
University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

CS460 Database Technology

1

SQL Part 1

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Outline

• Today
– Overview of The SQL Query

Language

– Basic Query Structure

– Set Operations

– Join Operators

– Null Values

– Aggregate Functions

– Nested Subqueries

• Next week
– Data Definition

– Data Types in SQL

– Modifications of the database

– Views

– Integrity Constraints

– Roles & Rights

2

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Recap: Database Systems

• Users and applications interact
with databases
– By issuing queries

– Data definition (DDL):
defining, altering, deleting tables

– Data manipulation (DML):
reading from & writing to tables

• SQL is both a DDL and a DML
– The language that most DBMS speak

3

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

History

• IBM SEQUEL language developed as part of System R project
at the IBM San Jose Research Laboratory

– Structured English QUEry Language

• Renamed Structured Query Language (SQL)

• ANSI and ISO standard SQL:

– SQL-86

– SQL-89

– SQL-92

– SQL:1999

– SQL:2003

• Commercial + free systems offer most, if not all, SQL-92 features

– plus varying feature sets from later standards and special proprietary
features

– Not all examples here may work on your particular system!

4

Naming became
Y2K compliant! ;-)

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Parts of SQL: The Big Picture

5

Source: https://www.w3schools.in/mysql/ddl-dml-dcl/

https://www.w3schools.in/mysql/ddl-dml-dcl/

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Reading Data

• The select clause lists the attributes desired in the result of
a query

• Example: find the names of all instructors:
SELECT name
FROM instructor

• In relational algebra:

– name (instructor)

6

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

A Note on Case Sensitivity

• SQL is completely case insensitive
– select = SELECT = SeLeCt

• Also for names of relations and attributes
– instructor = Instructor = INSTRUCTOR

– name = NAME = nAmE

• Each relation / attribute can only exist once
– Hence, two relations named instructor and Instructor

would not be feasible

• Case sensitivity does not apply to values!
– i.e., “Einstein” and “einstein” are different values!

7

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Renaming Columns in a Select

• Columns can be renamed during selection

SELECT name, salary as payment

FROM instructor

• In relational algebra
– a composition of projection and renaming:
–  payment← salary (name,salary (instructor))

8

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

The Select Clause

• An asterisk in the select clause denotes “all attributes”
SELECT *

FROM instructor

• An attribute can be a literal with no FROM clause, possibly
renamed
SELECT ‘437’

SELECT ‘437’ AS FOO

• An attribute can be a literal with FROM clause
SELECT name, ‘Instructor’ AS role FROM instructor

UNION

SELECT name, ‘Student’ AS role FROM student

9

name role

Smith Instructor

Einstein Instructor

... ...

Johnson Student

... ...

FOO

437

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Duplicates

• Difference to relational algebra
– Sets do not contain duplicates!

• SQL allows duplicates in relations as well as in query results

• To force the elimination of duplicates,
insert the keyword DISTINCT after SELECT.

• Find the department names of all instructors,
and remove duplicates

SELECT DISTINCT dept_name

FROM instructor

10

unless we define a constraint
(see later)

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Arithmetics in the Selection

• The SELECT clause can contain arithmetic expressions
involving the operation, +, –, , and /, and operating on
constants or attributes of tuples
– Here, we leave relational algebra!

• The query
SELECT ID, name, salary/12

FROM instructor
would return a relation that is the same as the instructor relation,
except that the value of the attribute salary is divided by 12

• Combined with renaming:
– SELECT ID, name, salary/12 AS monthly_salary

FROM instructor
11

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Reading Parts of a Relation

• So far, we have always read an entire relation

• Usually, we are interested only in a small portion

• The WHERE clause restricts which parts of the table to read

• To find all instructors in Comp. Sci. dept
SELECT name

FROM instructor
WHERE dept_name = ‘Comp. Sci.'

• In relational algebra: combination of selection and
projection

name(dept_name = ‘Comp. Sci.’(instructor))

12

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Reading Parts of a Relation

• Comparison results can be combined using the logical
connectives AND, OR, and NOT

SELECT name

FROM instructor

WHERE dept_name = ‘Comp. Sci.’ AND salary > 90000

name(dept_name = ‘Comp. Sci.’ ʌ salary>90000(instructor))

• Can be combined with results of arithmetic expressions
SELECT name, salary/12 AS monthly_salary
FROM instructor
WHERE dept_name = ‘Comp. Sci.’ AND monthly_salary > 7500

