
University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

CS460 Databases for Data Scientists

1

Applications

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Recap: The Big Picture

• Users interact with databases
indirectly
– i.e., via applications

– no direct usage of SQL

• Most applications today have
a database under the hood, e.g.,
– shopping portals

– news web sites

– games

2

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Today’s Lecture

• Architectures for database centric applications

– Three/Two-Layer Web Architecture

– HTML/Session/Cookies

– Server/Client Side Scripting

• Legacy Systems

• Performance Tuning

– Bottlenecks

– Database Design

• Security Issues

– SQL Injection

– Cross Site Scripting

– Password Leakage

– Application Authentication/Authorization

3

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Application Architecture Evolution

• Three eras of application architecture

– mainframe (1960’s and 70’s)

– personal computer era (1980’s)

– Web era (since 1990’s, nowadays mostly mobile Web)

4

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Web Interface

• Web browsers
– de-facto standard user interface to databases

– multi-user, location agnostic interface

– no need for downloading/installing specialized code,
while providing a good graphical user interface

• JavaScript, Flash and other scripting languages run in browser,
but are downloaded transparently

– Examples: banks, airline and rental car reservations, university
course registration and grading, ...

5

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Web based Applications in a Nutshell

• Web documents are hypertext documents
formatted using HyperText Markup Language (HTML)

• HTML documents contain

– text along with font specifications, and other formatting instructions

– hypertext links to other documents

– forms, enabling users to enter data which can then be sent back to the Web
server

• HyperText Transfer Protocol (HTTP) used for communication
with the Web server

• URL may identify a document or an executable program

– executed by HTTP server

– creates HTML documents, which is sent back to client

– Web client can pass extra arguments with the name of the document

6

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Sample HTML Source Text

<html>
<body>

<table border>
<tr> <th>ID </th> <th>Name</th> <th>Department</th> </tr>
<tr> <td>00128</td> <td>Zhang</td> <td>Comp. Sci. </td> </tr>
….

</table>
<form action="PersonQuery" method=get>

Search for:
<select name="persontype">

<option value="student" selected>Student </option>
<option value="instructor"> Instructor </option>

</select>

Name: <input type=text size=20 name="name">
<input type=submit value="submit">

</form>
</body>
</html>

7

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Sample HTML Source Text

<html>

<body>

<table border>

<tr> <th>ID </th> <th>Name</th> <th>Department</th>

</tr><tr> <td>00128</td> <td>Zhang</td> <td>Comp. Sci.</td></tr>

….

</table>

<form action="PersonQuery" method= "get">

Search for:

<select name="persontype">

<option value="student" selected>Student </option>

<option value="instructor"> Instructor </option>

</select>

Name: <input type="text" size=20 name="name">

<input type ="submit " value="submit">

</form>

</body>

</html>

8

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Three-Layer Web Architecture

9

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Two-Layer Web Architecture

• Multiple levels of indirection have overheads
– Alternative: two-layer architecture

10

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

HTTP and Sessions

• The HTTP protocol is connectionless

– Once the server replies to a request, the server closes the
connection with the client, and forgets all about the request

– In contrast, Unix logins, and JDBC/ODBC connections stay
connected until the client disconnects

• retaining user authentication and other information

– Motivation: reduce load on server

• operating systems have tight limits on number of open connections on
a machine

• Information services need session information

– E.g., user authentication should be done only once per session

• Solution: cookies

11

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Sessions and Cookies

• A cookie is a small piece of text
containing identifying information

– Sent by server to browser

• Sent on first interaction, to identify session

– Sent by browser with each request

• part of the HTTP protocol

– Server saves information about cookies it issued,
and can use it when serving a request

• E.g., authentication information, and user preferences

• Cookies can be stored permanently or for a limited time

12

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Programming on the Server Side

• Paradigms
– Programming (i.e., each document

is assembled by a program)

– Scripting (embedded in HTML)

• Different programming languages
can be used

13

Source: https://w3techs.com/technologies/overview/programming_language

https://w3techs.com/technologies/overview/programming_language

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Servlets

• Java Servlet specification
– defines an API for communication between the Web/application

server and application program running in the server

• methods to get parameter values from Web forms

• methods to send HTML text back to client

• Application program (also called a servlet)
is loaded into the server

– Each request spawns a new thread in the server

• thread is closed once the request is serviced

14

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Example Servlet Code

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class PersonQueryServlet extends HttpServlet {

public void doGet (HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException

