UNIVERSITÄT MANNHEIM

Heiko Paulheim

Hello

- Prof. Dr. Heiko Paulheim
 - Chair for Data Science
- Research Interests:
 - Knowledge Graphs on the Web and their Applications
 - Data Quality and Data Cleaning on Knowledge Graphs
 - Using Knowledge Graphs in Data Mining
 - Societal Impact of Artificial Intelligence
- Room: B6 26, B0.22
- Consultation: Tuesdays 9-10
 - Please make an appointment with Bianca Lermer upfront
- Heiko will teach the lectures

Hello

- M.Sc. Sven Hertling
- Graduate Research Associate
- Research Interests:
 - Semantic Technologies / Semantic Web
 - Linked Data
 - Knowledge Graphs
- eMail: sven@informatik.uni-mannheim.de
- Sven will teach the exercises and co-supervise the projects.

Introduction and Course Outline

- Administration
- Introduction to Knowledge Graphs
- History of Knowledge Graphs
 - Vision of the Semantic Web
 - Building blocks of the Semantic Web
 - Technical foundations

Course Organization

- Lecture
 - Knowledge Graph standards and languages
 - Using public knowledge graphs
 - Creating knowledge graphs
- Exercise
 - Understand knowledge graphs and their principles, play with real data
- Project Work
 - teams of 3-4 students build a Knowledge Graph application
 - teams may choose their own data sets and tasks (in addition, we will propose some pointers for ideas)
 - write summary about project, present project results
 - not graded, but mandatory
- Final exam
 - final grades are only based on written exam

Course Organization

- Registration
 - you have registered via Portal2
 - you should have access to ILIAS
 - the course is fully booked with a waiting list
 - if you decide not to attend, please deregister in Portal2
- Important: course replacement
 - This course replaces IE 650 Semantic Web Technologies
 - You cannot get credits for both courses

Course Contents and Schedule

Week	Tuesday	Friday you are here
12.09.2022	Lecture: Introduction	Exercise: Introduction
19.09.2022	Lecture: RDF	Exercise: RDF
26.09.2022	Lecture: RDFS	Exercise: RDFS
03.10.2022	Lecture: Linked Data, Semantic Web Programming	Exercise: Linked Data, Semantic Web Programming
10.10.2022	Lecture: SPARQL and other Query Paradigms	Exercise: SPARQL, Kick off Group Projects
17.10.2022	Lecture: Public Knowledge Graphs	Exercise: Public Knowledge Graphs
24.10.2022	Lecture: Labeled Property Graphs	Exercise: Labeled Property Graphs
31.12.2022	Public holiday	No exercise
07.11.2022	Lecture: OWL Part 1	Exercise: OWL Part 1
14.11.2022	Lecture: OWL Part 2	Exercise: OWL Part 2
21.11.2022	Lecture: Knowledge Modeling	Exercise: Knowledge Modeling
28.11.2022	Lecture: Data Quality and Interlinking	Exercise: Data Quality and Interlinking
05.12.2022	Project Presentations	

9/19/22

Heiko Paulheim

Deadlines

- Submission of project work proposal
 - Sunday, October 16th 23:59
- Submission of final project work report
 - Friday, December 9th, 23:59

Course Organization

- Lecture Webpage: Slides, Announcements, Web Links
 - hint: look at version tags of slides!
- Additional Material
 - ILIAS eLearning System, https://ilias.uni-mannheim.de/
- Time and Location
 - Lecture: Tuesday, 3.30 5.00, Room B6 30-32, E-F, room 209
 - Exercise: Friday, 12.00 13.30, Room B6 26, A1.04

Further Reading and Software

- Follow the links on the website
 - Most material is available online
- Programming environment
 - JENA framework (Java)
 - RDFlib (Python)
- Knowledge graph environment
 - Neo4j
- Ontology engineering environment
 - Protégé
 - http://protege.stanford.edu/

Warning

- This lecture contains
 - cartoons
 - Java and Python code
 - some digressions to philosophy
- Having said that:
 - have fun! :-)

Questions?

UNIVERSITÄT MANNHEIM

Heiko Paulheim

The Birth of a Buzzword

Heiko Paulheim

9/19/22

Idea of the Google Knowledge Graph

- Web search in the pre-knowledge graph age ۲
 - **Documents** _
 - Keywords (not: disambiguated entities)

de.wikipedia.org

Hilton Paris Opera - Fremdenverkehrsamt ... de.parisinfo.com

DIE 5 BESTEN Hilton Hotels in Paris

tripadvisor.de

Hotel Hilton Paris Opera in Paris ab 254 € agoda.com

Hilton Paris Opera, 4-Sterne-Hotel im ...

hiltonhotels.de

booking.com

Hilton Paris Opera, Paris ...