13

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Searching in Texts

• So far, we have handled exact equality in selections

• Sometimes, we want to search differently
– All books that contain “database”

– All authors starting with “S”

– …

• In SQL: comparing with LIKE and two special characters:
– _ = any arbitrary character

– % = any number of arbitrary characters

– masking with backslash

– SELECT … WHERE title LIKE ‘%database%’

– SELECT … WHERE author LIKE ‘S%’

– SELECT … WHERE amount LIKE ‘100\%’

14

most SQL engines
don’t check types

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Reading Data from Multiple Tables

• Example: find all instructors and the courses they teach

• SELECT  FROM instructor, teaches
– this generates the cartesian product, i.e., instructor x teaches

– result: generates every possible instructor – teaches pair, with all
attributes from both relations

• Common attributes (e.g., ID), the attributes in the resulting
table are renamed using the relation name
– e.g., instructor.ID, teaches.ID

• Relational algebra notation:

– instructor.ID ← ID(instructor) x teaches.ID ← ID(teaches)

15

but is that useful?

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Cartesian Product

16

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Cartesian Products with Selection

• Find the names of all instructors who
have taught some course and the course_id

SELECT name, course_id

FROM instructor, teaches

WHERE instructor.ID = teaches.ID

• Relational algebra:
name,course_id(instructor.ID=teaches.ID(instructor.ID ← ID((instructor) x teaches.ID ← ID(teaches))))

17

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Cartesian Product

18

instructor teaches

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Cartesian Products with Selection

• Find the names of all instructors in the Finance department
who have taught some course, together with the course_id
SELECT name, course_id

FROM instructor , teaches

WHERE instructor.ID = teaches.ID AND instructor. dept_name = ‘Finance’

name,course_id(instructor.ID=teaches.ID ʌ dept_name=’Finance’(instructor.ID ← ID(instructor) x teaches.ID ← ID(teaches)))

19

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Cartesian Product

20

instructor teaches

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Cartesian Product of a Table with
Itself

• Find the names of all instructors who have a higher salary
than some instructor in ‘Comp. Sci’.
– We need the same table twice

– So, we have to use it under different names

– SELECT DISTINCT T.name
FROM instructor AS T, instructor AS S
WHERE T.salary > S.salary AND S.dept_name = ‘Comp. Sci.’

T,name(T.salary>S.salary ʌ S.dept_name=’Comp. Sci.’ (T(instructor) x S(instructor)))

• What happens if we omit the distinct here?

21

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Join Operations

• Join operations
– take two relations

– return as new relation as their result

• A join operation
– is a Cartesian product

– requires that tuples in the two relations match (under some condition)

– specifies the attributes that are present in the result of the join

• The join operations are typically used as subquery expressions
in the FROM clause

22

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Join Operations

• Recap: We have already seen a form of joins:

• A join operation
– is a Cartesian product

– requires that tuples in the two relations match (under some condition)

– specifies the attributes that are present in the result of the join

• Find the names of all instructors who
have taught some course and the course_id

SELECT name, course_id
FROM instructor, teaches
WHERE instructor.ID = teaches.ID

23

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Outer Joins

• Consider the two relations below

• Desired:
– List all courses with their prerequisites

– Note: course CS-315 has no prerequisites

24

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Outer Joins

• List all courses with their prerequisites
SELECT C.course_id, C.title, C.credits, C.dept_name, P.course_id

FROM course AS C, prereq AS P

WHERE C.course_id = P.course_id

25

C.course_id C.title C.credits C.dept_name P.course_id

BIO-301 Genetics 4 Biology BIO-101

CS-190 Game Design 4 Comp. Sci. CS-101

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Outer Joins

• List all courses with their prerequisites

SELECT C.course_id, C.title, C.credits, C.dept_name, P.prereq_id

FROM course AS C LEFT OUTER JOIN prereq AS P ON C.course_id = P.course_id

26

C.course_id C.title C.credits C.dept_name P.course_id

BIO-301 Genetics 4 Biology BIO-101

CS-190 Game Design 4 Comp. Sci. CS-101

CS-315 Robotics 3 Comp. Sci. NULL

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Join Operations

• Join type – defines how tuples in each relation that do not
match any tuple in the other relation (based on the join
condition) are treated
– INNER JOIN: ignore

– OUTER JOIN: fill with NULL values

• Join condition – defines which tuples in the two relations
match, and what attributes are present in the result of the
join
– explicit: ON clause

– implicit: NATURAL keyword

27

for the moment:
keyword for “a blank cell”