{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<HEAD><TITLE> Query Result</TITLE></HEAD>");

out.println("<BODY>");

….. BODY OF SERVLET (next slide) …

out.println("</BODY>");

out.close();

}
}

15

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Example Servlet Code

String persontype = request.getParameter("persontype");

String number = request.getParameter("name");

if(persontype.equals("student")) {

... code to find students with the specified name ...

... using JDBC to communicate with the database ..

out.println("<table BORDER COLS=3>");

out.println(" <tr> <td>ID</td> <td>Name: </td>" + " <td>Department</td> </tr>");

for(... each result ...){

... retrieve ID, name and dept name

... into variables ID, name and deptname

out.println("<tr> <td>" + ID + "</td>" + "<td>" + name + "</td>" + "<td>" + deptname
+ "</td></tr>");

};

out.println("</table>");

}

else {

... as above, but for instructors ...

}

16

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Servlet Sessions

• Servlet API supports handling of sessions

– Set a cookie on first interaction with browser

– use it to identify session on further interactions

• To check if session is already active:

– if (request.getSession(false) == true)

• .. then use existing session

• else .. redirect to authentication page

– authentication page

• check login/password

17

we can also check the
age of the cookie here

for session timeout

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Servlet Support

• Servlets run inside application servers such as

– Apache Tomcat, Glassfish, JBoss

– BEA Weblogic, IBM WebSphere and Oracle Application Servers

• Application servers support

– deployment and monitoring of servlets

– Java 2 Enterprise Edition (J2EE) platform supporting objects,
parallel processing across multiple application servers, etc

18

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Server-Side Scripting

• Server-side scripting

– HTML document with embedded executable code
and/or SQL queries

– Input values from HTML forms can be used directly

– When the document is requested, the Web server executes the
embedded code/SQL queries to generate the actual HTML
document

• Numerous server-side scripting languages

– JSP, PHP

– General purpose scripting languages: VBScript, Perl, Python

19

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Java Server Pages (JSP)

• A JSP page with embedded Java code

<html>

<head> <title> Hello </title> </head>

<body>

<% if (request.getParameter(“name”) == null)

{ out.println(“Hello World”); }

else { out.println(“Hello, ” + request.getParameter(“name”)); }

%>

</body>

</html>

• JSP is compiled into Java + Servlets

• JSP allows new tags to be defined, in tag libraries

– such tags are like library functions, can are used for example to build rich user
interfaces such as paginated display of large datasets

20

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

PHP

• PHP is widely used for Web server scripting

• Extensive libaries including for database access using ODBC

<html>

<head> <title> Hello </title> </head>

<body>

<?php if (!isset($_REQUEST[‘name’]))

{ echo “Hello World”; }

else { echo “Hello, ” + $_REQUEST[‘name’]; }

?>

</body>

</html>

21

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Client Side Scripting

• Browsers can fetch certain scripts (client-side scripts) or
programs along with documents, and execute them
in “safe mode” at the client site

– Today: mostly Javascript

– Historic: Macromedia Flash/Shockwave for animation/games,
VRML, Java Applets

• Client-side scripts/programs allow documents to be active

– E.g., animation by executing programs at the local site

– E.g., ensure that values entered by users satisfy
some correctness checks

– Permit flexible interaction with the user

• Executing programs at the client site speeds up interaction
by avoiding many round trips to server

22

Source: https://de.wikipedia.org/wiki/Virtual_Reality_Modeling_Language

https://de.wikipedia.org/wiki/Virtual_Reality_Modeling_Language

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Client Side Scripting and Security

• Security mechanisms needed to ensure that malicious
scripts do not cause damage to the client machine

– easy for limited capability scripting languages

– harder for general purpose programming languages like Java

• E.g., Java’s security system ensures that the Java applet
code does not make any system calls directly

– Disallows dangerous actions such as file writes

– Notifies the user about potentially dangerous actions

• allow the option to abort the program or to continue execution

23

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Javascript

• Javascript very widely used

– forms basis of new generation of Web applications
(called Web 2.0 applications) offering rich user interfaces

