Knowledge Graphs
Representing Graphs with the Resource Description Framework (RDF)

Heiko Paulheim
Overview

• Graph representation in a nutshell
• A brief history of RDF
• Encodings of RDF
• Semantics and principles of RDF
• Embedding RDF in HTML – RDFa, Microdata, Microformats
• RDF Tools
Knowledge Graphs are Graphs

- Graphs may have different flavours
- Directed vs. undirected, e.g.:
 - social graph: A and B know each other
 - citation graph: paper X cites paper Y
Knowledge Graphs are Graphs

- Graphs may have different flavours
- Labeled vs. unlabeled (also: heterogeneous vs. homogeneous)
 - A network of highways: a particular highway links to cities
 - A molecular graph
Knowledge Graphs are Graphs

- Graphs may have different flavours
- Homogenous vs. heterogeneous nodes, e.g.,
 - A coauthorship graph
 - A graph of authors and publications
Knowledge Graphs are Graphs

- Graphs may have different flavours
- Cyclic vs. acyclic
 - A family tree (acyclic graphs are often referred to as “trees”)
 - A computer network
Knowledge Graphs are Graphs

• So when we talk about a knowledge graph, what kind of graph do we mean?
• No formal definition, but de facto consensus:
 – Directed, labeled graph
 – Heterogeneous node types (and edges)
 – Need not be cycle free
• Node types ("classes") and edge types ("properties")
 – Are also referred to the "schema" of the graph (aka "ontology")
 – Can be defined with further restrictions
 • e.g., an edge of type "author" links a publication to a person
The Semantic Web Stack

Here be dragons...

Knowledge Graph Technologies (This lecture)

Technical Foundations

Berners-Lee (2009): Semantic Web and Linked Data
History: Metadata on the Web

- Goal: more effective rating and ranking of web contents, e.g., by search engines

- Who has created this page?
- When has it been changed the last time?
- What is its topic?
- Which is the content's license?
- How does it relate to other pages?
Metadata on the Web: Dublin Core

• Developed in 1995 at a workshop in Dublin, Ohio
• 15 predefined tags
• A widely accepted standard (ISO 15836:2009)

• May be embedded into HTML:

<html>
<head profile="http://dublincore.org/documents/2008/08/04/dc-html/">
 <title>Semantic Web</title>
 <link rel="schema.DC" href="http://purl.org/dc/elements/1.1/" />
 <meta name="DC.publisher" content="University of Mannheim" />
 <meta name="DC.subject" content="Semantic Web Technologies" />
 <meta name="DC.creator" content="Heiko Paulheim" />
 <meta name="DC.relation" content="http://www.w3.org/2001/sw/" />
 ...
</head>
<body>
 ...
</body>
</html>
Metadata on the Web: Dublin Core

- Identifier
- Format
- Type
- Language
- Date
- Title
- Subject
- Coverage
- Description

- Creator
- Publisher
- Contributor
- Rights
- Source
- Relation
What is RDF?

- „Resource Description Framework“
- A W3C standard since 2004
- Description of arbitrary things

- View 1: Sentences in the form <subject, predicate, object>
 „Heiko works for the University of Mannheim.“

- View 2: Directed graphs with labeled edges
Basic Building Blocks of RDF

• **Resources**
 - denote things
 - are identified by a URI
 - can have one or multiple types

• **Literals**
 - are values like strings or integers
 - can only be objects, not subjects or predicates
 (graph view: they can only have ingoing edges)
 - can have a datatype or a language tag (but not both)

• **Properties (Predicates)**
 - Link resources to other resources and to literals
Types

- All resources (not literals) can have a type
- Types can be arbitrarily defined
- The predefined predicate `rdf:type` defines the type of a resource

Knowledge Graphs is a lecture

* http://www.dws.informatik.uni-mannheim.de/kgs rdf:type http://www.dws.informatik.uni-mannheim.de/Lecture

* <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
Resource vs. Literal

• A literal is an atomic value
 – can only be object
 – i.e., a literal terminates always a graph

http://www.dws.informatik.uni-mannheim.de/kgs dc:creator "Heiko Paulheim"

