavA 19171 T INI N0 1 [QR N1 0

BRCERVEE LTIV UHOUILPSN UL lt/o [WV 4 =N 05UUU B s gy § 1 1IN UL B e L)IJ-LJ.J. lb =\ LS

+HHTSrinirasanTComp—Se-65806 5154 M99 + Sprire—2040-

10101 1Srinivasan (_'nmp Scil 50001 22227 PHY-101 1 Eall 2009

12424 Haanee S5600-—10101 =510 4 Eall 12000

124241 A Einanece—-90000-+—0104 £S-315 1 SO0

e RREE Rinance—I00000-—10101 s 2347 1 Eall 2009

12121 [Wu Pinance |[90000| 12121 FIN-201 1 Spring | 2010

12121 1WA Ej 15151 MILL] Sari 2010

1 11 1nanco ()OCOO v 99 1 Prnﬁg
12121 A1 Pinanco OOOOO 272227 PHEY_101 1 Eall ‘7””9_
University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 20

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Cartesian Product of a Table with
Itself

* Find the names of all instructors who have a higher salary
than some instructor in ‘Comp. Sci’.
— We need the same table twice
— So, we have to use it under different names

— SELECT DISTINCT T.name
FROM instructor AS T, instructor AS S
WHERE T.salary > S.salary AND S.dept_name = ‘Comp. Sci.’

”Iname(GIsa/arwS.sa/ary A S.dept_name="Comp. Sci.’ (pT(instructor) X ps(instructor)))

 What happens if we omit the distinct here?

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 21

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Join Operations

* Join operations
— take two relations
— return as new relation as their result

* Ajoin operation
— is a Cartesian product

— requires that tuples in the two relations match (under some condition)
— specifies the attributes that are present in the result of the join

 The join operations are typically used as subquery expressions
in the FROM clause

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 22

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Join Operations

e Recap: We have already seen a form of joins:
* Ajoin operation

—, is a Cartesian product

— requires that tuples in the two relations match (under some condition)

— specifies the attributes that are present in the result of the join

* Find the names of all instructors who
have taught some course and the course_id

SELECT name, course_id <+
FROM instructor, teaches
WHERE instructor.ID = teaches.ID +

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 23

)
e \UNIVERSITY

Outer Joins BB OF MANNHEIM

Data and Web Science Group

e Consider the two relations below
e Desired:

— List all courses with their prerequisites
— Note: course CS-315 has no prerequisites

course_id title dept_name | credits
BIO-301 | Genetics Biology 4
C5-190 [Game Design| Comp. Sci. 4
(CS-315 |Robotics Comp. Sci. 3

course_id | prereq_id
BIO-301 | BIO-101

CS-190 | C5-101
C5-347 | C5-101

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 24

List all courses with their prerequisites

Outer Joins

g \UNIVERSITY

SELECT C.course _id, C.title, C.credits, C.dept_name, P.course _id
FROM course AS C, prereq AS P

WHERE C.course _id = P.course_id

course_id title dept_name | credits course_id | prereq_id
BIO-301 | Genetics Biology 4 BIO-301 | BIO-101
CS5-190 | Game Design| Comp. Sci. 4 CS-190 | CS-101
(CS-315 |Robotics Comp. Sci. 3 CS-347 CS-101
C.course_id | C.title C.credits | C.dept_name | P.course_id
BIO-301 Genetics 4 Biology BIO-101
CS-190 Game Design |4 Comp. Sci. CS-101

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

OF MANNHEIM

Data and Web Science Group

25

)
e UNIVERSITY

Outer Joins %EEEE’JBOF MANNHEIM

Data and Web Science Group

e List all courses with their prerequisites

SELECT C.course_id, C.title, C.credits, C.dept_name, P.prereq_id
FROM course AS C LEFT OUTER JOIN prereq AS P ON C.course_id = P.course_id

course_id title dept_name | credits course_id | prereq_id
BIO-301 | Genetics Biology 4 BIO-301 | BIO-101
CS5-190 | Game Design| Comp. Sci. 4 CS-190 CS-101
CS-315 |Robotics Comp. Sci. 3 Cs-347 | CS-101
C.course_id | C.title C.credits | C.dept_name | P.course _id
BIO-301 Genetics 4 Biology BIO-101
CS-190 Game Design | 4 Comp. Sci. CS-101
CS-315 Robotics 3 Comp. Sci. NULL