• Javascript functions can

– check input for validity

– modify the displayed Web page

• by altering the underlying document object model (DOM) tree

– communicate with a Web server to fetch data and modify the
current page using fetched data, without needing to reload/refresh
the page

• forms basis of AJAX technology used widely in Web 2.0 applications

• e.g., loading further content upon scrolling down a Web page

• e.g. on selecting a country in a drop-down menu, the list of states in
that country is automatically populated in a linked drop-down menu

24

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Legacy Systems

• Older-generation systems that are incompatible with current
generation standards and systems but still in production use

– E.g., applications written in COBOL that run on mainframes

• Today’s hot new system is tomorrows legacy system!

• Porting legacy system applications
to a more modern environment is problematic

– Legacy system may involve millions of LoC, written over decades

• Original programmers usually no longer available

– Switching over from old system to new system is a problem

• more on this later

• One approach: build a wrapper layer on top of legacy application to
allow interoperation between newer systems and legacy application

– E.g., use ODBC or OLE-DB as wrapper

25

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Legacy Systems (Cont.)

• Rewriting legacy application: understanding what it does
(and how)

– Legacy code often has no/little documentation documentation

– reverse engineering: process of going over legacy code to

• Come up with schema designs in ER or OO model

• Get a high level view of system

• Re-engineering:
reverse engineering followed by design of new system

– Improvements are made on existing system design in this process

26

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Legacy Systems (Cont.)

• Switching over from old to new system is a major problem
– Production systems are in every day, generating new data

– Stopping the system may bring all of a company’s activities to a halt,
causing enormous losses

• Big-bang approach:
– Implement complete new system

– Populate it with data from old system

• No transactions while this step is executed

• scripts are created to do this quickly

– Shut down old system and start using new system

– Danger with this approach: what if new code has bugs or
performance problems, or missing features

• Company may be brought to a halt

27

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Legacy Systems (Cont.)

• Chicken-little approach:

– Replace legacy system one piece at a time

– Use wrappers to interoperate between legacy and new code

• E.g., replace front end first, with wrappers on legacy backend

– Old front end can continue working in this phase in case of problems with
new front end

• Replace back end, one functional unit at a time

– All parts that share a database may have to be replaced together, or
wrapper is needed on database as well

– Drawback: significant extra development effort to build wrappers
and ensure smooth interoperation

• Still worth it if company’s life depends on system

28

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Performance Tuning

• Adjusting various parameters and design choices
– to improve system performance for a specific application

– notion: continuous improvement rather than waterfall model

• Tuning is best done by
1) identifying bottlenecks, and

2) eliminating them

• Three levels of tuning
– Hardware,

e.g., add disks, memory, use faster processor

– Database system parameters,
e.g., buffer size, checkpointing intervals

– Higher level database design,
e.g., schema, indices, and transactions

29

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Bottlenecks

• Performance of most systems (at least before they are
tuned) usually limited by performance of one or a few
components
– these are called bottlenecks

– 80/20 rule: 20% of code consume 80% of execution time

• spend more time on those 20%

• Bottlenecks may be in hardware (e.g., disks are very busy,
CPU is idle), or in software

• Removing one bottleneck often exposes another

• De-bottlenecking consists of repeatedly finding bottlenecks,
and removing them

30

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Identifying Bottlenecks

• Transactions request a sequence of services

– E.g., CPU, Disk I/O, locks

• Concurrent transactions wait for a requested service
while others are being served

• Notion: database as a queueing system with a queue for each service

– Transactions repeatedly do the following

• request a service, wait in queue for the service, and get serviced

• Bottlenecks in a database system typically show up as very high
utilizations (very long queues) of a particular service

– e.g., disk vs. CPU utilization

– 100% utilization leads to very long waiting time:

• Rule of thumb: design system for about 70% utilization at peak load

• utilization over 90% should be avoided

31

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Queues in a Database System

32

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Tuning of Hardware

• Even well-tuned transactions typically require a few I/O operations

– Typical disk supports about 100 random I/O operations per second

– Suppose each transaction requires just 2 random I/O operations

• to support n transactions per second,
we need to distribute data across n/50 disks (ignoring skew)

• Number of I/O operations per transaction can be reduced by keeping
more data in memory

– If all data is in memory, I/O needed only for writes

– Keeping frequently used data in memory reduces disk accesses, reducing
number of disks required, but has a memory cost

• Five minute rule:

– if a page that is randomly accessed is used more frequently than once in
five minutes, it should be kept in memory

33

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Tuning the Database Design

• Schema tuning

– Vertically partition relations to isolate the data that is accessed
most often

• e.g., split account into two, (account-number, branch-name) and
(account-number, balance).