▷ Hotel Hilton Paris Opera, Paris ... tui.com

hiltonhotels.de

Hilton Paris Opera, 4-Sterne-Hotel i...

Paris Hilton's 2022: Refreshing Her ... bloomberg.com

Heiko Paulheim

Hotel Hilton Paris Opera in Paris ab 254 €

Kathy Hilton, Paris Hilt... alamy.de

Hilton Paris Opera ab 247 €. Hotels in ... kayak.de

Paris Hilton | Forum - D ... magazin-forum.de

Hilton Paris Opera (1889), Paris ... historichotelsthenandnow.com

Barron Hilton: Bruder von Paris Hilton ...

gala.de

Hilton Paris Opera Hotel, Paris, Franc. hotel-board.com

Hilton to manage the Concorde Opéra ... hospitality-on.com

9/19/22

Paris Hilton: »Ich bin der Beweis, dass ... spiegel.de

beruhmte-zitate.de

Zitate von Paris Hilton ...

Idea of the Google Knowledge Graph

- Web search in the knowledge graph age
 - Backed by structured information
 - All entities are disambiguated
- Linked to other services
 - Ratings and reviews
 - Map information
 - External services (e.g., booking)

- ...

See phot	Saint-Lazare	FNAC Paris - Saint-Lazare
Hilton Paris	-	
Website Directions	Save	
4,3 ★★★★★ 2.280 God 4-star hotel CH		
Address: 108 Rue Saint- Phone: +33 1 40 08 44 4		France
Compare prices		
Mon, 7 Nov	Tue, 8 Nov	≗ 2
Ads · Featured options	5	:
B. Booking.com		€349 >
Hotels.com		€349 >
Expedia.de		€349 >

An Example for a Knowledge Graph

https://yashuseth.wordpress.com/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/

From Google to the World

- Documented list of companies using knowledge graphs
 - Courtesy of Frank van Harmelen, VU Amsterdam

9/19/22

Knowledge Graph Definitions

- Knowledge Graphs are a fairly new technology
 - Hence, there are few universally acclaimed definitions
- Some example definitions from the literature:
 - Knowledge graphs could be envisaged as a network of all kind things which are relevant to a specific domain or to an organization. They are not limited to abstract concepts and relations but can also contain instances of things like documents and datasets.
 (Blumauer, 2014)
 - Knowledge graphs are large networks of entities, their semantic types, properties, and relationships between entities.
 (Kroetsch and Weikum, 2016)

Ehrlinger and Wöß: Towards a Definition of Knowledge Graphs. 2016

Knowledge Graph Definitions (ctd.)

- [...] systems exist, [...], which use a variety of techniques to extract new knowledge, in the form of facts, from the web. These facts are interrelated, and hence, recently this extracted knowledge has been referred to as a knowledge graph.
 (Pujara et al., 2013)
- A Knowledge Graph (1) mainly describes instances and their relations in a graph, (2) defines possible classes and relations in a schema or ontology, (3) allows for interlinking arbitrary entities with each other, and (4) covers various domains. (Paulheim, 2017)

Ehrlinger and Wöß: Towards a Definition of Knowledge Graphs. 2016

Knowledge Graph Definitions (ctd.)

- Common ground so far:
 - There are entities and relations that are connected and form a graph
 - There is a set of entity and relation *types*
 - those are often referred to as a *schema* or *ontology*
 - we will get back to this

Rewinding the Time Machine

- Google claim "things, not strings"
 - Entities instead of words in documents
 - Relations between entities explicitly modeled
 - Accessible to humans and machines
 - think: computers cannot read text

The Vision of the Semantic Web (2001)

 2001 article by Tim Berners-Lee, Jim Hendler, and Ora Lassila:

"The Web is the killer app of the Internet. The Semantic Web is another killer app of that magnitude."

Berners-Lee et al. (2001): The Semantic Web. In: Scientific American, Mai 2001.

9/19/22 Heiko Paulheim

IVE: WARP DRIVE UNDERWATER + ARCTIC OIL VS. WILDLIFE

SCIENTIFIC

Web vs. Internet?

