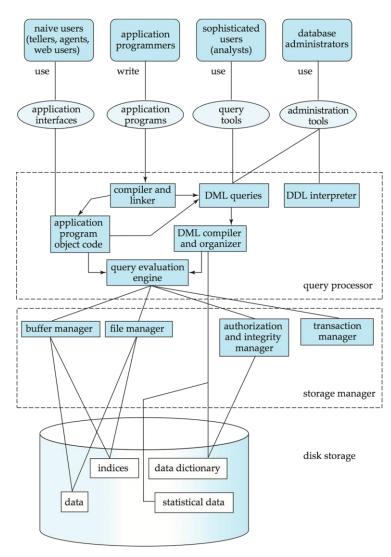
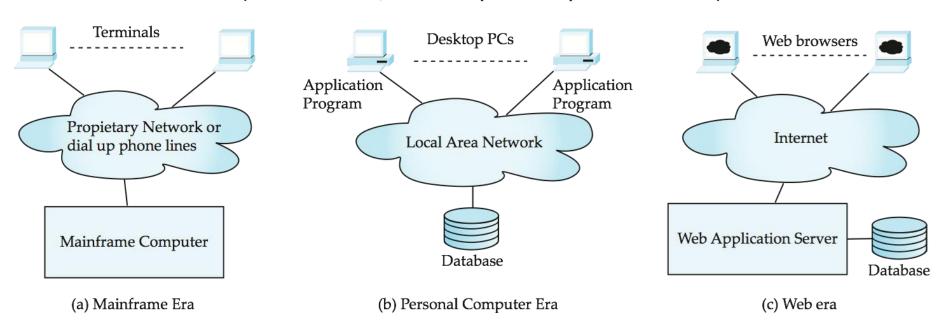
Applications


CS460 Databases for Data Scientists

Recap: The Big Picture

- Users interact with databases indirectly
 - i.e., via applications
 - no direct usage of SQL
- Most applications today have a database under the hood, e.g.,
 - shopping portals
 - news web sites
 - games

Today's Lecture



- Architectures for database centric applications
 - Three/Two-Layer Web Architecture
 - HTML/Session/Cookies
 - Server/Client Side Scripting
- Legacy Systems
- Performance Tuning
 - Bottlenecks
 - Database Design
- Security Issues
 - SQL Injection
 - Cross Site Scripting
 - Password Leakage
 - Application Authentication/Authorization

Application Architecture Evolution

- Three eras of application architecture
 - mainframe (1960's and 70's)
 - personal computer era (1980's)
 - Web era (since 1990's, nowadays mostly mobile Web)

Web Interface

Web browsers

- de-facto standard user interface to databases
- multi-user, location agnostic interface
- no need for downloading/installing specialized code,
 while providing a good graphical user interface
 - JavaScript, Flash and other scripting languages run in browser, but are downloaded transparently
- Examples: banks, airline and rental car reservations, university course registration and grading, ...

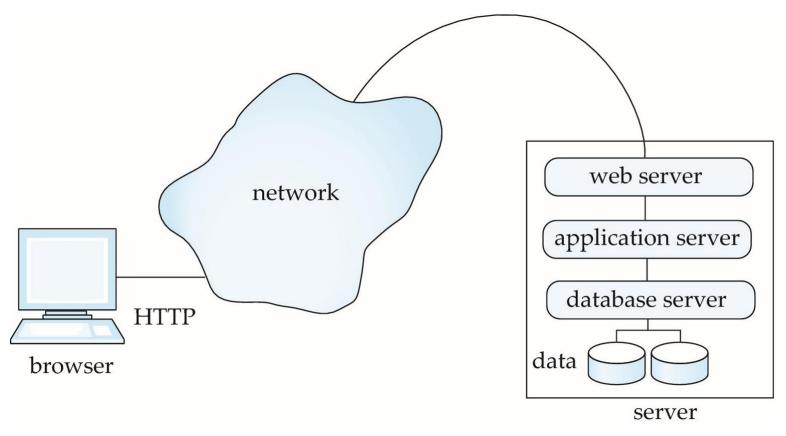
Web based Applications in a Nutshell

- Web documents are hypertext documents formatted using HyperText Markup Language (HTML)
- HTML documents contain
 - text along with font specifications, and other formatting instructions
 - hypertext links to other documents
 - forms, enabling users to enter data which can then be sent back to the Web server
- HyperText Transfer Protocol (HTTP) used for communication with the Web server
- URL may identify a document or an executable program
 - executed by HTTP server
 - creates HTML documents, which is sent back to client
 - Web client can pass extra arguments with the name of the document