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 26

o) T
Join Operations B/ ON MANNHEIM

Data and Web Science Group

* Join type — defines how tuples in each relation that do not
match any tuple in the other relation (based on the join
condition) are treated for the moment:

— INNER JOIN: ignore — _keyword for “a blank cell”

(—

— OUTER JOIN: fill with NULL values

* Join condition — defines which tuples in the two relations
match, and what attributes are present in the result of the
join

— explicit: ON clause
— implicit: NATURAL keyword

Join types Join Conditions
inner join natural

left outer join on < predicate>
right outer join using (A1, Ay, ..., A,)
full outer join

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 27

)
e UNIVERSITY

Outer Joins %EEEE’JBOF MANNHEIM

Data and Web Science Group

e List all courses with their prerequisites

SELECT C.course_id, C.title, C.credits, C.dept_name, P.prereq_id
FROM course AS C RIGHT OUTER JOIN prereq AS P on C.course_id = P.course_id

course_id title dept_name | credits course_id | prereq_id
BIO-301 | Genetics Biology 4 BIO-301 | BIO-101
CS5-190 | Game Design| Comp. Sci. 4 CS-190 CS-101
CS-315 |Robotics Comp. Sci. 3 Cs-347 | CS-101
C.course_id | C.title C.credits | C.dept_name | P.course_id
BIO-301 Genetics 4 Biology BIO-101
CS-190 Game Design | 4 Comp. Sci. CS-101
CS-347 NULL NULL NULL CS-101

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 28

)
e UNIVERSITY

Outer Joins %EEEE’JBOF MANNHEIM

Data and Web Science Group

e List all courses with their prerequisites
SELECT C.course_id, C.title, C.credits, C.dept_name, P.prereq_id
FROM course AS C FULL OUTER JOIN prereq AS P ON C.course_id = P.course_id

course_id title dept_name | credits course_id | prereq_id
BIO-301 | Genetics Biology 4 BIO-301 | BIO-101
CS5-190 | Game Design| Comp. Sci. 4 CS-190 CS-101
CS-315 | Robotics Comp. Sci. 3 Cs-347 | CS-101
C.course_id | C.title C.credits | C.dept_name | P.course_id
BIO-301 Genetics 4 Biology BIO-101
CS-190 Game Design | 4 Comp. Sci. CS-101
CS-347 NULL NULL NULL CS-101
CS-315 Robotics 3 Comp. Sci. NULL

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 29

e
%Ei'ﬁﬁ; UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Join Types at a Glance

SQL JOINS

SELECT <select_list>
FROM TableA A
LEFT JOIN TableB B
ON AKey = B.Key

SELECT <seclect_list>
FROM TablcA A
RIGHT JOIN TableB B
ON AKcy = B.Key

SELECT <sclect_list>
FROM TablcA A
INNER JOIN TabicB B
ON A.Key = B.Key

SELECT <sclect_list> SELECT <select_list>
FROM TableA A FROM TableA A

LEFT JOIN TableB B RIGHT JOIN TablcB B
ON AKcy = B.Key ON A.Key = B.Key
WHERE B.Key IS NULL WHERE A.Key IS NULL

SELECT <sclect_list>

FROM TableA A

FULL OUTER JOIN TableB B
ON A.Key = B.Key

SELECT <sclect list>
FROM TableA A
FULL OUTER JOIN TablcB B

ON A.Key = B.Key WHERE A.Key IS NULL
©CL Moffatt, 008 OR B.Key IS NULL
University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 30

Source: https://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

https://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Ordering Results

* Recap: Relational Algebra works on sets

— i.e., it does not have orderings

* For database applications, ordering is often useful, e.g.,

— list students ordered by names
SELECT id,name
FROM student
ORDER BY name

— list instructors ordered by department first, then by name
SELECT id,name,dept_name
FROM instructor
ORDER BY dept_name, name

