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Flashback to First Lecture

• We already stumbled upon transactions
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Dr. Stevens
Prof. Miller

Dr. Hawkins
Prof. Brown
Prof. Wilson

File: active lecturers File: retired lecturers

Delete from file: active lecturers

Add to file: retired lecturers

Computer crashes here
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Flashback to First Lecture

• ... and we already stumbled upon concurrency
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Read num_participants from file

If num_participants < limit:

add participant to file

Read num_participants from file

If num_participants < limit:

add participant to fileUser 1

User 2
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Flashback to First Lecture

• One of the tasks of a DBMS:
– handle transactions

– take care of concurrency

4
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Today’s Lecture

• Transactions
– Concurrent Executions

– Serializability

– Recoverability

– Testing for Serializability

– Transaction Definition in SQL

• Protocols for Concurrent Execution
– Lock-Based Protocols

– Timestamp-Based Protocols

– Validation-Based Protocols

– Handling Insert and Delete Operations

– Concurrency in Index Structures

5
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Concept of a Transaction

• A transaction is a unit of program execution that accesses and  possibly 
updates various data items

• E.g., transaction to transfer $50 from account A to account B:

• Two main issues to deal with:

– Failures of various kinds, such as hardware failures and system crashes

– Concurrent (=parallel) execution of multiple transactions

6

T1

read(A)
A := A – 50
write (A)
read (B)
B := B + 50
write (B)
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Requirements for Transactions

• Atomicity requirement
– If the transaction fails after writing to account A and

before writing to account B,
money will be “lost” leading to an inconsistent database state

– Failure could be due to software or hardware

– DBMS should ensure that updates of a partially executed transaction 
are not reflected in the database

7
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Requirements for Transactions

• Consistency requirement
– The sum of A and B is unchanged by the execution of the transaction

– In general, consistency requirements include

• Explicitly specified integrity constraints, e.g., primary keys and foreign keys

• Implicit integrity constraints

– e.g., sum of balances of all accounts, minus sum of loan amounts must equal
value of cash-in-hand

– A transaction, when starting to execute,
must see a consistent database

– During transaction execution,
the database may be temporarily inconsistent

– When the transaction completes successfully
the database must be consistent

• Erroneous transaction logic can lead to inconsistency

8
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Requirements for Transactions

• Isolation requirement
– if between steps 3 and 9, another transaction T2

is allowed to access the partially updated database,
it will see an inconsistent database

• Isolation can be ensured trivially by running transactions serially

– i.e., one after the other

– however, parallel execution is often desired due to performance benefits
9

Step T1 T2

1
2
3
4
5
6
7
8
9

read(A)
A = A – 50
write(A)

read(B)
B = B + 50
write(B)

read(A)
read(A)
print(A+B)
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Requirements for Transactions

• Durability requirement
– once the user has been notified that the transaction has completed,

• i.e., the transfer of the $50 has taken place,

– the updates to the database by the transaction must persist

• even if there are software or hardware failures

10
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ACID Properties

• Atomicity: Either all operations of the transaction are properly 
reflected in the database, or none

• Consistency: Execution of a full transaction preserves the consistency 
of the database

• Isolation: Although multiple transactions may execute concurrently, 
each transaction must be unaware of other concurrently 
executing transactions

• Durability:      After a transaction completes successfully, 
the changes it has made to the database persist,
even if there are system failures

11
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Transaction States

12

the initial state; 
transaction stays active 
while it is executing

after the final statement has 
been executed

after discovery that normal 
execution can no longer 
proceed

after the transaction has 
been rolled back and 
the database restored to 
its state prior to the start 
of the transaction. 