Sample HTML Source Text


```
<html>
<body>
  Name Department 
   ID
   00128 Zhang Comp. Sci.  
 <form action="PersonQuery" method=get>
  Search for:
    <select name="persontype">
     <option value="student" selected>Student </option>
     <option value="instructor"> Instructor </option>
   </select> <br>
  Name: <input type=text size=20 name="name">
  <input type=submit value="submit">
 </form>
</body>
</html>
```

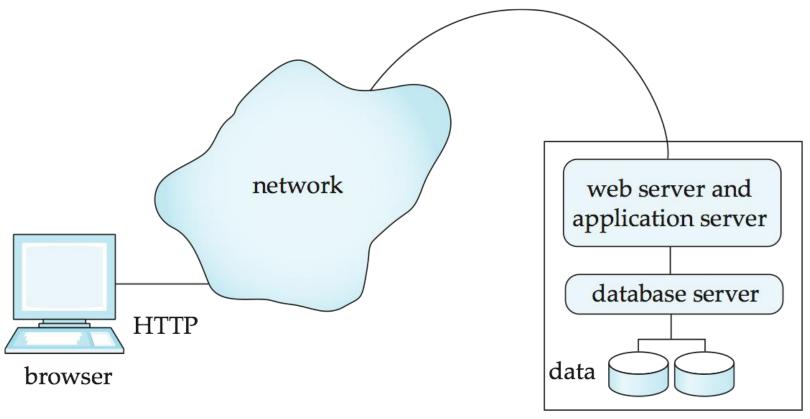
Sample HTML Source Text


```
<html>
<body>
  ID  Name Department
   00128ZhangComp. Sci.
 <form action="PersonQuery" method= "get">
   Search for:
   <select name="persontype">
        <option value="student" selected>Student </option>
        <option value="instructor"> Instructor </option>
   </select> <br>
    Name: <input type="text" size=20 name="name">
    <input type ="submit" value="submit">
  </form>
</body>
</html>
```

ID	Name	Department
00128	Zhang	Comp. Sci.
12345	Shankar	Comp. Sci.
19991	Brandt	History

Search for: Student :
Name: submit

Three-Layer Web Architecture



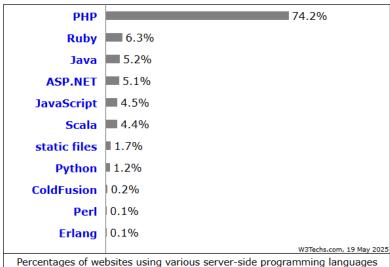
Two-Layer Web Architecture

- Multiple levels of indirection have overheads
 - Alternative: two-layer architecture

HTTP and Sessions

- The HTTP protocol is connectionless
 - Once the server replies to a request, the server closes the connection with the client, and forgets all about the request
 - In contrast, Unix logins, and JDBC/ODBC connections stay connected until the client disconnects
 - retaining user authentication and other information
 - Motivation: reduce load on server
 - operating systems have tight limits on number of open connections on a machine
- Information services need session information
 - E.g., user authentication should be done only once per session
- Solution: cookies

Sessions and Cookies



- A cookie is a small piece of text containing identifying information
 - Sent by server to browser
 - Sent on first interaction, to identify session
 - Sent by browser with each request
 - part of the HTTP protocol
 - Server saves information about cookies it issued,
 and can use it when serving a request
 - E.g., authentication information, and user preferences
- Cookies can be stored permanently or for a limited time

Programming on the Server Side

- Paradigms
 - Programming (i.e., each document is assembled by a program)
 - Scripting (embedded in HTML)
- Different programming languages can be used