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 31

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Limiting Results

* Find the three lecturers with the highest salaries

SELECT id,name,salary
FROM instructor
ORDER BY salary DESC
LIMIT 3;

* Note: the DESC keyword creates a descending ordering

* ASC also exists and creates an ascending ordering
— also the default when not specifiying the direction

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 32

) T

Paging with LIMIT and OFFSET /O MANNHEIM

Data and Web Science Group

* Applications, e.g., Web applications, often offer a paged view
* Example:
— Display student list on pages of 100 students
— with navigation (next page, previous page)
SELECT id,name
FROM student
ORDER BY name
LIMIT 100
OFFSET 100;
 OFFSET 100 means: skip the first 100 entries
— i.e., this query would create the second page
* Note: offset should only be used with order by
— otherwise, the results are not deterministic

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 33

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Set Operations

e All courses that are offered in HWS 2017 and FSS 2018

(SELECT course_id FROM section WHERE sem = ‘HWS’ AND year = 2017)
INTERSECT
(SELECT course_id FROM section WHERE sem = ‘FSS’ AND year = 2018)

”course_id(o-semz’HWS’/\ year=2017(SECtion)) M ﬂcourse_id(asemz’FSS’/\ year=2018(seCtion))

e All courses that are offered in HWS 2017 but not in FSS 2018

(SELECT course_id FROM section WHERE sem = ‘HWS’ AND year = 2017)
EXCEPT
(SELECT course_id FROM section WHERE sem = ‘FSS’ AND year = 2018)

ﬂcourse_id(gsemz’HWS’/\ year=2017(SECtion)) - ﬂcourse_id(asemfFSS’/\ year=2018(seCtion))

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 34

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Set Operations

e All courses that are offered in HWS 2017 or FSS 2018

(SELECT course_id FROM section WHERE sem = ‘HWS’ AND year = 2017)
UNION

(SELECT course_id FROM section WHERE sem = ‘FSS’ AND year = 2018)

7T,

course_id(o-sem=’H WS’ a year=2017 (SECtiO n)) U ﬂcourse_id(asemﬂFSS’ A yealr=2018(sectio n))

* Alternative solution
SELECT course_id
FROM section
WHERE (sem = ‘HWS’ AND year = 2017) OR (sem = ‘FSS’” AND year = 2018)
”course_id(O(sem="HWS’ 1 year=2017) v (sem="FSS’ a year=2018)) (section))

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 35

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Aggregate Functions — Examples

* Find the average salary of instructors in the Computer
Science department

— SELECT AVG (salary)
FROM instructor
WHERE dept_name=’'Comp. Sci.

* Find the number of tuples in the course relation
— SELECT COUNT (*)
FROM course

 Find the total number of instructors who teach a course in
the Spring 2010 semester

— SELECT COUNT (DISTINCT ID) = — —— Why do we need
FROM teaches distinct here?
WHERE semester =’Spring’ AND year = 2010

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 36

ot
(R UNIVERSITY
W¥ OF MANNHEIM

Data and Web Science Group

Aggregate Functions with Group By

* Find the average salary of instructors in each department

SELECT dept _name, AVG (salary) AS avg _salary
FROM instructor
GROUP BY dept_name

| ID | name | dept_name | salary | | dept_name | salary |
76766 | Crick Biology 72000 Biology 72000
45565 | Katz Comp. Sci. | 75000 Comp. Sci. | 77333
10101 | Srinivasan | Comp. Sci. | 65000 Elec. Eng. | 80000
83821 | Brandt Comp. Sci. | 92000 Finance 85000
98345 | Kim Elec. Eng. | 80000 History 61000
12121 |Wu Finance 90000 Music 40000
76543 | Singh Finance 80000 Physics 91000

32343 | El Said History 60000
58583 | Califieri History 62000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
22222 | Einstein Physics 95000

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 37

il
%559; UNIVERSITY
Y OF MANNHEIM

Data and Web Science Group

Aggregate Functions with Group By

e Attributes in SELECT clause ou’gside of aggregate functions
must appear in GROUPBY list < o

