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Today

• So far, we have treated Database Systems as a “black box”

• We can define a schema

• ... and write data into it …

• ... and read data from it

• Today

• Opening the “black box”

• How is data stored?

• Architectures for larger database systems
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Physical Data Storage

• A manifold of options
– Hard disks, flash memory, magnetic tape, CDs, DVDs, BluRays, …

• Considerations
– Speed with which data can be accessed

– Cost per unit of data

– Reliability

• data loss on power failure or system crash

• physical failure of the storage device

– Can differentiate storage into:

• volatile storage: loses contents when power is switched off

• non-volatile storage:

– Contents persist even when power is switched off

– secondary & tertiary storage, battery backed up main-memory

3



University of Mannheim | CS460 Databases for Data Scientists | Database Architectures| Version 10.02.2025

Data and Web Science Group

Storage Hierarchy
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Storage Hierarchy

• primary storage: Fastest media but volatile (cache, main memory)
– data on which the processor operates

• secondary storage: next level in hierarchy, non-volatile, 
moderately fast access time

– also called on-line storage

– e.g., flash memory, magnetic disks

– needs to be loaded in memory for processing

• tertiary storage: lowest level in hierarchy, non-volatile,
slow access time

– also called off-line storage

– e.g., magnetic tape, optical storage

– typically used for backup
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Physical Storage

• Cache
– fastest and most costly form of storage; volatile; 

managed by the computer system hardware

• Main memory
– fast access (10s to 100s of nanoseconds (1 ns = 10–9 seconds)

– generally too small (or too expensive) to store the entire database

• typically: gigabyte capacity

• capacities have gone up and per-byte costs have decreased steadily 
and rapidly  (roughly factor of 2 every 2 to 3 years)

– Volatile — contents of main memory are usually lost 
if a power failure or system crash occurs
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Physical Storage

• Flash memory
– Data survives power failure

– Data can be written at a location only once,
but location can be erased and written to again

• Can support only a limited number (10K – 1M) of write/erase cycles

• Erasing of memory has to be done to an entire bank of memory

– Reads are roughly as fast as main memory

– But writes are slow (few microseconds), erase is slower

– Widely used in embedded devices 
such as digital cameras, phones, and USB keys

– Also used in modern SSD drives
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Physical Storage

• Magnetic disk (hard disk)

– Data is stored on spinning disk, and read/written magnetically

– Primary medium for the long-term storage of data

– Typically stores entire database

– Data must be moved from disk to main memory for access, and written 
back for storage

• Much slower access than main memory

– Direct-access – possible to read data on disk in any order, 
unlike magnetic tape

– Terabyte sized

• Much larger capacity and and lower cost/byte than (flash) memory

• Growing constantly and rapidly with technology improvements 
(factor of 2 to 3 every 2 years)

– Survives power failures and system crashes

• Disk failure can destroy data, but is rare
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Physical Storage

• Optical storage
– non-volatile, data is read optically from a spinning disk using a laser

– CD-ROM (640 MB), DVD (4.7 to 17 GB), Blu-ray (27 to 54 GB)

– Write-once, read-many (WORM) optical disks for archival storage

• Multiple write versions also available (CD-RW, DVD-RW, …)

– Reads and writes are slower than with magnetic disk
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Physical Storage

• Tape storage
– non-volatile, used primarily for backup (to recover from disk failure), 

and for archival data

– sequential access – much slower than disk

– very high capacity (terabyte scale)

– tape can be removed from drive

• storage costs much cheaper than disk,
but drives are expensive

– Tape library/jukeboxes available
for storing massive amounts of data

• Still used in e.g.