Percentages of websites using various server-side programming languages Note: a website may use more than one server-side programming language

Servlets

- Java Servlet specification
 - defines an API for communication between the Web/application server and application program running in the server
 - methods to get parameter values from Web forms
 - methods to send HTML text back to client
- Application program (also called a servlet) is loaded into the server
 - Each request spawns a new thread in the server
 - thread is closed once the request is serviced

Example Servlet Code


```
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class PersonQueryServlet extends HttpServlet {
 public void doGet (HttpServletRequest request, HttpServletResponse response)
              throws ServletException, IOException
   response.setContentType("text/html");
   PrintWriter out = response.getWriter();
   out.println("<HEAD><TITLE> Query Result</TITLE></HEAD>");
   out.println("<BODY>");
     ..... BODY OF SERVLET (next slide) ...
   out.println("</BODY>");
   out.close();
```

Example Servlet Code


```
String persontype = request.getParameter("persontype");
String number = request.getParameter("name");
if(persontype.equals("student")) {
 ... code to find students with the specified name ...
 ... using JDBC to communicate with the database ...
 out.println("");
 out.println("  ID Name: " + " Department ");
 for(... each result ...){
   ... retrieve ID, name and dept name
   ... into variables ID, name and deptname
   out.println(" " + ID + "" + "" + name + "" + "" + deptname
         + ""):
 };
 out.println("");
else {
 ... as above, but for instructors ...
```

Servlet Sessions

- Servlet API supports handling of sessions
 - Set a cookie on first interaction with browser
 - use it to identify session on further interactions
- To check if session is already active:
 - if (request.getSession(false) == true)
 - .. then use existing session
 - else .. redirect to authentication page
 - authentication page
 - check login/password

we can also check the age of the cookie here for session timeout

Servlet Support

- Servlets run inside application servers such as
 - Apache Tomcat, Glassfish, JBoss
 - BEA Weblogic, IBM WebSphere and Oracle Application Servers
- Application servers support
 - deployment and monitoring of servlets
 - Java 2 Enterprise Edition (J2EE) platform supporting objects,
 parallel processing across multiple application servers, etc

Server-Side Scripting

- Server-side scripting
 - HTML document with embedded executable code and/or SQL queries
 - Input values from HTML forms can be used directly
 - When the document is requested, the Web server executes the embedded code/SQL queries to generate the actual HTML document
- Numerous server-side scripting languages
 - JSP, PHP
 - General purpose scripting languages: VBScript, Perl, Python

Java Server Pages (JSP)

A JSP page with embedded Java code

```
<html>
<head> <title> Hello </title> </head>
<body>
<% if (request.getParameter("name") == null)
{ out.println("Hello World"); }
else { out.println("Hello, " + request.getParameter("name")); }
%>
</body>
</html>
```

- JSP is compiled into Java + Servlets
- JSP allows new tags to be defined, in tag libraries
 - such tags are like library functions, can are used for example to build rich user interfaces such as paginated display of large datasets

PHP

- PHP is widely used for Web server scripting
- Extensive libaries including for database access using ODBC

```
<html>
 <head> <title> Hello </title> </head>
 <body>
 <?php if (!isset($_REQUEST['name']))</pre>
 { echo "Hello World"; }
 else { echo "Hello, " + $_REQUEST['name']; }
 ?>
 </body>
 </html>
```

Client Side Scripting

- Browsers can fetch certain scripts (client-side scripts) or programs along with documents, and execute them in "safe mode" at the client site
 - <u>Today</u>: mostly Javascript
 - Historic: Macromedia Flash/Shockwave for animation/games,
 VRML, Java Applets
- Client-side scripts/programs allow documents to be active
 - E.g., animation by executing programs at the local site
 - E.g., ensure that values entered by users satisfy some correctness checks
 - Permit flexible interaction with the user
- Executing programs at the client site speeds up interaction by avoiding many round trips to server
 University of Mannheim | CS460 Databases for Data Scientists | Applications | Version 10.02.2025