Actions to be taken:

• Restart the transaction 
(can be done only if no 
internal logical error)

• Kill the transaction

after successful completion
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Concurrent Execution of Transactions

• Multiple transactions are allowed to run concurrently
in the system
– Increased processor and disk utilization, 

leading to better transaction throughput

• e.g., one transaction can be using the CPU
while another is reading from or writing to the disk

– Reduced average response time for transactions

• e.g., short transactions need not wait behind long ones

• Concurrency control schemes
– mechanisms to achieve isolation

– control the interaction among the concurrent transactions

– prevent them from destroying the consistency of the database

13
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Schedules

• Schedule
– A sequence of instructions that specifies the chronological order 

in which instructions of concurrent transactions are executed

– A schedule for a set of transactions
must consist of all instructions of those transactions

– Must preserve the order in which the instructions appear
in each individual transaction

• A transaction that successfully completes its execution will 
have a commit instructions as the last statement
– By default, a transaction is assumed to execute

a commit instruction as its last step

• A transaction that fails to successfully complete its execution 
will have an abort instruction as the last statement

14
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Schedule Example:
Serial Schedule

• Let  T1 transfer $ 50 from A to B,
and T2 transfer $ 20 of the balance from B to A

• Serial schedule:
T1 is executed as a whole,
followed by T2 :

15

A = 200

A = 150

B = 400

B = 450

A = 150

A = 170

T1 T2

read(A)
A = A – 50
write(A)
read(B)
B = B + 50
write(B)
commit

read(A)
A = A + 20
write(A)
read(B)
B = B - 20
write(B)
commit

B = 450

B = 430
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Schedule Example:
Intertwined Schedule

• Let  T1 transfer $ 50 from A to B,
and T2 transfer $ 20 of the balance from B to A

• Intertwined schedule: 
parts of T1 are executed,
interrupted by parts of T2

– the sum A+B is maintained

16

B = 400

B = 450

A = 170

B = 450

B = 430

T1 T2

read(A)
A = A – 50
write(A)

read(B)
B = B + 50
write(B)
commit

read(A)
A = A + 20
write(A)

read(B)
B = B - 20
write(B)
commit

A = 150

A = 200

A = 150
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Schedule Examples:
Wrong Schedule

• Let  T1 transfer $ 50 from A to B,
and T2 transfer $ 20 of the balance from B to A

17

A = 150

B = 450

A = 220

B = 450

B = 430

T1 T2

read(A)
A = A – 50

write(A)
read(B)
B = B + 50
write(B)
commit

read(A)
A = A + 20
write(A)

read(B)
B = B - 20
write(B)
commit

A = 200

B = 400

A = 200

A is now 150 instead of 170.
The sum of A and B
is not maintained!
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Serializability

• Basic assumption: transactions preserve database consistency
– i.e., serial execution of a set of transactions 

also preserves database consistency

• A (possibly concurrent) schedule is serializable
if its outcome is equivalent to a serial schedule
– We ignore operations other than read and write instructions

– Transactions may perform arbitrary computations on data in between

– Our simplified schedules consist of only read and write instructions

18
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Conflicting Transactions

• Let li and lj be two Instructions of transactions Ti and Tj respectively

• Instructions li and lj conflict

– if and only if there exists some data item Q accessed by both li and lj, 
and at least one of these instructions wrote Q

1. li = read(Q), lj = read(Q).   → No conflict
2. li = read(Q), lj = write(Q).  → Conflict
3. li = write(Q), lj = read(Q).  → Conflict
4. li = write(Q), lj = write(Q). → Conflict
5. li = write(Q), lj = write(R). → No conflict
6. li = read(Q), lj = write(R). → No conflict

• Implications on serializability:

– Non-conflicting instructions can be executed in any order

– A conflict between li and lj forces a temporal order between them

19

Two instructions 
accessing the same data item, 
at least one attempts to write
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Conflict Equivalence

• If a schedule S can be transformed into a schedule S’
by a series of swaps of non-conflicting instructions,
we say that S and S´ are conflict equivalent.