Chin-Shiuh Shieh (2000): TCP/IP - Internet Protocol Suite and Ethernet. http://bit.kuas.edu.tw/~csshieh/teach/np/tcpip/index.html

The "Classic" Web

- a.k.a. "World Wide Web", "Document Web"
- Uses HTTP protocol and URLs
- HTML as a markup language
 - plus CSS, JavaScript, ...
 - plus a few other, more or less standardized formats (GIF, JPEG, Flash, ...)
- Browser as a universal client
- Information is accessible to humans, but not to machines

The "Classic" Web

• Hypertext: linked documents

The "Classic" Web

Searching for Information on the Web

Full text search by keywords (e.g., Google):

- "Mark Smith"
- "Physician in Smalltown"
- "Doctor in Smalltown"
- "Doctor in Smalltown with opening hours on Wednesday afternoon"
- "Somebody in Smalltown who can fix a broken leg"
- \rightarrow "classic" Web is too inflexible for useful search
- \rightarrow hard to use for intelligent agents

<h< th=""><th>itml></th></h<>	itml>
	 Dr. Mark Smith <i>Physician</i> Main St. 14
	Main St. 14 Smalltown Mon-Fri 9-11 am Wed 3-6 pm
</td <td> /html></td>	 /html>

Problems of the "Classic" Web

- Finding information
 - Keyword based search instead of natural language questions
 - Different natural languages
 - Synonyms, homonyms and polysemous words
 - Ambiguity of natural language
- Processing information
 - Formats and encodings
- Making use of information
 - Distributed across pages
 - e.g., a book's author on the publishers site, address on his/her personal page

http://geekandpoke.typepad.com/geekandpoke/2011/08/coders-love-unicode.html

29

Homonyms and Polysemous Words

Untyped Links

Bush Era Law Could Get You 20 Years in Prison For Clearing Your Browser History

?

?

Example: Wolfram Alpha

distance from	mannheim to karlsruhe	1 P	
🚡 Extended Ke	yboard 👲 Upload	III Examples 🔀 I	Multiple interpretations
Assuming "karl	nnheim" is a city Use as an airport instead sruhe" is a city Use as a ship instead sruhe (Germany) Use Karlsruhe (United States) instead	of	"Mannheim" and "Karlsruhe
Input interpretat	ion:		
	from Mannheim, Baden-Wurttemberg		
distance	to Karlsruhe, Baden-Wurttemberg		
		Open code 🛞	
Result			
55.84 km (kilor	neters)		
Unit conversions			
34.7 miles			
55.84 km (kilor	neters)		
55 840 meters			
5.584×10^6 cm	(centimeters)		
30.15 nmi (nau	tical miles)		
Direct travel time	15.	More	
car (55 mph)	38 minutes		
sound	2 minutes 44 seconds		Multiple interpretations
light in fiber	261 µs (microseconds)		
light in vacu	um 186 µs (microseconds)		of "distance"

9/19/22

Example: Wolfram Alpha

Firefox 🔻			_	
what is the most famous work by goet	he +			-
+ http://www.wolframalph	a.com/input/?i=what+is+the+most+famous+work+by+goethe	☆ - C W -	Wikipedia (de)	
	HOME EXAMPLES PRODUCTS BLOG ABOUT		A WOLFRAM WEB RESOURC	^
	A 1. 1			
(
	what is the most famous work by goethe	8		
l	≣ Examples 🕫	Random		
	Using closest Wolfram Alpha interpretation: famous work goethe	?	🖂 🕑 🖪 🧲 😫	
	Input interpretation:		Ask the Wolfram Alpha	
	Goethe occupation		Community for help »	
	Result:			
	Computed by Wolfram Mathematica Source information » Download as: PDF Liv	ve Mathematica		
	Give us your feedback:	send		
	About Products Mobile Apps Business Solutions For Developers Resource	es & Tools		
	Blog Forum Participate Contact Connect 📑 💟 <mark>ଲ</mark> 🖂			
	© 2011 Wolfram Alpha LLC—A Wolfram Research Company Terms Privacy Entity Index			
	[Infrastructure for this computation provided by Wolfram Alpha compute partner Dell, Inc]			
<u>د</u> ۳۰- ۲				

9/19/22 Heiko

Heiko Paulheim

Solutions

Semantic Web Vision

- Provide information in machine interpretable form ۲
- Make (semantic) links between (data) documents us SCIENTIFIC ۲
- Facilitate useful (!) complex queries ۲
- Allow logical reasoning ۲