– branch name need not be fetched unless required

– More rows per block → less block transfers

• Improve performance by storing a denormalized relation

– E.g., store join of account and depositor; branch-name and balance
information is repeated for each holder of an account

• join need not be computed repeatedly

• trade-off: more space and more work for programmer to keep relation
consistent on updates

• Better to use materialized views (see later)

34

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Tuning the Database Design (Cont.)

• Incidental violations of normal forms
– e.g., storing join tables that would be split by normalization

• Incidental violations of domain model
– Example: each person can have many phone numbers (1:n)

– Theoretically sound solution: two tables (person, phone)

– Practical observation: not more than four in 1M persons

• rather introduce attributes phone1, phone2, phone3, phone4

• avoids joins with long tables

35

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Tuning the Database Design (Cont.)

Materialized Views

• Materialized views can help speed up certain queries

– Particularly aggregate queries

• Overheads

– Space

– Time for view maintenance

• Immediate view maintenance: done as part of update transaction

– time overhead paid by update transaction

• Deferred view maintenance: done only when required

– update transaction is not affected, but system time is spent on view maintenance

– until updated, the view may be out-of-date

• Preferable to denormalized schema since view maintenance
is system’s responsibility, not programmer’s

– Avoids inconsistencies caused by errors in update programs

36

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Tuning the Database Design (Cont.)

• How to choose set of materialized views
– Helping one transaction type by introducing a materialized view

may hurt others

• selections including aggregates will be speed up

• updates are slowed down

– Choice of materialized views depends on costs

• Users often have no idea of actual cost of operations

– Overall, manual selection of materialized views is tedious

• Some database systems provide tools to help DBA choose
views to materialize
– “Materialized view selection wizards”

37

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Tuning the Database Design (Cont.)

• Index tuning

– Create appropriate indices to speed up slow queries/updates

– Speed up slow updates by removing excess indices
(tradeoff between queries and updates)

– Choose type of index (B-tree/hash) appropriate for most frequent
types of queries

– Choose which index to make clustered

• Index tuning wizards look at past history of queries and
updates (the workload) and recommend which indices
would be best for the workload

38

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Application Security

39

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

SQL Injection

• In an application,users enter data

– this is a possible entry point for hackers!

• Consider the following code:

String user = request.getParameter(“username”);

String password = request.getParameter(“password”);

String query = “SELECT * FROM users
WHERE username = ‘“ + user + ”’
AND password = ‘“ + password ”’;

// execute query

// if there is a result, the login attempt was successful

40

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

SQL Injection

• Good user:
– username “John”, password “test123”

• Bad user:
– username “Jack”, password “test123’ OR 1=1”

• Consider the following code:
String user = request.getParameter(“username”);

String password = request.getParameter(“password”);

String query = “SELECT * FROM users
WHERE username = ‘“ + user + ”’
AND password = ‘“ + password ”’;

// execute query

// if there is a result, the login attempt was successful
41

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

SQL Injection

• Variant 1: Manual
– Check input for and mask/replace/remove special characters

• Variant 2: Using prepared statements in Java
PreparedStatement stmt = connection.prepareStatement

("SELECT * FROM users WHERE username=? AND password=?");
stmt.setString(1, user);
stmt.setString(2, password);
ResultSet rs = stmt.executeQuery();

42

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Cross Site Scripting

• HTML code on one page executes action on another page

– E.g. <img src =
http://mybank.com/transfermoney?amount=1000&toaccount=14523>

– Risk: if user viewing page with above code is currently logged into mybank, the
transfer may succeed