20

S

T1 T2

read(A)
write(A)

read(B)
write(B)

read(A)
write(A)

read(B)
write(B)

S’

T1 T2

read(A)
write(A)
read(B)
write(B)

read(A)
write(A)
read(B)
write(B)

conflict equivalent

sequence of 
non-conflicting swaps
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Conflict Serializability

• We say that a schedule S is conflict serializable if it is 
conflict equivalent to a serial schedule

21

S

T1 T2

read(A)
write(A)

read(B)
write(B)

read(A)
write(A)

read(B)
write(B)

S’

T1 T2

read(A)
write(A)
read(B)
write(B)

read(A)
write(A)
read(B)
write(B)

conflict equivalent

Serial schedule:
T2 after T1

Schedule is
conflict serializable
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Conflict Equivalence and Serializability

• Example of a schedule that is not conflict serializable:

• Write(Q) in T4 conflicts both with 
read(Q) and write(Q) in T3

– i.e., we are unable to swap instructions in the above schedule
to obtain either the serial schedule < T3, T4 >, or
the serial schedule < T4, T3 >

22

T3 T4

read(Q)

write(Q)
write(Q)
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Precedence Graph

• Consider some schedule of a set of transactions T1, T2, ..., Tn

• Precedence graph: a directed graph where
the vertices are the transactions (names)
– We draw an arc from Ti to Tj if the two transaction conflict, 

and Ti accessed the data item on which the conflict arose earlier

– We may label the arc by the item that was accessed

• Example:

23

T3 T4

Q

Q

T3 T4

read(Q)

write(Q)
write(Q)
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Testing for Conflict Serializability

• A schedule is conflict serializable
– if and only if its precedence graph is acyclic

– serializability order can be obtained 
by a topological sorting of the graph

• i.e., a linear order consistent
with the partial order of the graph

• Example: both (b) and (c) are possible partial 
orders of (a)

• Cycle-detection algorithms in O(n²) exist
– where n is the number of vertices

in the graph

– better algorithms are in O(n+e) 
where e is the number of edges

24
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Recoverable Schedules

• Consider the following schedule:

• What happens if T8 should abort after T9 commits?
– T9 would have read (and possibly shown to the user) 

an inconsistent database state

– The DBMS should avoid those cases

• A schedule is recoverable if the following holds:
– if a transaction Tj (T9 in the example) reads a data item

previously written by a transaction Ti , then the commit operation of 
Ti must appear before the commit operation of Tj

25

T8 T9

read(A)
write(A)

read(B)

read(A)
commitT8

aborts here
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Cascading Rollbacks

• Consider the following schedule:

• On the abort of T10

– all three transactions need to be rolled back

– can mean undoing a significant amount of work

26

T10 T11 T12

read(A)
read(B)
write(A)

abort

read(A)
write(A)

read(A)
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Cascadeless Schedules

• A schedule is cascadeless if and only if
– for each pair of transactions Ti and Tj such that

Tj reads a data item previously written by Ti,

– the commit operation of Ti appears before the read operation of Tj

• Every cascadeless schedule is also recoverable
– the reverse need not hold

• It is desirable to restrict the schedules to those
that are cascadeless

27
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Levels of Consistency

• Serializable: default

• Repeatable read:
– only committed records to be read

– successive reads of same record 
must return the same value

– transactions may not be serializable

• Read committed:
– only committed records can be read,

– successive reads of record may return different 
(but committed) values

• Read uncommitted:
– even uncommitted records may be read

28
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Transaction Definition in SQL

• Data manipulation language must include a construct for 
specifying the set of actions that comprise a transaction

• In SQL
– A transaction begins implicitly

– A transaction ends by:

• Commit work commits current transaction and begins a new one

• Rollback work causes current transaction to abort

• In almost all database systems, by default, every SQL 
statement also commits implicitly if it executes successfully
– implicit commit can be turned off by a database directive

– e.g., in JDBC, connection.setAutoCommit(false);

29
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Concurrency Control in DBMS

• A database must provide a mechanism that will ensure that 
all possible schedules are both:
– Conflict serializable

– Recoverable and preferably cascadeless

• A policy in which only one transaction can execute at a time 
generates serial schedules
– but provides a poor degree of parallelism

• Concurrency control protocols have to trade off
– degree of parallelism they achieve

– amount of overhead they incur

30
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Locks

• A lock is a mechanism to control concurrent access
to a data item

• Data items can be locked in two modes :

1.  exclusive (X) mode. Data item can be both read as well as written. 