Dim Future Rorschach: A Waste of Ink The Oldest Stars

WARP DRIVE UNDERWATER . ARCTIC OIL VS. WILDLIFE

AMERICAN

Get the Ide

(Enterprise) Knowledge Graph Vision

- Integrate data from different sources
- Make connections between entities in those sources
- Facilitate cross data source queries

Heiko Paulheim

9/19/22

Semantic Web – Architecture

9/19/22

Data Interoperability with Knowledge Graphs

9/19/22 Heiko Paulheim

Syntactic Interoperability: Character Sets

 ASCII ("American Standard Code for Information Interchange") ISO 646 (1963), 127 characters, 95 of which are printable:

!"#\$%&'()*+,-./0123456789:;<=>?

@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^

`abcdefghijklmnopqrstuvwxyz{|}~

- Extension to 8 Bit: ISO 8859-1 to -16 (1998)
 - covers major European languages
 - most well known: 8859-1 ("Latin-1")
- The Web, however, speaks many more languages...

وللحبّ علامات بقفوها الذ فأوّلها رادمان النظر والعب سرائرها والمعتبرة لضمائرها برلا يطرف يتنفّل بتنقُّل نه مال كالحرباء مع الشمس

Syntactic Interoperability: Multilinguality

HE WAS NOT AMUSED

http://geek-and-poke.com/geekandpoke/2013/8/29/when-it-all-began

9/19/22 Heiko Paulheim

Syntactic Interoperability: Unicode

- ISO 10646
 - first version 1991 (Europe, Near East, India)
 - Unicode 14.0 (September 2021)
 - defines ~144,000 characters
 - covers even very exotic languages
 - Plus: currency symbols, emojis, sign language, music notation...

Klingon is still missing!!!

Syntactic Interoperability: Unicode

00	01	02	03	04	05	06	07	08	09	0A	OВ	0C	0D	0E	0F	
10	11	12	13	14	15	<mark>1</mark> 6	17	18	19	1A	1B	1 <mark>C</mark>	1D	1E	1F	
20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	
30	31	32	33	34	35	36	37	38	39	ЗА	ЗB	3C	3D	ЗE	ЗF	
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	
50	51	52	53	54	55	56	57	58	59	5A	5B	5C	5D	5E	5F	
60	61	62	63	64	65	66	67	68	69	6A	6B	6C	6D	6E	6F	
70	71	72	73	74	75	76	77	78	79	7A	7B	7C	7D	7E	7F	
80	81	82	83	84	85	86	87	88	89	8A	8B	8C	8D	8E	8F	
90	91	92	93	94	95	96	97	98	99	9A	9B	9C	9D	9E	9F	
A0	A1	A2	A3	A4	A5	<mark>.4</mark> 6	Α7	Α8	A .9	AA	A <mark>B</mark>	AC	AD	AE	AF	
B0	B1	B2	В3	Β4	B5	B6	B7	B8	B9	BA	BB	BC	BD	BE	BF	
C0	C1	C2	C3	C4	C5	C6	C7	C8	C9	CA	СВ	СС	CD	CE	CF	
D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	DA	DB	DC	DD	DE	DF	
ΕO	E1	E2	E3	E4	E5	E6	E7	E8	E9	EA	EB	EC	ED	EE	EF	
FO	F1	F2	F3	F4	F5	F6	F7	F8	F9	FA	FB	FC	FD	FE	FF	

Source: Wikimedia Commons

Information Representation in XML

XML (eXtensible Markup Language)

- A W3C standard since 1998
- Universal format for data exchange and integration

```
<physician>
  <name>Dr. Mark Smith</name>
 <address>
    <street>Main St.</street>
    <number>14</number>
    <city>Smalltown</city>
 </address>
 <telephone>
    <number>+44 123 456789</number>
 </telephone>
  <hours>
    <monday>9-11 am</monday>
    <tuesday>9-11 am</tuesday>
    . . .
  </hours>
</physician>
```


XML: Basic Concepts

- Tags (arbitrarily definable):
 - Form pairs:
 - <physician> ... </physician>
 - ...or empty element tags <young />
- Attributes:

>physician location="Smalltown">

- Tags are nested (with *exactly one* root element):
 - <physician>
 - <address> ... </address>
 - </physician>