Client Side Scripting and Security

- Security mechanisms needed to ensure that malicious scripts do not cause damage to the client machine
 - easy for limited capability scripting languages
 - harder for general purpose programming languages like Java
- E.g., Java's security system ensures that the Java applet code does not make any system calls directly
 - Disallows dangerous actions such as file writes
 - Notifies the user about potentially dangerous actions
 - allow the option to abort the program or to continue execution

Javascript

- Javascript very widely used
 - forms basis of new generation of Web applications
 (called Web 2.0 applications) offering rich user interfaces
- Javascript functions can
 - check input for validity
 - modify the displayed Web page
 - by altering the underlying document object model (DOM) tree
 - communicate with a Web server to fetch data and modify the current page using fetched data, without needing to reload/refresh the page
 - forms basis of AJAX technology used widely in Web 2.0 applications
 - e.g., loading further content upon scrolling down a Web page
 - e.g. on selecting a country in a drop-down menu, the list of states in that country is automatically populated in a linked drop-down menu

Legacy Systems

- Older-generation systems that are incompatible with current generation standards and systems but still in production use
 - E.g., applications written in COBOL that run on mainframes
 - Today's hot new system is tomorrows legacy system!
- Porting legacy system applications to a more modern environment is problematic
 - Legacy system may involve millions of LoC, written over decades
 - Original programmers usually no longer available
 - Switching over from old system to new system is a problem
 - more on this later
- One approach: build a wrapper layer on top of legacy application to allow interoperation between newer systems and legacy application
 - E.g., use ODBC or OLE-DB as wrapper

Legacy Systems (Cont.)

- Rewriting legacy application: understanding what it does (and how)
 - Legacy code often has no/little documentation documentation
 - reverse engineering: process of going over legacy code to
 - Come up with schema designs in ER or OO model
 - Get a high level view of system
- Re-engineering:
 - reverse engineering followed by design of new system
 - Improvements are made on existing system design in this process

Legacy Systems (Cont.)

- Switching over from old to new system is a major problem
 - Production systems are in every day, generating new data
 - Stopping the system may bring all of a company's activities to a halt, causing enormous losses

Big-bang approach:

- Implement complete new system
- Populate it with data from old system
 - No transactions while this step is executed
 - scripts are created to do this quickly
- Shut down old system and start using new system
- Danger with this approach: what if new code has bugs or performance problems, or missing features
 - Company may be brought to a halt

Legacy Systems (Cont.)

Chicken-little approach:

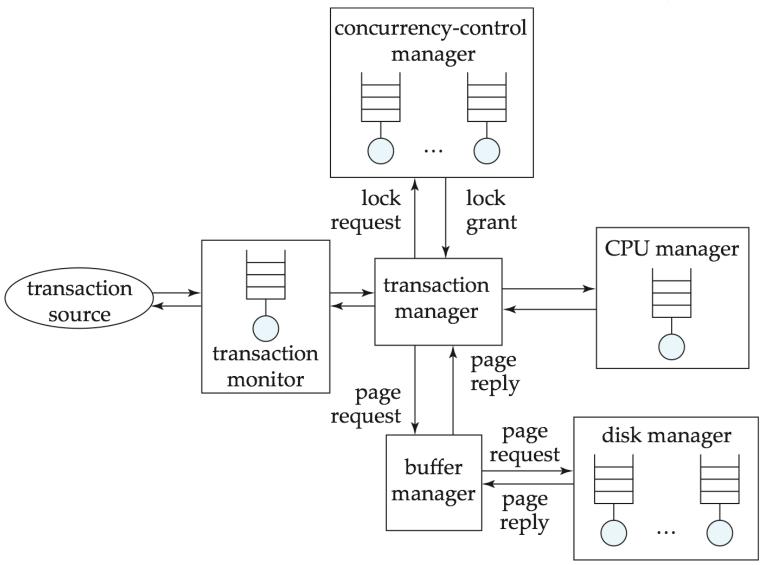
- Replace legacy system one piece at a time
- Use wrappers to interoperate between legacy and new code
 - E.g., replace front end first, with wrappers on legacy backend
 - Old front end can continue working in this phase in case of problems with new front end
 - Replace back end, one functional unit at a time
 - All parts that share a database may have to be replaced together, or wrapper is needed on database as well
- Drawback: significant extra development effort to build wrappers and ensure smooth interoperation
 - Still worth it if company's life depends on system