X-lock is requested using lock-X instruction

2.  shared (S) mode.     Data item can only be read. 
S-lock is requested using lock-S instruction

• Lock requests are made to the concurrency-control manager

– by the application accessing the database

– transaction can proceed only after request is granted

31
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Requesting and Granting Locks

• Transactions request locks
– can be granted if the requested lock is compatible

• Compatibility:
– Any number of transactions can hold 

shared locks on an item

– If any transaction holds an exclusive on the item,
no other transaction may hold any lock on the item

• If a lock cannot be granted
– the requesting transaction has to wait until 

all incompatible locks are released

32
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Lock-based Protocols

• Example of two transactions performing locking:

• Only T2 is serializable

– in T1, if A and B get updated in-between the read of A and B, 
the displayed sum would be inconsistent

• A locking protocol is a set of rules followed by all transactions

– Locking protocols restrict the set of possible schedules

33

T1

lock-S(A)
read(A)
unlock(A)
lock-S(B)
read(B)
unlock(B)
print(A+B)

T2

lock-S(A)
lock-S(B)
read(A)
read(B)
print(A+B)
unlock(A)
unlock(B)
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The Two-Phase Locking Protocol

• Protocol that ensures conflict serializable schedules

• Runs in two phases

– Phase 1: Growing Phase

• Transaction may obtain and “upgrade” shared to exclusive locks

• Transaction may not release locks

– Phase 2: Shrinking Phase

• Transaction may release and “downgrade” exclusive to shared locks

• Transaction may not obtain locks

• The protocol assures serializability

– It can be proved that the transactions can be serialized 
in the order of their lock points,

– i.e., the point where a transaction acquired its final lock

34
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Automatic Acquisition of Locks

• A transaction Ti issues the standard read/write instruction, 

without explicit locking calls

• The operation read(D) is processed by the DBMS as:

35

if Ti has a lock on D

read(D)

else

if necessary wait until no other transaction has a lock-X on D

grant Ti a lock-S on D

read(D)
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Automatic Acquisition of Locks

• A transaction Ti issues the standard read/write instruction, 

without explicit locking calls

• The operation write(D) is processed by the DBMS as:

• All locks are released after commit or abort
36

if Ti has a  lock-X on D

write(D)

else

if necessary wait until no other transaction has any lock on D

if Ti has a lock-S on D

upgrade lock on D to lock-X

else

grant Ti a lock-X on D

write(D)
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Deadlocks

• Consider the partial schedule

• Neither T3 nor T4 can make progress
– executing  lock-S(B) causes T4 to wait for T3 to release its lock on ,

– executing  lock-X(A) causes T3 to wait for T4 to release its lock on A

• Such a situation is called a deadlock
– to handle the problem, 

one of T3 or T4 must be rolled back and its locks released

37

T3 T4

lock-X(B)
read(B)
B:=B-50
write(B)

lock-X(A)

lock-S(A)
read(A)
lock-S(B)
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Deadlocks & Starvation

• Two-phase locking protocol
– guarantees serializability

– does not ensure freedom from deadlocks

• In addition to deadlocks, there is a possibility of starvation:
– A transaction may be waiting for an X-lock on an item

– while a sequence of other transactions request and are granted an 
S-lock on the same item

• Starvation occurs if the concurrency control manager is 
badly designed
– The same transaction is repeatedly rolled back due to deadlocks