XML: Well-formed Documents

```
<physician>
  <name>Dr. Mark Smith</name>
  <address>
    <street>Main St.</street>
    <number>14</number>
    <city>Smalltown</city>
 </address>
 <telephone>
    <number>+44 123 456789</number>
 </telephone>
  <hours>
    <monday>9-11 am</monday>
    <tuesday>9-11 am</tuesday>
    . . .
 </hours>
</physician>
```


HTML and XML

- HTML documents look like XML documents
 - ...but they are usually not well-formed!

```
Look at this!<img src=smiley.gif> <br>
```

- XHTML: HTML as well-formed XML documents
- A W3C standard since 2000

Look at this!
br/>
>
>
>

XPath: Accessing Information in XML

- Query language for XML
- A W3C standard since 1999 (Version 2.0: 2010)

/physician[name='Dr. Mark Smith']/telephone/number

```
<physician>
  <name>Dr. Mark Smith</name>
  <address>
    <street>Main St.</street>
    <number>14</number>
    <city>Smalltown</city>
 </address>
 <telephone>
    <number>+44 123 456789</number>
 </telephone>
  <hours>
    <monday>9-11 am</monday>
    <tuesday>9-11 am</tuesday>
    . . .
  </hours>
</physician>
```

Namespaces in XML

- Elements with the same name can occur in different places
 - ...but the contents and semantics may differ
- How can we tell them apart?

Namespaces in XML

- Namespace definition using prefixes (Notation: prefix:name)
- Each namespace itself is a URI
- Default namespaces may be defined

```
<physician xmlns ="http://www.med.com/physician"</pre>
           xmlns:addr="http://www.med.com/addr">
  <name>Dr. Mark Smith</name>
  <addr:address>
    <addr:street>Main St.</addr:street>
   <addr:number>14</addr:number>
    <addr:city>Smalltown</addr:city>
  </addr:address>
  <telephone>
    <number>+44 123 456789</number>
  </telephone>
  <hours>
    <monday>9-11 am</monday>
    <tuesday>9-11 am</tuesday>
    . . .
  </hours>
</physician>
```

9/19/22

Heiko Paulheim

XML: Document Type Definition (DTD)

- Defines valid elements for a class of XML documents
 - Names
 - allowed attributes
 - allowed nested child elements
- DTD is a part of the W3C's XML specification
- XML documents matching a DTD are called "valid"

XML: Document Type Definition (DTD)

XML: Document Type Definition (DTD)

• Definition of child elements and their order

```
<!ELEMENT address(street,no,line*,zip,city,state?)>
```

- ?, + and * mark optional and possible multiple elements
- Definition of attribute lists
 - <!ATTLIST person title CDATA>
 - Allowed modifiers: #REQUIRED, #FIXED, #IMPLIED, "..."
 - Enumerating allowed values: (dr|prof)
- Definition of entities:
 - <!ENTITY sw "Semantic Web">
 - May be used as shortcuts in the XML document: &sw;

XML Schema

- W3C-Standard (since 2004)
- XML schemas are XML files themselves
- More flexible than DTDs:
 - Minimum and maximum number of elements
 - Combinations of elements (either/or, combinations w/out fixed order, ...)
 - Data types (Numbers, dates, ...), own types may be defined
 - Support for namespaces
 - Possibility to create modular schemas

XML Schema

```
<physician xmlns:xsi=
<xs:schema elementFormDefault="qualified"</pre>
xmlns:xs="http://www.w3.org/2001/XMLSchema">
                                                    "http://www.w3.org/2001/XMLSchema-instance"
                                                    xsi:noNamespaceSchemaLocation=
  <xs:element name="physician"</pre>
                                                    "physician.xsd">
    <xs:complexType>
                                                      <name>Dr. Mark Smith</name>
      <xs:sequence>
                                                      <address>
        <xs:element name="name"</pre>
                                                        <street>Main St.</street>
         type="xs:string">
                                                        <number>14</number>
        <xs:element name="address">
                                                        <city>Smalltown</city>
          <xs:complexType>
                                                      </address>
                                                      <telephone>
            <xs:sequence>
              <xs:element name="street"</pre>
                                                        <number>+44 123 456789</number>
               type="xs:string">
                                                      </telephone>
                                                      <hours>
                . . .
            </xs:sequence>
                                                        <monday>9-11 am</monday>
          </xs:complexType>
                                                        <tuesday>9-11 am</tuesday>
        </xs:element>
                                                      </hours>
      </xs:sequence>
                                                    </physician>
    </xs:complexType>
  </xs:element>
</xs:schema>
```