/* erroneous query */

SELECT dept _name, ID, AVG (salary) AS avg_salary
FROM instructor

GROUP BY dept_name;

| ID | name | dept_name | salary | | dept_name |Avg_salary|
76766 | Crick Biology 72000 Biology 72000
45565 | Katz Comp. Sci. | 75000 Comp. Sci. | 77333
10101 | Srinivasan | Comp. Sci. | 65000 Elec. Eng. | 80000
83821 | Brandt Comp Sci. | 92000 Finance 85000
08345 | Kim Elec. Eng. | 80000 History 61000
12121 | Wu Finance 90000 Music 40000
76543 | Singh Finance 0000 Physics 91000

32343 | El Said History 60000
58583 | Califieri History 62000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
22222 | Einstein Physics 95000

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 38

e
WLUNIVERSITY

Conditions on Aggregate Values 8870 MANNHEIM

Data and Web Science Group

* Find the names and average salaries of all departments
whose average salary is greater than 42000 /

— SELECT dept_name, AVG (salary) AS avg_salary /=~
FROM instructor
GROUP BY dept_name :§;
WHERE avg_salary > 42000; /

* Problem:
— Aggregation is performed after selection and projection

— Hence, the variable avg_salary is not available
when the where clause is evaluated

e - The above query will not work

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 39

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Conditions on Aggregate Values

* Find the names and average salaries of all departments
whose average salary is greater than 42000

— SELECT dept_name, AVG (salary) AS avg_salary
FROM instructor
GROUP BY dept_name

HAVING avg_salary > 42000; | performance! I

The having clause is evaluated after the aggregation

 Hence, it is different from the where clause

Rule of thumb

— Conditions on aggregate values can only be defined using having

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 40

) T

NULL Values B N M AR NELIM

Data and Web Science Group

* nullsignifies an unknown value or that a value does not exist

e |tis possible for tuples to have a null value, denoted by null, for some of
their attributes

— can be forbidden by a not null constraint

— keys can never be null!
* The result of any arithmetic expression involving null is null
e Example: 5+ null returns null

* The predicate is null can be used to check for null values
* Example: Find all instructors whose salary is null

SELECT name
FROM instructor
WHERE salary IS NULL

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 41

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

NULL Values and Three Valued Logic

 Three values — true, false, unknown

* Any comparison with null returns unknown
— Example: 5<null or null<>null or null=null

Three-valued logic using the value unknown:

— OR: (unknown OR true) = true,
(unknown OR false) = unknown
(unknown OR unknown) = unknown

— AND: (true AND unknown) = unknown,
(false AND unknown) = false,
(unknown AND unknown) = unknown

— NOT: (NOT unknown) = unknown
“P IS UNKNOWN” evaluates to true if predicate P evaluates to unknown

Result of WHERE clause predicate is treated as false
if it evaluates to unknown

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 42

e
L LUNIVERSITY

Aggregates and NULL Values 88705 MANNHEIM

Data and Web Science Group

* Total all salaries
SELECT SUM (salary)
FROM instructor
— Above statement ignores null amounts
— Result is null if there is no non-null amount

« All aggregate operations except COUNT(*) L2 _Luame | depit name | salary |

. . 76766 | Crick Biology 72000
ignore tuples with null values 45565 | Katz Comp. 54 | 75000
] 10101 | Srinivasan | Comp. Sci. | 65000

on the aggregated attributes 83821 |Brandt | Comp. Sci. | 92000
98345 | Kim Elec. Eng. | 80000

. . 12121 | Wu Finance 90000

* What if collection has only null values? 76543 |Singh | Finance | 80000
32343 | El Said History 60000

— count returns O 58583 | Califieri | History | 62000
15151 | Mozart Music 40000

— all other aggregates return null 33456 | Gold Physics | 87000
22222 | Einstein Physics 95000

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 43

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Subqueries

e SQL provides a mechanism for the nesting of subqueries. A subquery is
a SELECT-FROM-WHERE expression that is nested within another query