– Concurrency control manager can be designed to prevent starvation

38
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Deadlocks

• The potential for deadlock exists in most locking protocols

– but there are prevention mechanisms (see later)

• When a deadlock occurs
– rollbacks are necessary

– there is a possibility of cascading roll-backs

• but cascading rollbacks can be expensive

• Cascading roll-back is possible under two-phase locking

• Modified protocol called strict two-phase locking
– a transaction must hold all its exclusive locks until it commits/aborts

– avoids cascading rollbacks

39
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Implementation of Locking

• A lock manager can be implemented as a separate process
– transactions send lock and unlock requests to the lock manager

– lock manager replies to a lock request by sending a lock grant message

– or a message asking the transaction to roll back, in case of a deadlock

– The requesting transaction waits until its request is answered

• The lock manager maintains a data-structure called 
a lock table to record granted locks and pending requests
– The lock table is usually implemented as an in-memory hash table 

indexed on the name of the data item being locked

40
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Lock Table

• Dark blue rectangles indicate granted locks; 
light blue indicate waiting requests

– Lock table also records
the type of lock granted or requested

• New request is added to the end
of the queue of requests for the data item

– granted if it is compatible with all earlier locks

• Unlock requests result in the request being 
deleted

– later requests are checked to see 
if they can now be granted

• If transaction aborts, all waiting or granted 
requests of the transaction are deleted

– lock manager may keep an index of locks
held by each transaction, to implement this 
efficiently

41
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Deadlock Prevention

• System is deadlocked:
– there is a set of transactions such that every transaction in the set 

is waiting for another transaction in the set

• Deadlock prevention protocols
– ensure that the system will never enter into a deadlock state

• Some prevention strategies :
– Require that each transaction locks all its data items

before it begins execution (predeclaration)

– Impose partial ordering of all data items and require
that a transaction can lock data items only in the order
specified by the partial order

42
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Deadlock Prevention

• timeout-based schemes

– transactions wait for a lock only for a specified amount of time

• if the lock has not been granted within that time → roll back

– simple to implement; but starvation is possible

– also difficult to determine good value of the timeout interval

• wait-die scheme

– older transaction may wait for younger one to release data item

– younger transactions never wait for older ones

• they are rolled back instead

– a transaction may die several times before acquiring needed data item

• wound-wait scheme

– older transaction wounds (forces rollback) of younger transaction

• instead of waiting for it

– younger transactions may wait for older ones

– may cause fewer rollbacks than wait-die scheme

43
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Deadlock Detection

• Deadlocks can be detected using a wait-for graph, 
which consists of a pair G = (V,E)

– V is a set of vertices (all the transactions in the system)

– E is a set of edges; each element is an ordered pair Ti →Tj.  

– Edge from Ti to Tj implies that Ti is waiting for Tj to release a data item

• Ti requests a lock on a data item currently being locked by Tj,

– the edge Ti → Tj is inserted in the wait-for graph

• Tj releases lock on a data item needed by Ti, or Ti is rolled back

– the edge Ti → Tj is removed from the wait-for graph

• System is in a deadlock state the wait-for graph has a cycle

– invoke a deadlock-detection algorithm periodically to look for cycles

44
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Deadlock Detection

45

Wait-for graph without a cycle Wait-for graph with a cycle
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Deadlock Recovery

• When deadlock is detected :
– some transaction will have to rolled back (made a victim)

– select that transaction as victim that will incur minimum cost

• Rollback – determine how far to roll back transaction
– Total rollback: Abort the transaction and then restart it

– More effective: roll back transaction only as far as necessary to 
break deadlock

• Starvation happens if same transaction
is always chosen as victim
– Solution: include the number of rollbacks in the cost factor

to avoid starvation

46
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Timestamp-based Scheduling