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Outer Joins

• List all courses with their prerequisites
SELECT C.course_id, C.title, C.credits, C.dept_name, P.prereq_id

FROM course AS C RIGHT OUTER JOIN prereq AS P on C.course_id = P.course_id

28

C.course_id C.title C.credits C.dept_name P.course_id

BIO-301 Genetics 4 Biology BIO-101

CS-190 Game Design 4 Comp. Sci. CS-101

CS-347 NULL NULL NULL CS-101

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Outer Joins

• List all courses with their prerequisites
SELECT C.course_id, C.title, C.credits, C.dept_name, P.prereq_id

FROM course AS C FULL OUTER JOIN prereq AS P ON C.course_id = P.course_id

29

C.course_id C.title C.credits C.dept_name P.course_id

BIO-301 Genetics 4 Biology BIO-101

CS-190 Game Design 4 Comp. Sci. CS-101

CS-347 NULL NULL NULL CS-101

CS-315 Robotics 3 Comp. Sci. NULL

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Join Types at a Glance

30

Source: https://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

https://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Ordering Results

• Recap: Relational Algebra works on sets
– i.e., it does not have orderings

• For database applications, ordering is often useful, e.g.,
– list students ordered by names

SELECT id,name
FROM student
ORDER BY name

– list instructors ordered by department first, then by name
SELECT id,name,dept_name
FROM instructor
ORDER BY dept_name, name

31

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Limiting Results

• Find the three lecturers with the highest salaries
SELECT id,name,salary
FROM instructor
ORDER BY salary DESC
LIMIT 3;

• Note: the DESC keyword creates a descending ordering

• ASC also exists and creates an ascending ordering
– also the default when not specifiying the direction

32

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Paging with LIMIT and OFFSET

• Applications, e.g., Web applications, often offer a paged view

• Example:

– Display student list on pages of 100 students

– with navigation (next page, previous page)

SELECT id,name

FROM student

ORDER BY name

LIMIT 100

OFFSET 100;

• OFFSET 100 means: skip the first 100 entries

– i.e., this query would create the second page

• Note: offset should only be used with order by

– otherwise, the results are not deterministic
33

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Set Operations

• All courses that are offered in HWS 2017 and FSS 2018
(SELECT course_id FROM section WHERE sem = ‘HWS’ AND year = 2017)
INTERSECT
(SELECT course_id FROM section WHERE sem = ‘FSS’ AND year = 2018)

course_id(sem=’HWS’ ʌ year=2017(section))  course_id(sem=’FSS’ ʌ year=2018(section))

• All courses that are offered in HWS 2017 but not in FSS 2018
(SELECT course_id FROM section WHERE sem = ‘HWS’ AND year = 2017)
EXCEPT
(SELECT course_id FROM section WHERE sem = ‘FSS’ AND year = 2018)

course_id(sem=’HWS’ ʌ year=2017(section)) – course_id(sem=’FSS’ ʌ year=2018(section))

34

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Set Operations

• All courses that are offered in HWS 2017 or FSS 2018
(SELECT course_id FROM section WHERE sem = ‘HWS’ AND year = 2017)
UNION
(SELECT course_id FROM section WHERE sem = ‘FSS’ AND year = 2018)

course_id(sem=’HWS’ ʌ year=2017(section))  course_id(sem=’FSS’ ʌ year=2018(section))

• Alternative solution
SELECT course_id

FROM section

WHERE (sem = ‘HWS’ AND year = 2017) OR (sem = ‘FSS’ AND year = 2018)

course_id((sem=’HWS’ ʌ year=2017) v (sem=’FSS’ ʌ year=2018)) (section))

35

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Aggregate Functions – Examples

• Find the average salary of instructors in the Computer
Science department
– SELECT AVG (salary)

FROM instructor
WHERE dept_name= ’Comp. Sci.’

• Find the number of tuples in the course relation
– SELECT COUNT (*)

FROM course

• Find the total number of instructors who teach a course in
the Spring 2010 semester
– SELECT COUNT (DISTINCT ID)

FROM teaches
WHERE semester = ’Spring’ AND year = 2010

36

Why do we need
distinct here?

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Aggregate Functions with Group By

• Find the average salary of instructors in each department

SELECT dept_name, AVG (salary) AS avg_salary
FROM instructor
GROUP BY dept_name

37

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Aggregate Functions with Group By

• Attributes in SELECT clause outside of aggregate functions
must appear in GROUP BY list

/* erroneous query */
SELECT dept_name, ID, AVG (salary) AS avg_salary
FROM instructor
GROUP BY dept_name;

38

why?