• A resource can be a subject itself

http://www.dws.informatik.uni-mannheim.de/kgs dc:creator http://www.dws.informatik.uni-mannheim.de/heiko
Datatypes for Literals

• (Almost) all XML Schema datatypes may be used

• Exception:
 – XML specific types
 – The underspecified type "duration"
 – sequence types

Built-in Datatype Hierarchy

- anyType
 - anySimpleType
 - all Complex types
 - duration
dateTime time date gYearMonth gYear gMonthDay gDay gMonth

- boolean base64Binary hexBinary float double anyURI QName NOTATION

- string
decimal
normalizedString
integer
token
nonPositiveInteger
Long
nonNegativeInteger

- language Name NMTOKEN
 - negativeInteger
int
unsignedLong
positiveInteger

- NMTOKENS
 - short
unsignedInt
Language Tags for Literals

• Literals may be defined in different natural languages
 – "München"@de
 – "Munich"@en

• Those can be marked

• Note: Knowledge Graphs can be multilingual!

• Language codes according to ISO 963
 – if both are defined, ISO 963-1 has to be used!

Language Tags for Literals

<table>
<thead>
<tr>
<th>ISO 639-2 Code</th>
<th>ISO 639-1 Code</th>
<th>English name of Language</th>
<th>French name of Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>aar</td>
<td>aa</td>
<td>Afar</td>
<td>afar</td>
</tr>
<tr>
<td>abk</td>
<td>ab</td>
<td>Abkhazian</td>
<td>abkhaze</td>
</tr>
<tr>
<td>aca</td>
<td>Ache</td>
<td>Ache</td>
<td>aceh</td>
</tr>
<tr>
<td>ach</td>
<td>Acoli</td>
<td>Acoli</td>
<td>acoli</td>
</tr>
<tr>
<td>ada</td>
<td>Adangme</td>
<td>Adangme</td>
<td>adangme</td>
</tr>
<tr>
<td>ady</td>
<td>Adygei</td>
<td>Adygei</td>
<td>adygé</td>
</tr>
<tr>
<td>afl</td>
<td>Afro-Asiatic languages</td>
<td>Afro-asiatiques, langues</td>
<td></td>
</tr>
<tr>
<td>ahi</td>
<td>Afhili</td>
<td>Afhili</td>
<td>afhili</td>
</tr>
<tr>
<td>afr</td>
<td>Afrikaans</td>
<td>Afrikaans</td>
<td>afrikaans</td>
</tr>
<tr>
<td>ain</td>
<td>Ainu</td>
<td>Ainu</td>
<td>aimou</td>
</tr>
<tr>
<td>aka</td>
<td>Akan</td>
<td>Akan</td>
<td>aklan</td>
</tr>
<tr>
<td>akk</td>
<td>Awdalian</td>
<td>Awdalian</td>
<td>awdali</td>
</tr>
<tr>
<td>alb (B)</td>
<td>sq</td>
<td>Albanian</td>
<td>albanais</td>
</tr>
<tr>
<td>sq (T)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ale</td>
<td>Aleut</td>
<td>Aleout</td>
<td>aleoute</td>
</tr>
<tr>
<td>alg</td>
<td>Algonquian languages</td>
<td>Algonquines, langues</td>
<td></td>
</tr>
<tr>
<td>alt</td>
<td>Altai</td>
<td>Altai du Sud</td>
<td>altai du Sud</td>
</tr>
<tr>
<td>amh</td>
<td>Amharic</td>
<td>Amharique</td>
<td>amharique</td>
</tr>
<tr>
<td>ang</td>
<td>English, Old (ca.450-1100)</td>
<td>Anglo-saxon (ca.450-1100)</td>
<td></td>
</tr>
<tr>
<td>anp</td>
<td>Angika</td>
<td>Angika</td>
<td>angika</td>
</tr>
<tr>
<td>aca</td>
<td>Apache languages</td>
<td>Apache languages, languages</td>
<td></td>
</tr>
</tbody>
</table>
Datatypes in RDF

• Examples:
 • :Munich :hasName "München"@de .
 :Munich :hasName "Munich"@en .
 :Munich :hasPopulation "1356594 "^^xsd:integer .
 :Munich :hasFoundingYear "1158-01-01"^^xsd:date .