* The nesting can be done in the following SQL query
SELECT A, A,, ..., A,
FROMr,, r,, ..., 1,
WHERE P
as follows:
* A, can bereplaced be a subquery that generates a single value
* r; can be replaced by any valid subquery
 Pcan be replaced with an expression of the form:
B <operation> (subquery)
Where B is an attribute and <operation> to be defined later

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 44

) T

Subqueries in the WHERE Clause #/0F MANNHEIM

Data and Web Science Group

e A common use of subqueries is to perform tests:
— for set membership
— for set comparisons
— for set cardinality

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 45

) T

Test for Set Membership B/ OF MANNHEIM

Data and Web Science Group

* Find courses offered this term by lectures
from the biology department
SELECT DISTINCT course_id
FROM teaches
WHERE semester = 'Spring” AND year= 2022 AND /D IN (

SELECT /D
FROM instructor
WHERE dept_name = ‘Biology’

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 46

) T

Test for Set Membership B/ OF MANNHEIM

Data and Web Science Group

* Find courses offered this term before 9 am or after 5 pm
SELECT DISTINCT course_id
FROM section

WHERE semester ='Spring’” AND year= 2022 AND time_slot_id NOT IN (
SELECT time_slot _id

FROM time_slot
WHERE end _time >=9 AND start_time <= 17

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 47

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Test for Set Membership

* Find the total number of (distinct) courses offered by

instructors in the biology department

SELECT COUNT(DISTINCT course_id)

FROM teaches

WHERE semester = ’Spring” AND year= 2022 AND /D IN (
SELECT /D
FROM instructor
WHERE dept_name = ‘Biology’

)

 Note: in all of those cases,
other (sometimes simpler) solutions are possible
— In SQL, there are often different ways to solve a problem
— A question of personal taste

— But also: a question of performance...
University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 48

e
%i?ﬁﬁ; UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Test for Set Membership

* Find the total number of (distinct) courses offered by

instructors in the biology department

SELECT COUNT(DISTINCT course_id)

FROM teaches

WHERE semester = 'Spring” AND year= 2022 AND /D IN
SELECT /D
FROM instructor O

Ccreates a

WHERE dept_name = ‘Biology’
)

VS. computes
cartesian

SELECT COUNT (DISTINCT course_id)
product

FROM teaches, instructor o O C
WHERE teaches.ID = instructor.ID AND instructor.department = ‘Biology’

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 49

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Set Comparison with SOME

* Find names of instructors with salary greater than
that of some (at least one) instructor in the Biology
department

SELECT DISTINCT T.name
FROM instructor AS T, instructor AS S
WHERE T.salary > S.salary AND S.dept name = 'Biology’

 Same query using > SOME clause
SELECT name
FROM instructor
WHERE salary > SOME (SELECT salary
FROM instructor
WHERE dept name = ’Biology’)

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 50

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Set Comparison with ALL

* Find names of instructors with salary greater than
that of all instructors in the Biology department
SELECT name
FROM instructor
WHERE salary > ALL (SELECT salary
FROM instructor
WHERE dept name =’Biology’)

 Note: we could also achieve this with MIN and MAX
aggregates in the subqueries

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 51

e
'E"”F UNIVERSITY

Definition: Comparisons with SOME 05 viaxskiv

Data and Web Science Group

e F<comp>SOME r< dt e r suchthat (F<comp>t)
Where <comp> can be: <, <, >, =, #

0
(5 < SOME 5) = true

(read: 5 < some tuple in the relation)

6
0
(5<SOME | § |)=false
0
(5=SOME | § |)=true
0
(5 # SOME 5) = true (since 0 # 5)
(= SOME) # IN

However, (= SOME) # not in
University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 52

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Definition: Comparisons with ALL

e F<comp>ALLr< V ter (F<comp>t)

0
(5<ALL | § |)="false
6
6
(5<ALL |10/)=true
4
(5=ALL| § |)=false
4
(5#ALL| 6 |)=true (since 57 4 and 5 # 6)
(# ALL) # NOT IN

However, (= ALL) = IN
University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 53

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Existential Quantification in
Subqueries

e Select all courses offered this year which are taken by at

least one student

— SELECT course_id
FROM section
WHERE semester = 'Spring’ AND year = 2022 AND EXISTS (