Avg_salary

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Conditions on Aggregate Values

• Find the names and average salaries of all departments
whose average salary is greater than 42000
– SELECT dept_name, AVG (salary) AS avg_salary

FROM instructor
GROUP BY dept_name
WHERE avg_salary > 42000;

• Problem:
– Aggregation is performed after selection and projection

– Hence, the variable avg_salary is not available
when the where clause is evaluated

• → The above query will not work

39

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Conditions on Aggregate Values

• Find the names and average salaries of all departments
whose average salary is greater than 42000
– SELECT dept_name, AVG (salary) AS avg_salary

FROM instructor
GROUP BY dept_name
HAVING avg_salary > 42000;

• The having clause is evaluated after the aggregation

• Hence, it is different from the where clause

• Rule of thumb
– Conditions on aggregate values can only be defined using having

40

performance!

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

NULL Values

• null signifies an unknown value or that a value does not exist

• It is possible for tuples to have a null value, denoted by null, for some of
their attributes

– can be forbidden by a not null constraint

– keys can never be null!

• The result of any arithmetic expression involving null is null

• Example: 5 + null returns null

• The predicate is null can be used to check for null values

• Example: Find all instructors whose salary is null

SELECT name
FROM instructor
WHERE salary IS NULL

41

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

NULL Values and Three Valued Logic

• Three values – true, false, unknown

• Any comparison with null returns unknown

– Example: 5 < null or null <> null or null = null

• Three-valued logic using the value unknown:

– OR: (unknown OR true) = true,
(unknown OR false) = unknown
(unknown OR unknown) = unknown

– AND: (true AND unknown) = unknown,
(false AND unknown) = false,
(unknown AND unknown) = unknown

– NOT: (NOT unknown) = unknown

• “P IS UNKNOWN” evaluates to true if predicate P evaluates to unknown

• Result of WHERE clause predicate is treated as false
if it evaluates to unknown

42

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Aggregates and NULL Values

• Total all salaries
SELECT SUM (salary)

FROM instructor

– Above statement ignores null amounts

– Result is null if there is no non-null amount

• All aggregate operations except COUNT(*)
ignore tuples with null values
on the aggregated attributes

• What if collection has only null values?
– count returns 0

– all other aggregates return null

43

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Subqueries

• SQL provides a mechanism for the nesting of subqueries. A subquery is
a SELECT-FROM-WHERE expression that is nested within another query

• The nesting can be done in the following SQL query
SELECT A1, A2, ..., An

FROM r1, r2, ..., rm

WHERE P

as follows:

• Ai can be replaced be a subquery that generates a single value

• ri can be replaced by any valid subquery

• P can be replaced with an expression of the form:

B <operation> (subquery)

Where B is an attribute and <operation> to be defined later

44

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Subqueries in the WHERE Clause

• A common use of subqueries is to perform tests:
– for set membership

– for set comparisons

– for set cardinality

45

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Test for Set Membership

• Find courses offered this term by lectures
from the biology department
SELECT DISTINCT course_id

FROM teaches

WHERE semester = ’Spring’ AND year= 2022 AND ID IN (

SELECT ID
FROM instructor
WHERE dept_name = ‘Biology’

)

46

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Test for Set Membership

• Find courses offered this term before 9 am or after 5 pm
SELECT DISTINCT course_id

FROM section

WHERE semester = ’Spring’ AND year= 2022 AND time_slot_id NOT IN (
SELECT time_slot_id

FROM time_slot

WHERE end_time >= 9 AND start_time <= 17

)

47

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Test for Set Membership

• Find the total number of (distinct) courses offered by
instructors in the biology department

SELECT COUNT(DISTINCT course_id)

FROM teaches

WHERE semester = ’Spring’ AND year= 2022 AND ID IN (

SELECT ID

FROM instructor

WHERE dept_name = ‘Biology’

)

• Note: in all of those cases,
other (sometimes simpler) solutions are possible
– In SQL, there are often different ways to solve a problem

– A question of personal taste

– But also: a question of performance...
48

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Test for Set Membership

• Find the total number of (distinct) courses offered by
instructors in the biology department

SELECT COUNT(DISTINCT course_id)

FROM teaches

WHERE semester = ’Spring’ AND year= 2022 AND ID IN (

SELECT ID

FROM instructor

WHERE dept_name = ‘Biology’

)

vs.