– heiARCHIVE (Uni Heidelberg)

– Goethe Uni Frankfurt
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Physical Storage

• Modern, experimental and exotic trends

• Molecular memory
– bits are stored as charge of single molecules

– using polymer molecules for storage

– experimental state (NASA, Hewlett Packard…)

• DNA storage
– idea: DNA stores information

(i.e.: genetic instructions)

– synthesizing DNA for data storage

– in theory, 1g of DNA can store 215 PB

• Quantum Storage
– Light photons have to be “caught” between mirrors
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Recent Advances in Data Storage
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Recent Advances in Data Storage
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Anatomy of a Hard Disk Drive

• Schematic view
– sectors are the

smallest unit
to be read
or written

– also called blocks

• Goal for storage
– minimize number

of blocks
transferred
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File Organization

• The database is stored as a collection of files
– each file is a sequence of records

– each record is a sequence of fields

• Simple approach:
– assume record size is fixed

– each file has records of one particular type only

– different files are used for different relations

– This case is easiest to implement; will consider variable length 
records later

15



University of Mannheim | CS460 Databases for Data Scientists | Database Architectures| Version 10.02.2025

Data and Web Science Group

File Organization

• Simple approach:

– Store record i starting from byte n  (i – 1), where n is the size of 
each record

– Record access is simple but records may cross disk blocks

• Modification: do not allow records to cross block boundaries

• Deletion of record i: 
alternatives:
– move records i + 1, . . ., n

to i, . . . , n – 1

– move record n to i

– do not move records, but 
link all free records on a
free list
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Record Deletion – Compacting
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Record Deletion – Moving Last Record
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Record Deletion – Free Lists

• Store the address of the first deleted record in the file header

• Use this first record to store the address of the second deleted record, 
and so on

• Can think of these stored addresses as pointers since they “point” to 
the location of a record

• More space efficient 
representation:  

– reuse space for normal 
attributes of free records 
to store pointers

• Insertion:

– find a free position
and fill in data there

– remove previous pointer
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Storing Variable Length Records

• Variable-length records arise in database systems in several ways:

– e.g., storage of multiple record types in a file

– e.g., record types that allow variable lengths for one or more fields such as 
strings (varchar)

• Attributes are stored in order

• Variable length attributes represented by fixed size (offset, length), with 
actual data stored after all fixed length attributes

• Null values represented by null-value bitmap

20
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Storing Variable Length Records

• Slotted page header contains:

– number of record entries

– end of free space in the block

– location and size of each record

• Records can be moved around within a page

– to keep them contiguous with no empty space between them

– entry in the header must be updated

• Pointers (e.g., foreign keys) should not point directly to record, 
but to entry for the record in header
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Organization of Records in Files

• Heap

– a record can be placed anywhere in the file where there is space

• Sequential

– store records in sequential order, based on the value of the search key of 
each record

– requires re-organizations

• Hashing

– a hash function computed on some attribute(s) of each record

– the result specifies in which block of the file the record should be placed

• Records of different relations

– stored either in separate files

– or: store related relations in one file 
(called: multitable clustering file organization)

• Motivation: store related records on the same block to minimize I/O
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Sequential File Organization

• Suitable for applications that require sequential processing 
of the entire file

• The records in the file are ordered by a search-key
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Sequential File Organization

• Deletion – use pointer chains

• Insertion –locate the position where the record is to be 
inserted
– if there is free space insert there

– if no free space, insert the record in an overflow block

– In either case, pointer chain 
must be updated

• Need to reorganize the file
from time to time to restore
sequential order
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Multitable Clustering File Organization

• Store several relations in one file using
a multitable clustering file organization

25

department

instructor

Multitable clustering of
department and instructor



University of Mannheim | CS460 Databases for Data Scientists | Database Architectures| Version 10.02.2025

Data and Web Science Group

Multitable Clustering File Organization

• Good for queries
– Involving department⨝ instructor

– Involving one single department (and its instructors)

– Involving only the instructor relation

• Bad for queries involving only the department relation

• Results in variable size records

• Can add pointer chains to link records of a particular relation
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Data Dictionary Storage

• The Data dictionary (also called system catalog) 
stores metadata; that is, data about data, such as