Performance Tuning

- Adjusting various parameters and design choices
 - to improve system performance for a specific application
 - notion: continuous improvement rather than waterfall model
- Tuning is best done by
 - 1) identifying bottlenecks, and
 - 2) eliminating them
- Three levels of tuning
 - Hardware,e.g., add disks, memory, use faster processor
 - Database system parameters,
 e.g., buffer size, checkpointing intervals
 - Higher level database design,
 e.g., schema, indices, and transactions

Bottlenecks

- Performance of most systems (at least before they are tuned) usually limited by performance of one or a few components
 - these are called **bottlenecks**
 - 80/20 rule: 20% of code consume 80% of execution time
 - spend more time on those 20%
- Bottlenecks may be in hardware (e.g., disks are very busy,
 CPU is idle), or in software
- Removing one bottleneck often exposes another
- De-bottlenecking consists of repeatedly finding bottlenecks, and removing them


Identifying Bottlenecks

- Transactions request a sequence of services
 - E.g., CPU, Disk I/O, locks
- Concurrent transactions wait for a requested service while others are being served
- Notion: database as a queueing system with a queue for each service
 - Transactions repeatedly do the following
 - request a service, wait in queue for the service, and get serviced
- Bottlenecks in a database system typically show up as very high utilizations (very long queues) of a particular service
 - e.g., disk vs. CPU utilization
 - 100% utilization leads to very long waiting time:
 - Rule of thumb: design system for about 70% utilization at peak load
 - utilization over 90% should be avoided

Queues in a Database System

Tuning of Hardware

- Even well-tuned transactions typically require a few I/O operations
 - Typical disk supports about 100 random I/O operations per second
 - Suppose each transaction requires just 2 random I/O operations
 - to support n transactions per second,
 we need to distribute data across n/50 disks (ignoring skew)
- Number of I/O operations per transaction can be reduced by keeping more data in memory
 - If all data is in memory, I/O needed only for writes
 - Keeping frequently used data in memory reduces disk accesses, reducing number of disks required, but has a memory cost
- Five minute rule:
 - if a page that is randomly accessed is used more frequently than once in five minutes, it should be kept in memory

Tuning the Database Design

Schema tuning

- Vertically partition relations to isolate the data that is accessed most often
 - e.g., split account into two, (account-number, branch-name) and (account-number, balance).
 - branch name need not be fetched unless required
 - More rows per block → less block transfers
- Improve performance by storing a denormalized relation
 - E.g., store join of account and depositor; branch-name and balance information is repeated for each holder of an account
 - join need not be computed repeatedly
 - trade-off: more space and more work for programmer to keep relation consistent on updates
 - Better to use materialized views (see later)

Tuning the Database Design (Cont.)

- Incidental violations of normal forms
 - e.g., storing join tables that would be split by normalization
- Incidental violations of domain model
 - Example: each person can have many phone numbers (1:n)
 - Theoretically sound solution: two tables (person, phone)
 - Practical observation: not more than four in 1M persons
 - rather introduce attributes phone1, phone2, phone3, phone4
 - avoids joins with long tables

Tuning the Database Design (Cont.)

Materialized Views

- Materialized views can help speed up certain queries
 - Particularly aggregate queries
- Overheads
 - Space
 - Time for view maintenance
 - Immediate view maintenance: done as part of update transaction
 - time overhead paid by update transaction
 - Deferred view maintenance: done only when required
 - update transaction is not affected, but system time is spent on view maintenance
 - until updated, the view may be out-of-date
- Preferable to denormalized schema since view maintenance is system's responsibility, not programmer's
 - Avoids inconsistencies caused by errors in update programs

Tuning the Database Design (Cont.)