XML Schema – Modular Schemas

```
<xs:schema elementFormDefault="gualified"</pre>
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:addr="http://www.address.com/">
  <xs:import</pre>
   namespace="http://www.address.com/"
   schemaLocation="address.xsd"/>
  <xs:element name="physician">
    <xs:complexType>
      <xs:sequence>
        <xs:element name="name"</pre>
         type="xs:string">
        <xs:element ref="addr:address" />
        . . .
      </xs:sequence>
    </xs:complexType>
  </xs:element>
</xs:schema>
```


Example: Modular Schemas in XHTML

https://developer.mozilla.org/En/SVG:Namespaces_Crash_Course

9/19/22 Heiko Paulheim

So, what does a DTD/Schema Define?

- Syntax σύνταξις ("together" + "order")
 - Which elements are there?
 - How are they arranged?
 - Which combinations are allowed?
- ...as opposed to: Semantics σημαίνειν ("denote")
 - How to interpret the contents of an element?
 - What is their relation?

Syntax and Semantics: The Linguists' View

• Syntax: how are correct sentences formed?

"This sentence no verb."

"The dreaming lamp give gives a freshly cut juices juice to the tire tired sink.

- Semantics: what does a word and sentence *mean*?
- Notes
 - syntactic correctness does not guarantee semantic interpretability
 - semantic interpretability does not require syntactic correctness (for humans)

Syntax and Semantics: The Linguists' View

So, what does a DTD/Schema Define?

Employee catalog of the hospital

Yellow Pages

	7 1 1 1 1 1 1 1 1 1 1
<physician></physician>	<physician></physician>
<pre>shame>Br. Mark Smith</pre>	= <u>Sname>Dr.</u> Mark Smith
<pre>(<address>)</address></pre>	<pre><address></address></pre>
<pre><street>Main St.</street></pre>	<street>Main St.</street>
<number>14</number>	<number>14</number>
<city>Smalltown</city>	<city>Smalltown</city>
<telephone></telephone>	<telephone></telephone>
<number>+44 123 456789</number>	<number>+44 123 456789</number>
<hours></hours>	<hours></hours>
<monday>9-11 am</monday>	<monday>9-11 am</monday>
<tuesday>9-11 am</tuesday>	<tuesday>9-11 am</tuesday>

(probably) the private address

(probably) the work address

So, what does a DTD/Schema Define?

- XML Schema / DTD defines the *syntax* of an XML document, but no its *semantics*
- Tag names are not interpretable by machines
 - i.e., they do not ease the information retrieval process...
 - Semantics of the data is hidden usually hard wired in the application
- The Semantic Web is meant as a remedy to that problem
 - Semantic Web is/can do more than XML!

```
<2nf3oiü*>
 <34f0>Dr. Mark Smith</34f0>
  <rmd4935r>
    <e2m4>Main St.</e2m4>
   <dur3>14</dur3>
    <jfa34>Smalltown</jfa34>
  </rmd4935r>
  <d24r3fmö>
    <deß5>+44 123 456789</deß5>
 </d24r3fmö>
 <vsfif>
    <f02>9-11 am</f02>
    <fj9>9-11 am</fj9>
    - - -
 </vsfif>
</2nf3oiü*>
```

Uniform Resource Identifiers (URIs)

- "Things, not strings" requires identifiers for *things*
 - URIs: Proposed by Tim-Berners-Lee as "Universal Resource Identifier" (IETF RFC 1630)
 - Standardized: IETF RFC 3986 (2005)
- Used for naming and finding resources on the Web

http://example.com:8042/over/there?name=ferret#nose

URIs vs. URLs

- Uniform Resource Locators (IETF RFC 1738, 1994) are a *subset* of URIs
- URIs can refer to *arbitrary* things
- A URL refers to a resource on the Web
- Typical URL prefixes
 - http
 - ftp
 - mailto
 - telnet
 - file
 - ...

URLs on the Web

Wrap Up

- Knowledge Graphs
 - Facilitate syntactic and semantic data interoperability
- Today, we have seen syntactic interoperability
 - Unicode: a character set for all languages
 - XML: a universal data exchange format
 - XPath
 - DTD
 - XML Schema
 - URIs
 - Unique identifiers for things (entities, resources, ...)
 - On the Web, URLs are dereferencable

Data Interoperability with Knowledge Graphs

9/19/22 Heiko Paulheim

Questions?