– Information about relations

• names of relations

• names, types and lengths of attributes of each relation

• names and definitions of views

• integrity constraints

– User and accounting information, including passwords

– Statistical and descriptive data ( number of tuples in each relation ) 

– Physical file organization information

• How relation is stored (sequential/hash/… )

• Physical location of relation

• Information about indices
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Data Dictionary Storage

• Many RDBMS use
relations also for
the data dictionary

• Those relations are
typically held 
in memory for fast
access

• Details may vary
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Storage Access

• A database file is partitioned into
fixed-length storage units called blocks
– Blocks are units of both storage allocation and data transfer

• Database system seeks to minimize the number of block 
transfers between the disk and memory
– Simple: by keeping as many blocks as possible in main memory

– Advanced: planning which blocks to keep in memory

• Buffer – portion of main memory available
to store copies of disk blocks

• Buffer manager – subsystem responsible for allocating 
buffer space in main memory
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Buffer Manager

• Not every change is directly written on disk
– What happens in case of a power outage -> see recovery lecture
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Buffer Manager

• Programs call on the buffer manager when
they need a block from disk
– If the block is already in the buffer,

buffer manager returns the address of the block in main memory

– If the block is not in the buffer, the buffer manager

• Allocates space in the buffer for the block

• Replaces (i.e., removes) some other block, 
if required, to make space for the new block

– If replaced block was changed: write back to disk

– Read the block from the disk to the buffer

– return the address of the block in main memory to requester

31
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Buffer Replacement Strategies

• Most operating systems replace the block that is
least recently used (LRU strategy):

– use past pattern of block references as a predictor of future references

• Queries have well-defined access patterns (such as sequential scans), 
and a database system can use the information in a user’s query to 
predict future references

– LRU can be a bad strategy for certain access patterns
involving repeated scans of data

• Example: when computing the join of 2 relations r and s by a nested loop 
for each tuple tr of r do 

for each tuple ts of s do 
if the tuples tr and ts match …

– Mixed strategy with hints on replacement strategy provided
by the query optimizer is preferable
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Buffer Replacement Strategies

• Pinned block – memory block that is not allowed to be replaced

• Toss-immediate strategy – frees the space occupied by a block as soon 
as the final tuple of that block has been processed

• Most recently used (MRU) strategy – system must pin the block 
currently being processed

– After processing the final tuple, the block is unpinned

– and it becomes the most recently used block.

• Buffer manager can use statistical information regarding the probability 
that a request will reference a particular relation

– e.g., the data dictionary is frequently accessed. 
Heuristic: keep data-dictionary blocks in main memory buffer

• Buffer managers also support forced output of blocks for the purpose 
of recovery (coming back to this in a few weeks)
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Database System Architectures

• Variants for creating a database system
– Centralized and Client-Server Systems

– Server System Architectures

– Parallel Systems

– Distributed Systems
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Centralized Systems

• Run on a single computer system

– and do not interact with other computer systems

• General-purpose computer system

– one to a few CPUs and a number of device controllers

– shared memory

• Single-user system

– e.g., personal computer or workstation

– desk-top unit, single user, usually one CPU and one or two hard disks

• Multi-user system

– more disks, more memory, multiple CPUs

– serve a large number of users, usually connected to the system via 
terminals

– also called server systems
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Client-Server Systems

• Server systems satisfy requests generated at m client systems

• They are connected to the server via a network
– local or internet

– LAN or WIFI

– ...