SELECT *
FROM takes
WHERE takes.course_id = section.course_id
AND takes.sec _id = section.sec _id
AND takes.semester = section.semester)

 The EXISTS construct returns the value true
if the result of the subquery is not empty
— EXISTS re rd
— NOTEXISTSr< r=¢

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 54

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Subqueries with NOT EXISTS

* Find all students who have taken all courses offered in the

Biology department
SELECT DISTINCT S./D, S.name
FROM student AS S

WHERE NOT EXISTS ((SELECT course_id
FROM course
WHERE dept_name =’Biology’)
EXCEPT
(SELECT T.course_id
FROM takes AS T
WHERE S./D = T.ID))

— First nested query lists all courses offered in Biology
— Second nested query lists all courses a particular student took

e NotethatX-Y=¢gd < XcVY
* Note: Cannot write this query using = all and its variants

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 55

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Test for Duplicate Tuples

* Find all courses that were offered at most once in 2009

SELECT T.course _id
FROM course AS T
WHERE UNQIUE (SELECT R.course_id
FROM section as R
WHERE T.course id= R.course _id AND

R.year = 2009)

* The unique construct evaluates to “true” if a given subquery
contains no duplicates

* With not unique, we could query for courses that were
offered more than once

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 56

) T

Subqueries in the FROM Clause #/0F MANNHEIM

Data and Web Science Group

e So far, we have considered subqueries in the where clause

* Find the average instructors’ salaries of those departments
where the average salary is greater than $42,000.”

SELECT dept _name, avg_salary
FROM (

SELECT dept _name, AVG (salary) AS avg_salary
FROM instructor

GROUP BY dept_name

)
WHERE avg salary > 42000;

* Note that we do not need to use the having clause

— why?
University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 57

e
%E%EF UNIVERSITY
OF MANNHEIM

Creating Temporary Relations
Using WITH

* Find all departments with the maximum budget

Data and Web Science Group

WITH max_budget (value) AS
SELECT MAX(budget) ==—
FROM department

this defines the structure
of the temporary relation
(datatypes are implicit)

)
SELECT department.name

FROM department, max_budget
WHERE department.budget = max_budget.value

* The with clause provides a way of defining a temporary
relation whose definition is available only to the query in
which the with clause occurs

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 58

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Creating Temporary Relations
Using WITH

* A more complex example involving two temporary
relations:
WITH dept _total (dept_name, value) AS (

SELECT dept_name, SUM(salary)
FROM instructor
GROUP BY dept_name Find all departments where the total

), salary is greater than the average of
the total salary at all departments

dept_total _avg(value) as (

SELECT AVG(value)
FROM dept_total

)

select dept _name
from dept total, dept _total avg

where dept_total.value > dept_total avg.value
University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 59

) T

Scalar Subqueries in the SELECT Part ‘o MixXsiiv

Data and Web Science Group

e List all departments along with the number of instructors in
each department
SELECT dept_name, (

SELECT COUNT(*)
FROM instructor
WHERE department.dept_name = instructor.dept_name

JAS num_instructors
FROM department;

e Scalar subqueries return a single result

— More specifically: a single tuple

 Runtime error if subquery returns more than one result
tuple

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 60

e
%E%EF UNIVERSITY
OF MANNHEIM

Data and Web Science Group

Summary of Subqueries

SELECT queries are the most often used part of SQL

Their basic structure is simple, but subqueries are a powerful means to
make them quite expressive
SELECT A A,, ..., A,
FROMr,, r,, ..., I,
WHERE P
Subqueries in SELECT part (A, A,, ..., A,)
— Scalar subqueries (single values, like aggregates)
Subqueries in FROM part (ry, 15, ...,)
— Temporary relations (can also be defined using WITH)
Subqueries in WHERE part (P)
— Set comparisons, empty sets, test for duplicates
— Universal and existential quantification

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 61

) T

Summary: SQL SELECT at a Glance B oF MANN k1
e The tool support of SQL varies B GO S e g e