- How to choose set of materialized views
 - Helping one transaction type by introducing a materialized view may hurt others
 - selections including aggregates will be speed up
 - updates are slowed down
 - Choice of materialized views depends on costs
 - Users often have no idea of actual cost of operations
 - Overall, manual selection of materialized views is tedious
- Some database systems provide tools to help DBA choose views to materialize
 - "Materialized view selection wizards"

Tuning the Database Design (Cont.)

Index tuning

- Create appropriate indices to speed up slow queries/updates
- Speed up slow updates by removing excess indices (tradeoff between queries and updates)
- Choose type of index (B-tree/hash) appropriate for most frequent types of queries
- Choose which index to make clustered
- Index tuning wizards look at past history of queries and updates (the workload) and recommend which indices would be best for the workload

Application Security

SQL Injection

- In an application, users enter data
 - this is a possible entry point for hackers!

Consider the following code:

```
String user = request.getParameter("username");

String password = request.getParameter("password");

String query = "SELECT * FROM users

WHERE username = "" + user + "'

AND password = "" + password "";

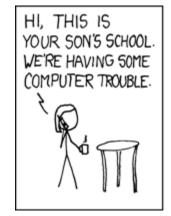
// execute query

// if there is a result, the login attempt was successful
```

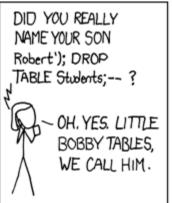
SQL Injection

- Good user:
 - username "John", password "test123"
- Bad user:
 - username "Jack", password "test123' OR 1=1"

Consider the following code:


```
String user = request.getParameter("username");
String password = request.getParameter("password");
String query = "SELECT * FROM users
                 WHERE username = "" + user + ""
                 AND password = "" + password "";
// execute query
// if there is a result, the login attempt was successful
```

SQL Injection



- Variant 1: Manual
 - Check input for and mask/replace/remove special characters
- Variant 2: Using prepared statements in Java

```
PreparedStatement stmt = connection.prepareStatement
    ("SELECT * FROM users WHERE username=? AND password=?");
    stmt.setString(1, user);
    stmt.setString(2, password);
    ResultSet rs = stmt.executeQuery();
```


Cross Site Scripting

- HTML code on one page executes action on another page
 - E.g.
 - Risk: if user viewing page with above code is currently logged into mybank, the transfer may succeed
 - Above example simplistic, since GET method is normally not used for updates, but if the code were instead a script, it could execute POST methods
- Above vulnerability called cross-site scripting (XSS) or cross-site request forgery (XSRF or CSRF)
- Prevent your web site from being used to launch XSS or XSRF attacks
 - Disallow HTML tags in text input provided by users, using functions to detect and strip such tags
- Protect your web site from XSS/XSRF attacks launched from other sites
 - ...next slide

Cross Site Scripting

- Protect your web site from XSS/XSRF attacks launched from other sites
 - Use referer value (URL of page from where a link was clicked)
 provided by the HTTP protocol, to check that the link was followed
 from a valid page served from same site, not another site
 - Ensure IP of request is same as IP from where the user was authenticated
 - prevents hijacking of cookie by malicious user
 - Never use a GET method to perform any updates
 - This is actually recommended by HTTP standard

Password Leakage

- Never store passwords, such as database passwords, in clear text in scripts that may be accessible to users
 - E.g. in files in a directory accessible to a web server
 - connect_db("root","password123")
 - Normally, web server will execute, but not provide source of script files such as file.jsp or file.php, but...
 - source of editor backup files such as file.jsp~, or .file.jsp.swp may be served
- Restrict access to database server from IPs of machines running application servers
 - Most databases allow restriction of access by source IP address

Password Leakage

- Never store user passwords as plain text in a database!
- Hackers may get access to the database and read them
 - e.g., username "Jack", password "test123; SELECT * FROM users"
- Typical best practice: store password hashes, e.g., md5
 - hashing is fast in one direction, hard in the other
 - Query:
 - SELECT * FROM users WHERE user=? and password=md5(?)
 - Changing passwords
 - UPDATE users SET password=md5(?) WHERE user=?
 - This way, passwords are never stored in plain text anywhere

Password Leakage

Attacks for hashed passwords: dictionary and brute force attacks

Dictionary Attack

Brute Force Attack

Trying apple : failed Trying aaaa : failed Trying blueberry : failed Trying justinbieber : failed Trying aaab : failed Trying aaac : failed Trying aaac : failed

• • •

Trying letmein : failed Trying acdb : failed Trying acdc : success! Trying acdc : success!