36



University of Mannheim | CS460 Databases for Data Scientists | Database Architectures| Version 10.02.2025

Data and Web Science Group

Client-Server Systems

• Database functionality can be divided into:
– Back-end: manages access structures, 

query evaluation and optimization, concurrency control and recovery

– Front-end: consists of tools such as forms, report-writers, 
and graphical user interface facilities

• Interface between the front-end and the back-end:
– SQL or proprietary application program interface (API)
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Client-Server Systems

• Advantages of client-server systems over 
single machine systems:
– better functionality for the cost

– flexibility in locating resources and expanding facilities

– better user interfaces

– easier maintenance

• Server systems can be broadly categorized into two kinds:
– transaction servers (used for RDBMS, aka SQL servers)

– data servers (used for object-oriented databases)
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SQL Servers

• Also called query server systems or transaction servers

– Clients send requests to the server

– Transactions are executed at the server

– Results are shipped back to the client

• Requests are specified in SQL, and communicated to the server through 
a remote procedure call (RPC) mechanism

• Transactional RPC allows many RPC calls to form a transaction

• Open Database Connectivity (ODBC) is a C language application program 
interface standard from Microsoft for connecting to a server, sending 
SQL requests, and receiving results

• JDBC standard is similar to ODBC, for Java

– similar implementations exist for Python etc.
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SQL Servers Processes

• A typical SQL server consists of multiple processes accessing 
data in shared memory

• Server processes
– These receive user queries (transactions), 

execute them and send results back

– Processes may be multithreaded, allowing a single process to 
execute several user queries concurrently

– Typically multiple multithreaded server processes

• Lock manager process
– More on this later

• Database writer process
– Output modified buffer blocks to disks continually
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SQL Server Processes

• Log writer process
– Server processes simply add log records to log record buffer

– Log writer process outputs log records to stable storage

• Checkpoint process
– Performs periodic checkpoints

• Process monitor process
– Monitors other processes, and takes recovery actions if any of the 

other processes fail

– e.g., aborting any transactions being executed by a server process 
and restarting it
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SQL Server Processes: Overview
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SQL Server Processes: Overview

• Shared memory contains shared data

– Buffer pool

– Lock table

– Log buffer

– Cached query plans (reused if same query submitted again)

• All database processes can access shared memory

• To avoid concurrency, DBMS implement mutual exclusion using either

– Operating system semaphores

– Atomic instructions such as test-and-set

• To avoid overhead of interprocess communication for lock request/grant

– each database process operates directly on the lock table

– instead of sending requests to lock manager process

• Lock manager process still used for deadlock detection
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Parallel Database Systems

• Parallel database systems consist of multiple processors and 
multiple disks connected by a fast interconnection network

• A coarse-grain parallel machine consists of a small number 
of powerful processors

• A massively parallel or fine grain parallel machine utilizes 
thousands of smaller processors

• Two main performance measures:
– throughput – the number of tasks 

that can be completed in a given time interval

– response time – the amount of time it takes 
to complete a single task from the time it is submitted
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Speedup and Scaleup

• Question: how much performance do we gain by enlarging the system?

– Optimum: linear scalability: doubling the system doubles the performance

• Speedup: a fixed-sized problem executing on a small system is given to a system 
which is N-times larger

• Measured by:

speedup =
small system elapsed time

large system elapsed time

• Speedup is linear if equation equals N.

• Scaleup: increase the size of both the problem and the system

– N-times larger system used to perform N-times larger job

• Measured by:

scaleup=
small system small problem elapsed time

big system big problem elapsed time

• Scale up is linear if equation equals 1.
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Speedup
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Scaleup
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Batch and Transaction Scaleup

• Batch scaleup:
– A single large job

– Use an N-times larger computer on N-times larger problem

• Transaction scaleup:
– Numerous small queries submitted by independent users to a 

shared database

– N-times as many users submitting requests
(hence, N-times as many requests) to an N-times larger database, 
on an N-times larger computer

– Well-suited for parallel execution
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Limitation of Speedup and Scaleup

Speedup and scaleup are often sublinear due to:

• Startup costs

– cost of starting up multiple processes may dominate computation time

– esp. if the degree of parallelism is high

• Interference

– processes accessing shared resources (e.g., system bus, disks, or locks) 
compete with each other → bottlenecks

– thus spending time waiting on other processes, rather than performing 
useful work

• Skew

– Increasing the degree of parallelism increases the variance in service times 
of parallely executing tasks