• Each transaction Ti is issued a timestamp TS(Ti)

when it enters the system

– timestamps must be free of duplicates

• The protocol manages concurrent execution such that

the time-stamps determine the serializability order

• In order to assure such behavior, the protocol maintains 
two timestamp values for each data Q:
– W-TS(Q) is the largest time-stamp of any transaction that executed 

write(Q) successfully

– R-TS(Q) is the largest time-stamp of any transaction that executed 
read(Q) successfully

47
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Timestamp-based Scheduling

• Transaction Ti issues a read(Q)

– if TS(Ti) W-TS(Q)

• execute read operation, 
set R-TS(Q) to max(R-TS(Q),TS(Ti))

48

R-TS(Q)W-TS(Q)

TS(Ti)

read(Q)

R-TS(Q)

Transaction Ti
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Timestamp-based Scheduling

• Transaction Ti issues a read(Q)

– if TS(Ti) W-TS(Q), 
then Ti needs to read a value of Q that was already overwritten

→ reject read, rollback Ti

49

R-TS(Q)W-TS(Q)

TS(Ti)

read(Q)

Transaction Ti
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Timestamp-based Scheduling

• Transaction Ti issues write(Q)
– if TS(Ti) < R-TS(Q), 

then the value of Q that Ti is producing was read previously

→ reject write, rollback Ti
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Timestamp-based Scheduling

• Transaction Ti issues write(Q)
– if TS(Ti) < W-TS(Q), 

then Ti is attempting to write an obsolete value of Q

→ reject write, rollback Ti
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Thomas Write Rule:
we can also simply 

ignore this write
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Timestamp-based Scheduling

• Transaction Ti issues write(Q)
– TS(Ti) ≥ R-TS(Q) and TS(Ti) ≥ W-TS(Q)

• execute write and set W-TS(Q) to TS(Ti)
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Timestamp-based Scheduling

• The timestamp-ordering protocol guarantees serializability 
since all the arcs in the precedence graph are of the form

Thus, there will be no cycles in the precedence graph

• Timestamp protocol ensures freedom from deadlock
– no transaction ever waits, there are only rollbacks

• But the schedule may not be cascade-free
– and may not even be recoverable
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Validation Based Protocol

• Execution of transaction Ti is done in three phases

1.  Read and execution phase: Transaction Ti writes only to         
temporary local variables

2.  Validation phase: Transaction Ti performs a  ''validation test'' to 
determine if local variables can be written without violating   
serializability

3.  Write phase: If Ti is validated, the updates are applied to the database; 
otherwise, Ti is rolled back

• The three phases of concurrently executing transactions can be interleaved

– but each transaction must go through the three phases in that order

• Assume for simplicity that the validation and write phase occur together, 
atomically and serially

– i.e., only one transaction executes validation/write at a time.

• Also called as optimistic concurrency control since transaction executes fully in 
the hope that all will go well during validation
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Validation Based Protocol

• Each transaction Ti has 3 timestamps
– Start(Ti) : the time when Ti started its execution

– Validation(Ti): the time when Ti entered its validation phase

– Finish(Ti) : the time when Ti finished its write phase

• Serializability order is determined by timestamp given at 
validation time; this is done to increase concurrency.
– Thus, TS(Ti) is given the value of Validation(Ti)

• This protocol is useful and gives greater degree of 
concurrency
– if probability of conflicts is low

– serializability order is not pre-decided

– relatively few transactions will have to be rolled back
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Validation Test for Transaction Tj

• If for all Ti with TS (Ti) < TS (Tj) either one of the following condition 
holds:

– finish(Ti) < start(Tj)

– start(Tj) < finish(Ti) < validation(Tj) and the set of data items written by Ti

does not intersect with the set of data items read by Tj

• then validation succeeds and Tj can be committed

– otherwise, validation fails and Tj is aborted

• Explanation: Either the first condition is satisfied, i.e., there is no 
overlapped execution, or the second condition is satisfied, i.e.,

– the writes of Tj do not affect reads of Ti since they occur after Ti has 
finished its reads

– the writes of Ti do not affect reads of Tj since Tj does not read any item 
written by Ti
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Validation Test for Transaction Tj