• Note: there are no default datatypes (not even “string”!)
• These are three different literals:
 – "München"
 – "München"@de
 – "München"^^xsd:string .
Triple Notation

- Triples consist of a subject, predicate, and object
- An RDF document is an unordered set of triples

- **Simple triple:**

 <http://www.dws.informatik.uni-mannheim.de/teaching/semantic-web>
 <http://purl.org/dc/elements/1.1/relation>
 <http://www.w3.org/2001/sw/> .

- **Literal with language tag:**

 <http://www.dws.informatik.uni-mannheim.de/teaching/semantic-web>
 <http://purl.org/dc/elements/1.1/subject>
 "Semantic Web"@en .

- **Type literal:**

 <http://www.dws.informatik.uni-mannheim.de/teaching/semantic-web>
 <http://www.uni-mannheim.de/mhb/creditpoints>
 "6"^^<http://www.w3.org/2001/XMLSchema#integer> .
Turtle Notation

• A simplified triple notation

• Central definition of namespaces (and a default namespace):

```turtle
@prefix dc: <http://purl.org/dc/elements/1.1/>
@prefix : <http://www.dws.informatik.uni-mannheim.de/teaching/>
```

• Triples sharing the same subject or subject+predicate:

```turtle
:semantic-web dc:subject "Semantisches Web"@de ,
    "Semantic Web"@en ;
    dc:creator "Heiko Paulheim".
```

• Shorthand notation for `rdf:type`:

```turtle
:semantic-web a :lecture .
```
Notation RDF/XML

- A W3C standard since 2004
- Encodes RDF in XML
- Suitable for machine processing (plenty of XML tools!)

- Defining resources:

  ```xml
  <rdf:Description rdf:about="http://dws.informatik.uni-mannheim.de/teaching/kgs">
    <dc:creator>Heiko Paulheim</dc:creator>
  </rdf:Description>
  ```

- Defining typed resources:

  ```xml
  <rdf:Description rdf:about="http://dws.informatik.uni-mannheim.de/teaching/kgs">
    <rdf:type rdf:resource="http://www.uni-mannheim.de/mhb/Lecture"/>
  </rdf:Description>
  ```

- Alternative representation:

  ```xml
  <mhb:Lecture rdf:about="http://dws.informatik.uni-mannheim.de/teaching/kgs"
  xmlns:mhb="http://www.uni-mannheim.de/mhb/" />  
  ```
Notation RDF/XML

• Relations between resources by nesting

```xml
<mhb:Lecture rdf:about="http://dws.informatik.uni-mannheim.de/teaching/kgs">
    <mhb:givenBy>
        <mhb:Lecturer rdf:about="http://dws.informatik.uni-mannheim.de/heiko"/>
    </mhb:givenBy>
</mhb:Lecture>
```

• Relations between resources by explicit links

```xml
<mhb:Lecturer rdf:about="http://dws.informatik.uni-mannheim.de/heiko"/>
<mhb:Lecture rdf:about="http://dws.informatik.uni-mannheim.de/teaching/kgs">
    <mhb:givenBy rdf:resource="http://dws.informatik.uni-mannheim.de/heiko"/>
</mhb:Lecture>
```
Notation RDF/XML

- Recap: knowledge graphs may contain cycles
- XML is acyclic – we need to use explicit links

```xml
<mhb:University rdf:about="http://www.uni-mannheim.de">
  <mhb:hasEmployee>
    <mhb:UniversityMember rdf:about="http://www.heikopaulheim.com/">
      <mhb:worksFor rdf:resource="http://www.uni-mannheim.de"/>
    </mhb:UniversityMember>
  </mhb:hasEmployee>
</mhb:University>
```
JSON-LD Notation