– Overall execution time determined by slowest of parallely executing task
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Interconnection Networks

• Bus: does not scale well with increasing parallelism

• Mesh:
– scalability grows with number of links

– but number of hops grows at O((n))

• Hypercube:
– good tradeoff

– number of hops is O(log(n))
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Parallel Database Architectures

• Shared memory – processors share a common memory

• Shared disk – processors share a common disk

• Shared nothing – processors share neither a common 
memory nor common disk

• Hierarchical – hybrid of the above architectures
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Parallel Database Architectures
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Shared Memory

• Processors and disks have access to a common memory
– typically via a bus or through an interconnection network

• Extremely efficient communication between processors
– data in shared memory can be accessed by any processor

– without having to move it using software

• Architecture is not scalable beyond 32 or 64 processors
– interconnection network becomes a bottleneck

• Widely used for lower degrees of parallelism
(4 to 8)

53



University of Mannheim | CS460 Databases for Data Scientists | Database Architectures| Version 10.02.2025

Data and Web Science Group

Shared Disk

• All processors can directly access all disks via an 
interconnection network, but the processors have private 
memories
– i.e., the memory bus is not a bottleneck

• Downside
– bottleneck now occurs at interconnection to the disk subsystem

• Shared-disk systems can scale to a somewhat
larger number of processors, but communication
between processors is slower
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Shared Nothing

• Each node consists of a processor, memory, 
and one or more disks

• Node functions as the server for the data on the disk(s) it owns

• Data accessed from local disks (and local memory accesses)
do not pass through interconnection network, 
thereby minimizing the interference of resource sharing

• Shared-nothing multiprocessors can be scaled up
to thousands of processors without interference

• Main drawback:
– cost of communication and non-local disk access;

– sending data involves software interaction at both ends
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Hierarchical

• Combines characteristics of all three architectures

• Top level is a shared-nothing architecture
– Each node of the system could be a shared-memory system 

or a shared-disk system

• Reduce the complexity of programming such systems by 
distributed virtual-memory architectures

• Also called non-uniform memory architecture (NUMA)
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Distributed Database Systems

• Data spread over multiple machines (also: sites)

• Network interconnects the machines

• Data shared by users on multiple machines
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Distributed Database Systems

• Homogeneous distributed databases

– Same software/schema on all sites, data may be partitioned among sites

– Goal: provide a view of a single database, hiding details of distribution

• Heterogeneous distributed databases

– Different software/schema on different sites

– Goal: integrate existing databases to provide useful functionality

• Differentiate between local and global transactions

– A local transaction accesses data in the single site at which the transaction 
was initiated

– A global transaction either accesses data in a site different from the one at 
which the transaction was initiated or accesses data in several different 
sites
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Trade Offs in Distributed Database 
Systems
• Sharing data

– users at one site able to access the data residing at some other sites

• Autonomy

– each site is able to retain a degree of control over data stored locally

• Higher system availability through redundancy

– data can be replicated at remote sites, 
and system can function even if a site fails

• Disadvantage: added complexity required to ensure proper 
coordination among sites

– Software development cost

– Greater potential for bugs

– Increased processing overhead
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Implementation Issues

• Atomicity needed even for transactions that 
update data at multiple sites

• The two-phase commit protocol (2PC) is used to ensure atomicity

– Basic idea: each site executes transaction until just before commit, and the 
leaves final decision to a coordinator

– Each site must follow decision of coordinator, even if there is a failure while 
waiting for coordinators decision

• 2PC is not always appropriate: other transaction models based on 
persistent messaging, and workflows, are also used

• Distributed concurrency control (and deadlock detection) required

• Data items may be replicated to improve data availability
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Summary

• Data storage is layered
– trading off cost/byte vs. access speed

• Data organization in files
– trading off disk usage vs. reorganization cost

– minimize block transfer

• Database architectures
– single machine vs. distributed

– scalability of distributed databases (speedup/scaleup)

– design issues of distributed databases
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Questions?
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