• Example schedule using validation:
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T5 has not written 
anything read by T6

T5 T6

read(B)

read(A)
<validate>
display(A+B)

read(B)
B:=B-50
read(A)
A:=A+50

<validate>
write(B)
write(A)
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Insert and Delete Operations

• If two-phase locking is used:
– A delete operation may be performed only if the transaction 

deleting the tuple has an exclusive lock on the tuple to be deleted

– A transaction that inserts a new tuple into the database 
is given an exclusive lock on the tuple

• Insertions and deletions can lead to
the phantom phenomenon

• A transaction that scans a relation
(e.g., read number of all accounts in Perryridge)

and a transaction that inserts a tuple in the relation
(e.g., insert a new account at Perryridge)

(conceptually) conflict in spite of not accessing
any tuple in common
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Insert and Delete Operations

• The transaction scanning the relation is reading information that indicates what 
tuples the relation contains

– while a transaction inserting a tuple updates the same information

• The conflict should be detected, e.g., by locking the information

• One solution:

– Associate a data item with the relation, to represent the information about what 
tuples the relation contains

– Transactions scanning the relation acquire a shared lock in the data item

– Transactions inserting or deleting a tuple acquire an exclusive lock on the data item.
(Note: locks on the data item do not conflict with locks on individual tuples.)

• Above protocol provides very low concurrency for insertions/deletions

– Index locking protocols provide higher concurrency while preventing the phantom 
phenomenon

– requiring locks on certain index buckets

59



University of Mannheim | CS460 Databases for Data Scientists |Transactions & Concurrency | Version 07.05.2025

Data and Web Science Group

Index Locking Protocol

• Index locking protocol

– Every relation must have at least one index

– A transaction can access tuples only after finding them 
through one or more indices on the relation

• A transaction Ti that performs a lookup must lock all the index leaf 
nodes that it accesses, in S-mode

– Even if the leaf node does not contain any tuple satisfying the index lookup 
(e.g. for a range query, no tuple in a leaf is in the range)

• A transaction Ti that inserts, updates or deletes a tuple ti in a relation r

– must update all indices to r

– must obtain exclusive locks on all index leaf nodes affected by the 
insert/update/delete

• The rules of the two-phase locking protocol must be observed

– Guarantees that phantom phenomenon does not occur
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Concurrency in Index Structures

• Indices are unlike other database items
– their only job is to help in accessing the actual data

• Index structures are typically accessed very often
– much more than other database items

– Treating index-structures like other database items, 
e.g. by 2-phase locking of index nodes can lead to low concurrency

• Special protocols for index structures
– e.g., locks on internal nodes are released early, instead of two-

phase fashion

– it is acceptable to have nonserializable concurrent access to an 
index as long as the accuracy of the index is maintained

– in particular, the exact values read in an internal node of a 
B+-tree are irrelevant so long as we end up in the correct leaf node
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Concurrency in Index Structures

• Example of index concurrency protocol:Use crabbing instead of two-phase locking on the 
nodes of the B+-tree, as follows

• During search/insertion/deletion:

– First lock the root node in shared mode

– After locking all required children of a node in shared mode, release the lock on the 
parent node

• During insertion/deletion

– upgrade leaf node locks to exclusive mode

• When splitting or coalescing requires changes to a parent

– lock the parent in exclusive mode

• Above protocol can cause excessive deadlocks

– Searches coming down the tree deadlock with updates going up the tree

– Can abort and restart search, without affecting transaction

– Better protocols are available; e.g., the B-link tree protocol

• Intuition: release lock on parent before acquiring lock on child
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Summary

• Parallel access to databases brings challenges
– easy solution: process one transaction after the other

– higher performance solution: support parallelism

• Transactions & Serializability
– Methods for generating serializations

• Locks & Deadlocks

• Protocols
– for “normal” data

– for indices
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Questions?
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