• JSON is popular in script programming
• JSON-LD: Standard for serializing RDF in JSON

```json
{
  "@id": "http://www.heikopaulheim.com/",
  "http://dws.informatik.uni-mannheim.de/name": "Heiko Paulheim",
  "http://dws.informatik.uni-mannheim.de/teaches": {
    "http://http://www.w3.org/1999/02/22-rdf-syntax-ns#type":
      "http://dws.informatik.uni-mannheim.de/Lecture",
    "http://dws.informatik.uni-mannheim.de/title":
      "Knowledge Graphs"
  }
}
```
Blank Nodes

- Information that is not or cannot be specified
 - "Dieter Fensel has written a book about the Semantic Web"

![Diagram showing Dieter Fensel as the creator of a Book, which is the type of "Semantic Web".](image-url)
Blank Nodes

• Information that is not or cannot be specified
 – "Dieter Fensel has written something about the Semantic Web."

[Diagram showing a blank node labeled Dieter Fensel connected to another blank node labeled "Semantic Web" through a dc:creator relationship, with a dc:subject relationship from the second node to the "Semantic Web" label.]
Blank Nodes in Turtle

• Variant 1: explicitly named with an underscore

`:Dieter_Fensel dc:creator _:x .
_:x a :Book ;
 dc:subject "Semantic Web" .

• Variant 2: unnamed with square brackets

`:Dieter_Fensel dc:creator
 [a :Book ;
 dc:subject "Semantic Web"].

• Notes:
 – both are equivalent
 – changing blank node names does not change the semantics!
Application of Blank Nodes: n-ary Predicates

• RDF predicates always connect a subject and an object
 – i.e., in the sense of predicate logic, they are binary predicates
 \iff works_for(Heiko, UniMannheim) .

• Sometimes, n-ary predicates are needed
 – has_ingredient(Recipe, Sugar, 100g)
Application of Blank Nodes: n-ary Predicates

:recipe :hasIngredient [:ingredient :Sugar; :amount "100g"] .

Recipe has ingredient Sugar

Sugar ingredient amount "100g"
Application of Blank Nodes: n-ary Predicates

```
:recipe :hasIngredient [ :ingredient :Sugar; 
:amount [ :value "100"^^xsd:int ; 
```

How does this differ from the version on the previous slide?
Semantic Principles of RDF

• On the Web, "anybody can say anything about anything"
 – This is called the AAA principle (Allemang & Hendler)

• The AAA principle is also used for RDF knowledge graphs
 – History: information sharing on the Web
Semantic Principles of RDF

• One thing can have multiple names

: Munich :capitalOf :Bavaria .

• On the semantic web, there is not just one name for each thing
 – this is called the Non-unique name assumption

• This means: Just that two things have different names does not mean that they are different!
Let us consider the following example:

```
:Peter :fatherOf :Julia ,
      :Mary .
```

How many children does Peter have?

Intuitively, we assume that Julia and Mary are two different persons. However, this is not trivial for a machine (and the assumption may even be wrong).
Semantic Principles of RDF

• Historical argumentation:
 – We (probably) do not know all the contents of the Semantic Web*

• Therefore, there may be more information on a resource than what we have

• This principle is called "Open World Assumption"

* this may not be true for enterprise knowledge graphs
RDF: Intuition and Actual Semantics

• Let us consider this example again:

```turtle
:Peter :fatherOf :Julia ,
    :Mary .
```

• How many children does Peter have?

• Intuition says: two children

• However, he could also have three or more (oder also just one, as we have learned just a minute ago)
RDF: Intuition and Actual Semantics

• Both
 – Non-unique Name Assumption and
 – Open World Assumption
will re-occur quite a few times in this lecture

• Hint: consider those two
 whenever something seems weird
 when interpreting RDF data
RDF and HTML

- The Semantic Web uses RDF
- The “classic” Web uses HTML

- Does that mean that each information has to be encoded twice?
 - once for humans, once for machines

```html
<html>
  ...
  <b>Dr. Mark Smith</b>
  <i>Physician</i>
  Main St. 14
  Smalltown
  Mon-Fri 9-11 am
  Wed 3-6 pm
  ...
</html>
```

```turtle
:p a :Physician .
:p :hasDegree "Dr." .
:p :hasName "Mark Smith" .
:p :hasAddress :a .
:a :street "Main Street" .
:a :number "14"^^xsd:int .
:a :city "Smalltown" .
:p :hasOpeningHours [ a rdf:Bag ;
  [:day :Monday; :from "9"^^xsd:int; :to "11"^^xsd:int; ]
  ...
```
Using RDF and HTML Together – Variant 1