SELECT COUNT (DISTINCT course_id)

FROM teaches, instructor

WHERE teaches.ID = instructor.ID AND instructor.department = ‘Biology’

49

computes
cartesian
product

creates a
temporary

table

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Set Comparison with SOME

• Find names of instructors with salary greater than
that of some (at least one) instructor in the Biology
department
SELECT DISTINCT T.name

FROM instructor AS T, instructor AS S

WHERE T.salary > S.salary AND S.dept name = ’Biology’

• Same query using > SOME clause
SELECT name

FROM instructor

WHERE salary > SOME (SELECT salary

FROM instructor

WHERE dept name = ’Biology’)

50

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Set Comparison with ALL

• Find names of instructors with salary greater than
that of all instructors in the Biology department
SELECT name

FROM instructor

WHERE salary > ALL (SELECT salary

FROM instructor

WHERE dept name = ’Biology’)

• Note: we could also achieve this with MIN and MAX
aggregates in the subqueries

51

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Definition: Comparisons with SOME

• F <comp> SOME r   t  r such that (F <comp> t)
Where <comp> can be:    = 

52

0
5
6

(5 < SOME) = true

0
5

0

) = false

5

0
5(5  SOME) = true (since 0  5)

(read: 5 < some tuple in the relation)

(5 < SOME

) = true(5 = SOME

(= SOME)  IN
However, ( SOME)  not in

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Definition: Comparisons with ALL

• F <comp> ALL r   t  r (F <comp> t)

53

0
5
6

(5 < ALL) = false

6
10

4

) = true

5

4
6(5  ALL) = true (since 5  4 and 5  6)

(5 < ALL

) = false(5 = ALL

( ALL)  NOT IN
However, (= ALL)  IN

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Existential Quantification in
Subqueries

• Select all courses offered this year which are taken by at
least one student
– SELECT course_id

FROM section
WHERE semester = ’Spring’ AND year = 2022 AND EXISTS (

SELECT *
FROM takes
WHERE takes.course_id = section.course_id

AND takes.sec_id = section.sec_id
AND takes.semester = section.semester)

• The EXISTS construct returns the value true
if the result of the subquery is not empty

– EXISTS r  r  Ø

– NOT EXISTS r  r = Ø

54

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Subqueries with NOT EXISTS

• Find all students who have taken all courses offered in the
Biology department

SELECT DISTINCT S.ID, S.name

FROM student AS S

WHERE NOT EXISTS ((SELECT course_id
FROM course
WHERE dept_name = ’Biology’)

EXCEPT
(SELECT T.course_id
FROM takes AS T
WHERE S.ID = T.ID))

– First nested query lists all courses offered in Biology

– Second nested query lists all courses a particular student took

• Note that X – Y = Ø  X  Y

• Note: Cannot write this query using = all and its variants
55

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Test for Duplicate Tuples

• Find all courses that were offered at most once in 2009

SELECT T.course_id
FROM course AS T
WHERE UNQIUE (SELECT R.course_id

FROM section as R
WHERE T.course_id= R.course_id AND

R.year = 2009)

• The unique construct evaluates to “true” if a given subquery
contains no duplicates

• With not unique, we could query for courses that were
offered more than once

56

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Subqueries in the FROM Clause

• So far, we have considered subqueries in the where clause

• Find the average instructors’ salaries of those departments
where the average salary is greater than $42,000.”

SELECT dept_name, avg_salary
FROM (

SELECT dept_name, AVG (salary) AS avg_salary
FROM instructor
GROUP BY dept_name

)
WHERE avg_salary > 42000;

• Note that we do not need to use the having clause
– why?

57

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Creating Temporary Relations
Using WITH

• Find all departments with the maximum budget

WITH max_budget (value) AS (
SELECT MAX(budget)
FROM department

)
SELECT department.name
FROM department, max_budget
WHERE department.budget = max_budget.value

• The with clause provides a way of defining a temporary
relation whose definition is available only to the query in
which the with clause occurs

58

this defines the structure
of the temporary relation

(datatypes are implicit)

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Creating Temporary Relations
Using WITH

• A more complex example involving two temporary
relations:
WITH dept _total (dept_name, value) AS (

SELECT dept_name, SUM(salary)
FROM instructor
GROUP BY dept_name

),

dept_total_avg(value) as (

SELECT AVG(value)
FROM dept_total

)
select dept_name
from dept_total, dept_total_avg
where dept_total.value > dept_total_avg.value

59

Find all departments where the total
salary is greater than the average of
the total salary at all departments

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Scalar Subqueries in the SELECT Part