– Above example simplistic, since GET method is normally not used for updates, but if
the code were instead a script, it could execute POST methods

• Above vulnerability called cross-site scripting (XSS) or cross-site request forgery
(XSRF or CSRF)

• Prevent your web site from being used to launch XSS or XSRF attacks

– Disallow HTML tags in text input provided by users, using functions to detect and
strip such tags

• Protect your web site from XSS/XSRF attacks launched from other sites

– ...next slide

43

http://mybank.com/transfermoney?amount=1000&toaccount=14523

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Cross Site Scripting

• Protect your web site from XSS/XSRF attacks launched
from other sites

– Use referer value (URL of page from where a link was clicked)
provided by the HTTP protocol, to check that the link was followed
from a valid page served from same site, not another site

– Ensure IP of request is same as IP from where the user was
authenticated

• prevents hijacking of cookie by malicious user

– Never use a GET method to perform any updates

• This is actually recommended by HTTP standard

44

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Password Leakage

• Never store passwords, such as database passwords, in
clear text in scripts that may be accessible to users

– E.g. in files in a directory accessible to a web server

• connect_db(“root”,”password123”)

• Normally, web server will execute, but not provide source of script files
such as file.jsp or file.php, but…

• source of editor backup files such as file.jsp~, or .file.jsp.swp may be
served

• Restrict access to database server from IPs of machines
running application servers

– Most databases allow restriction of access by source IP address

45

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Password Leakage

• Never store user passwords as plain text in a database!

• Hackers may get access to the database and read them
– e.g., username “Jack”, password “test123; SELECT * FROM users”

• Typical best practice: store password hashes, e.g., md5
– hashing is fast in one direction, hard in the other

– Query:

• SELECT * FROM users WHERE user=? and password=md5(?)

– Changing passwords

• UPDATE users SET password=md5(?) WHERE user=?

– This way, passwords are never stored in plain text anywhere

46

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Password Leakage

• Attacks for hashed passwords: dictionary and brute force attacks

• Lookup Tables

• Adding Salt to the password (appending a random string)

– Lookup tables won’t work

– Store the salt (random string) and the hash

• Do not implement your own crypto algorithm (use e.g. phpass)

47

Dictionary Attack

Trying apple : failed

Trying blueberry : failed

Trying justinbieber : failed

...

Trying letmein : failed

Trying s3cr3t : success!

Brute Force Attack

Trying aaaa : failed

Trying aaab : failed

Trying aaac : failed

...

Trying acdb : failed

Trying acdc : success!

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Application Authentication

• Single factor authentication such as passwords
too risky for critical applications

– guessing of passwords, sniffing of packets if passwords are not encrypted

– passwords reused by user across sites

– spyware which captures password

• Two-factor authentication

– e.g. password plus one-time password sent by SMS

– e.g. password plus one-time password devices

• device generates a new pseudo-random number every minute, and displays to user

• user enters the current number as password

• application server generates same sequence of pseudo-random numbers to check that the
number is correct

48

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Application Authentication

• Man-in-the-middle attack

– E.g. web site that pretends to be mybank.com, and passes on
requests from user to mybank.com, and passes results back to user

– Even two-factor authentication cannot prevent such attacks

• Solution: authenticate Web site to user, using digital
certificates, along with secure http protocol

• Central authentication within an organization

– application redirects to central authentication service for
authentication

– avoids multiplicity of sites having access to user’s password

– LDAP or Active Directory used for authentication

49

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Single Sign-On

• Single sign-on allows user to be authenticated once, and applications
can communicate with authentication service to verify user’s identity
without repeatedly entering passwords

• Security Assertion Markup Language (SAML) standard for exchanging
authentication and authorization information across security domains

– e.g. user from Yale signs on to external application such as acm.org using
userid joe@yale.edu

– application communicates with Web-based authentication service at Yale to
authenticate user, and find what the user is authorized to do by Yale (e.g.
access certain journals)

• OpenID standard allows sharing of authentication across organizations

– e.g. application allows user to choose Yahoo! as OpenID authentication
provider, and redirects user to Yahoo! for authentication

50

mailto:joe@yale.edu

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Application-Level Authorization

• Current SQL standard does not allow fine-grained authorization such as
“students can see their own grades, but not other’s grades”