- Explicit reference to a RDF version
 - an agent stumbling on the HTML page can download the RDF data file

```html
<html>
<head>
  <link rel="meta" type="application/rdf+xml" title="DC" href="dc.rdf" />
</head>
<body>
...
</body>
</html>
```

```xml
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
  xmlns:dc="http://purl.org/dc/elements/1.1/">
  <rdf:Description rdf:about="http://www.dws.informatik.uni-mannheim.de/mhb/sw">
    <dc:publisher>University of Mannheim</dc:publisher>
    <dc:subject>Semantic Web</dc:subject>
    <dc:creator>Heiko Paulheim</dc:creator>
    <dc:relation rdf:resource="http://www.w3.org/2001/sw/" />
  </rdf:Description>
</rdf:RDF>
```
Using RDF and HTML Together – Variant 2

- Content Negotiation
Content Negotiation in Detail

HTTP/1.1 303 See Other
Location: http://www.mannheim.de/index.html

GET / HTTP/1.1
Host: www.mannheim.de
Accept: text/html

Browser

Server
Content Negotiation in Detail

GET / HTTP/1.1
Host: www.mannheim.de
Accept: application/rdf+xml

HTTP/1.1 303 See Other
Location: http://www.mannheim.de/data.rdf
Content Negotiation: MIME Types

• MIME: Multipurpose Internet Mail Extensions
• Original purpose: classifying e-mail attachments
 – Text, PDF, ..
• First version: 1996
• Administred by IANA

• Important MIME types for Semantic Web programming
 – application/rdf+xml
 – text/turtle
 – text/n3
 – application/json
 – application/sparql-query
 – application/sparql-results+xml
Using RDF and HTML Together

• Link to RDF Document
 – Can be done with a simple HTML editor
 – No special server configuration needed

• Content Negotiation
 – Requires particular server setup
 – One URI can be used for different representations

• Both cases require
 – two different representations
 – “double bookkeeping”
 → Potential source of inconsistencies!
RDF in Attributes (RDFa)

• Idea of RDFa
 – Why not encode HTML and RDF in one document
 – The essential information only has to be encoded once

• RDFa combines XHTML with RDF

```html
<html>
  ...
  <body about="http://www.marcsmith.com/MarcSmith">
    <b><span property="doc:name">Dr. Mark Smith</span></b>
    <i><span property="doc:profession">Physician</span></i>
    <span rel="doc:address" href="http://www.marcsmith.com/Address">
      <span property="doc:street">Main Street</span>
      <span property="doc:number">14</span>
      <span property="doc:city">Smalltown</span>
    </span>
  </body>
  ...
</html>
```
RDFa Language Constructs

- `about="http://foo.bar/aSubject"`
 - Defines the subject of a page or section
- `property = "http://foo.bar/aProperty"
 - Defines a relation
 - Contents of the tag are interpreted as a literal
- `rel = "http://foo.bar/aRelation"
 - Defines a relation to another resource
- `href = "http://foo.bar/aResource"
 - Defines a relation's object
 - can be the subject of a resource again
- `typeof = "http://foo.bar/aType"
 - defines a resource's type
RDF in Attributes (RDFa)

```html
<html>
  ...
  <body about="http://www.marcsmith.com/MarcSmith">
    <b><span property="doc:name">Dr. Mark Smith</span></b>
    <i><span property="doc:profession">Physician</span></i>
    <span rel="doc:address" href="http://www.marcsmith.com/Address">
      <span property="doc:street">Main Street</span>
      <span property="doc:number">14</span>
      <span property="doc:city">Smalltown</span>
    </span>
  </body>
</html>
```
RDF in Attributes (RDFa)

<html>
 ...
 <body about="http://www.marcsmith.com/MarcSmith">
 Dr. Mark Smith
 <i>Physician</i>