• List all departments along with the number of instructors in
each department
SELECT dept_name, (

SELECT COUNT(*)
FROM instructor
WHERE department.dept_name = instructor.dept_name

)AS num_instructors

FROM department;

• Scalar subqueries return a single result
– More specifically: a single tuple

• Runtime error if subquery returns more than one result
tuple

60

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Summary of Subqueries

• SELECT queries are the most often used part of SQL

• Their basic structure is simple, but subqueries are a powerful means to
make them quite expressive

SELECT A1, A2, ..., An

FROM r1, r2, ..., rm

WHERE P

• Subqueries in SELECT part (A1, A2, ..., An)

– Scalar subqueries (single values, like aggregates)

• Subqueries in FROM part (r1, r2, ..., rm)

– Temporary relations (can also be defined using WITH)

• Subqueries in WHERE part (P)

– Set comparisons, empty sets, test for duplicates

– Universal and existential quantification

61

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

• The tool support of SQL varies

• what we have covered here
is standard SQL

– Supported by most tools

62

Summary: SQL SELECT at a Glance

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Parts of SQL: The Big Picture

63

Source: https://www.w3schools.in/mysql/ddl-dml-dcl/

https://www.w3schools.in/mysql/ddl-dml-dcl/

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

• SQL is a standarized language for
relational databases

– DML: Data Manipulation
Language

• DML

– Read data from tables using
SELECT

• Coming Up:

– Writing data to tables

– Creating and changing tables

– Rights & Roles

– …

64

Summary and Take Aways

University of Mannheim | CS460 Database Technology | SQL Part 1 | Version 10.02.2025

Data and Web Science Group

Questions?

65

	SQL Part 1
	Folie 1: SQL Part 1
	Folie 2: Outline
	Folie 3: Recap: Database Systems
	Folie 4: History
	Folie 5: Parts of SQL: The Big Picture
	Folie 6: Reading Data
	Folie 7: A Note on Case Sensitivity
	Folie 8: Renaming Columns in a Select
	Folie 9: The Select Clause
	Folie 10: Duplicates
	Folie 11: Arithmetics in the Selection
	Folie 12: Reading Parts of a Relation
	Folie 13: Reading Parts of a Relation
	Folie 14: Searching in Texts
	Folie 15: Reading Data from Multiple Tables
	Folie 16: Cartesian Product
	Folie 17: Cartesian Products with Selection
	Folie 18: Cartesian Product
	Folie 19: Cartesian Products with Selection
	Folie 20: Cartesian Product
	Folie 21: Cartesian Product of a Table with Itself
	Folie 22: Join Operations
	Folie 23: Join Operations
	Folie 24: Outer Joins
	Folie 25: Outer Joins
	Folie 26: Outer Joins
	Folie 27: Join Operations
	Folie 28: Outer Joins
	Folie 29: Outer Joins
	Folie 30: Join Types at a Glance
	Folie 31: Ordering Results
	Folie 32: Limiting Results
	Folie 33: Paging with LIMIT and OFFSET
	Folie 34: Set Operations
	Folie 35: Set Operations
	Folie 36: Aggregate Functions – Examples
	Folie 37: Aggregate Functions with Group By
	Folie 38: Aggregate Functions with Group By
	Folie 39: Conditions on Aggregate Values
	Folie 40: Conditions on Aggregate Values
	Folie 41: NULL Values
	Folie 42: NULL Values and Three Valued Logic
	Folie 43: Aggregates and NULL Values
	Folie 44: Subqueries
	Folie 45: Subqueries in the WHERE Clause
	Folie 46: Test for Set Membership
	Folie 47: Test for Set Membership
	Folie 48: Test for Set Membership
	Folie 49: Test for Set Membership
	Folie 50: Set Comparison with SOME
	Folie 51: Set Comparison with ALL
	Folie 52: Definition: Comparisons with SOME
	Folie 53: Definition: Comparisons with ALL
	Folie 54: Existential Quantification in Subqueries
	Folie 55: Subqueries with NOT EXISTS
	Folie 56: Test for Duplicate Tuples
	Folie 57: Subqueries in the FROM Clause
	Folie 58: Creating Temporary Relations Using WITH
	Folie 59: Creating Temporary Relations Using WITH
	Folie 60: Scalar Subqueries in the SELECT Part
	Folie 61: Summary of Subqueries
	Folie 62: Summary: SQL SELECT at a Glance
	Folie 63: Parts of SQL: The Big Picture
	Folie 64: Summary and Take Aways
	Folie 65: Questions?