– Problem 1: Database has no idea who are application users

– Problem 2: SQL authorization is at the level of tables, or columns of tables,
but not to specific rows of a table

• One workaround: use views such as

CREATE VIEW studentTakes AS
SELECT *
FROM takes
WHERE takes.ID = USER()

– where USER() provides end user identity

• end user identity must be provided to the database by the application

– Having multiple such views is cumbersome

51

no SQL standard;
varies from

implementation
to implementation

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Audit Trails

• Applications must log actions to an audit trail, to detect
who carried out an update, or accessed some sensitive data

• Audit trails used after-the-fact to

– detect security breaches

– repair damage caused by security breach

– trace who carried out the breach

• Audit trails needed at

– Database level, and at

– Application level

52

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Summary

• Databases do not run by themselves, but in context
– applications work on top

• A good database design is essential, but there’s also
– security

– performance,

– …

• There’s quite a few trade offs
– storage vs. velocity

– update vs. read time

– …

→ there’s no once size fits all solution!

53

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

What’s Next?

• Database Systems II (FSS, Moerkotte)
– e.g., distributed DBMS, object-relational DBs, deductive DBs

• Query Optimization (FSS, Moerkotte)
– more sophisticated query optimization

• Large-Scale Data Management (HWS, Gemulla)
– e.g., parallel & distributed databases, MapReduce, SPARQL, NoSQL

54

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

What’s Next?

• Data Security and Privacy (FSS, Armknecht)
– also covers aspects such as encryption

• Web Data Integration (HWS, Bizer)
– dealing with multiple databases

– automatically integrating them into a single one

– can be accompanied with a practical project

• Data Mining (FSS/HWS, Bizer/Hertling)
– finding patterns in data

– entry point to more specific lectures in the data analytics field

– includes a practical project

55

University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Data and Web Science Group

Questions?

56

	Folie 1: Applications
	Folie 2: Recap: The Big Picture
	Folie 3: Today’s Lecture
	Folie 4: Application Architecture Evolution
	Folie 5: Web Interface
	Folie 6: Web based Applications in a Nutshell
	Folie 7: Sample HTML Source Text
	Folie 8: Sample HTML Source Text
	Folie 9: Three-Layer Web Architecture
	Folie 10: Two-Layer Web Architecture
	Folie 11: HTTP and Sessions
	Folie 12: Sessions and Cookies
	Folie 13: Programming on the Server Side
	Folie 14: Servlets
	Folie 15: Example Servlet Code
	Folie 16: Example Servlet Code
	Folie 17: Servlet Sessions
	Folie 18: Servlet Support
	Folie 19: Server-Side Scripting
	Folie 20: Java Server Pages (JSP)
	Folie 21: PHP
	Folie 22: Client Side Scripting
	Folie 23: Client Side Scripting and Security
	Folie 24: Javascript
	Folie 25: Legacy Systems
	Folie 26: Legacy Systems (Cont.)
	Folie 27: Legacy Systems (Cont.)
	Folie 28: Legacy Systems (Cont.)
	Folie 29: Performance Tuning
	Folie 30: Bottlenecks
	Folie 31: Identifying Bottlenecks
	Folie 32: Queues in a Database System
	Folie 33: Tuning of Hardware
	Folie 34: Tuning the Database Design
	Folie 35: Tuning the Database Design (Cont.)
	Folie 36: Tuning the Database Design (Cont.)
	Folie 37: Tuning the Database Design (Cont.)
	Folie 38: Tuning the Database Design (Cont.)
	Folie 39: Application Security
	Folie 40: SQL Injection
	Folie 41: SQL Injection
	Folie 42: SQL Injection
	Folie 43: Cross Site Scripting
	Folie 44: Cross Site Scripting
	Folie 45: Password Leakage
	Folie 46: Password Leakage
	Folie 47: Password Leakage
	Folie 48: Application Authentication
	Folie 49: Application Authentication
	Folie 50: Single Sign-On
	Folie 51: Application-Level Authorization
	Folie 52: Audit Trails
	Folie 53: Summary
	Folie 54: What’s Next?
	Folie 55: What’s Next?
	Folie 56: Questions?