Lookup Tables

- Adding Salt to the password (appending a random string)
 - Lookup tables won't work
 - Store the salt (random string) and the hash
- Do not implement your own crypto algorithm (use e.g. phpass)

Application Authentication

- Single factor authentication such as passwords too risky for critical applications
 - guessing of passwords, sniffing of packets if passwords are not encrypted
 - passwords reused by user across sites
 - spyware which captures password
- Two-factor authentication
 - e.g. password plus one-time password sent by SMS
 - e.g. password plus one-time password devices
 - device generates a new pseudo-random number every minute, and displays to user
 - user enters the current number as password
 - application server generates same sequence of pseudo-random numbers to check that the number is correct

Application Authentication

- Man-in-the-middle attack
 - E.g. web site that pretends to be mybank.com, and passes on requests from user to mybank.com, and passes results back to user
 - Even two-factor authentication cannot prevent such attacks
- Solution: authenticate Web site to user, using digital certificates, along with secure http protocol
- Central authentication within an organization
 - application redirects to central authentication service for authentication
 - avoids multiplicity of sites having access to user's password
 - LDAP or Active Directory used for authentication

Single Sign-On

- Single sign-on allows user to be authenticated once, and applications can communicate with authentication service to verify user's identity without repeatedly entering passwords
- Security Assertion Markup Language (SAML) standard for exchanging authentication and authorization information across security domains
 - e.g. user from Yale signs on to external application such as acm.org using userid joe@yale.edu
 - application communicates with Web-based authentication service at Yale to authenticate user, and find what the user is authorized to do by Yale (e.g. access certain journals)
- OpenID standard allows sharing of authentication across organizations
 - e.g. application allows user to choose Yahoo! as OpenID authentication provider, and redirects user to Yahoo! for authentication

Application-Level Authorization

- Current SQL standard does not allow fine-grained authorization such as "students can see their own grades, but not other's grades"
 - Problem 1: Database has no idea who are application users
 - Problem 2: SQL authorization is at the level of tables, or columns of tables, but not to specific rows of a table
- One workaround: use views such as

CREATE VIEW studentTakes AS

SELECT *

FROM takes

WHERE takes.ID = USER()

no SQL standard;

varies from

implementation

to implementation

- where USER() provides end user identity
 - end user identity must be provided to the database by the application
- Having multiple such views is cumbersome

Audit Trails

- Applications must log actions to an audit trail, to detect who carried out an update, or accessed some sensitive data
- Audit trails used after-the-fact to
 - detect security breaches
 - repair damage caused by security breach
 - trace who carried out the breach
- Audit trails needed at
 - Database level, and at
 - Application level

Summary

- Databases do not run by themselves, but in context
 - applications work on top
- A good database design is essential, but there's also
 - security
 - performance,
 - **—** ...
- There's quite a few trade offs
 - storage vs. velocity
 - update vs. read time
 - **–** ...
 - → there's no once size fits all solution!

What's Next?

- Database Systems II (FSS, Moerkotte)
 - e.g., distributed DBMS, object-relational DBs, deductive DBs
- Query Optimization (FSS, Moerkotte)
 - more sophisticated query optimization
- Large-Scale Data Management (HWS, Gemulla)
 - e.g., parallel & distributed databases, MapReduce, SPARQL, NoSQL

What's Next?

- Data Security and Privacy (FSS, Armknecht)
 - also covers aspects such as encryption
- Web Data Integration (HWS, Bizer)
 - dealing with multiple databases
 - automatically integrating them into a single one
 - can be accompanied with a practical project
- Data Mining (FSS/HWS, Bizer/Hertling)
 - finding patterns in data
 - entry point to more specific lectures in the data analytics field
 - includes a practical project

Questions?