* what we have covered here e L] =y
is standard SQL

— Supported by most tools

oroEr)~(0)
——r

) =]
S

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 62

Parts of SQL: The Big Picture

SQL
Commands

—

e
E; UNIVERSITY
¥ OF MANNHEIM

Data and Web Science Group

DDL
CREATE

ALTER
DROP
TRUNCATE
COMMENT

RENAME

|

DML

INSERT
UPDATE
DELETE
MERGE

CALL

EXPLAIN PLAN

LOCK TABLE

DCL
GRANT

REVOKE

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025
Source: https://www.w3schools.in/mysgl/ddI-dmli-dcl/

TCL
COMMIT
ROLLBACK
SAVEPOINT
SET TRANSACTION

63

https://www.w3schools.in/mysql/ddl-dml-dcl/

e
UNIVERSITY

Summary and Take Aways /01 MANNHE

Data and Web Science Group

e SQL is a standarized language for
relational databases

— DML: Data Manipulation

Language
e DML
— Read data from tables using
SELECT
* Coming Up:

— Writing data to tables
— Creating and changing tables
— Rights & Roles

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 64

¢

(e UNTVERSITY
\%¥ OF MANNHEIM

Data and Web Science Group

= =)

¢

Questions?

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025 65

	SQL Part 1
	Folie 1: SQL Part 1
	Folie 2: Outline
	Folie 3: Recap: Database Systems
	Folie 4: History
	Folie 5: Parts of SQL: The Big Picture
	Folie 6: Reading Data
	Folie 7: A Note on Case Sensitivity
	Folie 8: Renaming Columns in a Select
	Folie 9: The Select Clause
	Folie 10: Duplicates
	Folie 11: Arithmetics in the Selection
	Folie 12: Reading Parts of a Relation
	Folie 13: Reading Parts of a Relation
	Folie 14: Searching in Texts
	Folie 15: Reading Data from Multiple Tables
	Folie 16: Cartesian Product
	Folie 17: Cartesian Products with Selection
	Folie 18: Cartesian Product
	Folie 19: Cartesian Products with Selection
	Folie 20: Cartesian Product
	Folie 21: Cartesian Product of a Table with Itself
	Folie 22: Join Operations
	Folie 23: Join Operations
	Folie 24: Outer Joins
	Folie 25: Outer Joins
	Folie 26: Outer Joins
	Folie 27: Join Operations
	Folie 28: Outer Joins
	Folie 29: Outer Joins
	Folie 30: Join Types at a Glance
	Folie 31: Ordering Results
	Folie 32: Limiting Results
	Folie 33: Paging with LIMIT and OFFSET
	Folie 34: Set Operations
	Folie 35: Set Operations
	Folie 36: Aggregate Functions – Examples
	Folie 37: Aggregate Functions with Group By
	Folie 38: Aggregate Functions with Group By
	Folie 39: Conditions on Aggregate Values
	Folie 40: Conditions on Aggregate Values
	Folie 41: NULL Values
	Folie 42: NULL Values and Three Valued Logic
	Folie 43: Aggregates and NULL Values
	Folie 44: Subqueries
	Folie 45: Subqueries in the WHERE Clause
	Folie 46: Test for Set Membership
	Folie 47: Test for Set Membership
	Folie 48: Test for Set Membership
	Folie 49: Test for Set Membership
	Folie 50: Set Comparison with SOME
	Folie 51: Set Comparison with ALL
	Folie 52: Definition: Comparisons with SOME
	Folie 53: Definition: Comparisons with ALL
	Folie 54: Existential Quantification in Subqueries
	Folie 55: Subqueries with NOT EXISTS
	Folie 56: Test for Duplicate Tuples
	Folie 57: Subqueries in the FROM Clause
	Folie 58: Creating Temporary Relations Using WITH
	Folie 59: Creating Temporary Relations Using WITH
	Folie 60: Scalar Subqueries in the SELECT Part
	Folie 61: Summary of Subqueries
	Folie 62: Summary: SQL SELECT at a Glance
	Folie 63: Parts of SQL: The Big Picture
	Folie 64: Summary and Take Aways
	Folie 65: Questions?