 Main Street
 14
 Smalltown

 </body>
 ...
</html>

http://www.marcsmith.com/MarcSmith doc:address http://www.marcsmith.com/Address
doc:city "Smalltown"
Alternative to RDFa: Microdata

- Adding structured information to web pages
 - By marking up contents
 - Arbitrary vocabularies are possible
 - Introduced with HTML5
- Similar to RDFa

```html
<div itemscope
itemtype="http://schema.org/PostalAddress">
  <span itemprop="name">Data and Web Science Group</span>,
  <span itemprop="addressLocality">Mannheim</span>,
  <span itemprop="postalCode">68131</span>,
  <span itemprop="addressCountry">Germany</span>
</div>
```
Alternative to RDFa: Microdata

- Markup can be extracted to RDF
 - See W3C Interest Group Note: Microdata to RDF [1]

```html
<div itemscope
itemtype="http://schema.org/PostalAddress">
  <span itemprop="name">Data and Web Science Group</span>,
  _:1 a <http://schema.org/PostalAddress> .
  _:1 <http://schema.org/name> "Data and Web Science Group" .
  _:1 <http://schema.org/addressLocality> "Mannheim" .
  _:1 <http://schema.org/addressCountry> "Germany" .
</div>
```

Alternative to RDFa: Microdata

• Commonalities
 – Arbitrary classes/predicates are possible
 – Although Microdata is mainly used with schema.org

• Differences
 – Microdata is slightly less expressive
 – No URIs, only blank nodes
 – No cycles in the resulting RDF graph
 – No reification (see later)
RDFa, MicroFormats, and Microdata

- MicroFormats: fixed vocabularies for persons, addresses, etc.

- WebDataCommons: Large-Scale Extraction of RDFa, MicroFormats, and Microdata from the Web

http://webdatacommons.org/structureddata/
RDF Tools

- Storage: relational databases, graph databases, ...
- Validation: validating parsers checking consistency
- Visualization: mostly graph based visualization
- Reasoning: inference over graphs (see next lectures)
- Programming: APIs (see next lectures)

http://rdfplayground.dcc.uchile.cl/
Metadata for RDF

- Recap: Dublin Core was designed as Metadata for the Web
- Knowledge graphs may have metadata as well

- Most prominently: *provenance*
 - Where does the data come from?
 - Who created it?
 - When was it created?
 - What was the process creating it?
 - …

https://www.w3.org/TR/prov-o/
Reification

- Latin *res* ("Thing"); *facere* ("make")
 - an Explication
 - making a statement, an opinion etc. the subject of a statement
- In RDF: Statements about statements

- "Peter says that Rome is the capital of Spain."

Implementation:
 - RDF Statements are considered resources themselves
 - Can be subject or object of other statements
- Reification can have multiple levels
 - "Peter says that Wikipedia states that Rome is the capital of Spain."
Peter says Rome is capital of Spain.
Peter says Rome is capital of Spain.
Encoding Reification in Turtle

• Variant 1: Named Statement (with URI)

:triple1 rdf:type rdf:Statement ;
 rdf:subject :Rome ;
 rdf:predicate :isCapitalOf ;
 rdf:object :Spain .
:Peter :says :triple1 .

• Variant 2: Unnamed Statement (Blank Node)

:Peter :says [
 a rdf:Statement ;
 rdf:subject :Rome ;
 rdf:predicate :isCapitalOf ;
 rdf:object :Spain .
] .
Reification in the Wild

• Example: the WebIsALOD dataset

http://webisa.webdatacommons.org/
Design Decisions: Provenance in WebIsALOD

- Variant 1: RDF Reification

- isa:Web_Service_
- skos:broader
- isa:_GMail_
- prov:wasGeneratedBy
- _:3214353
- _:4327432
- prov:wasDerivedFrom
- _:0924372
Design Decisions: Provenance in WebIsALOD

- Variant 2: Singleton Property
Design Decisions: Provenance in WebIsALOD

- Variant 3: n-ary relations
Design Decisions: Provenance in WebIsALOD

- Variant 4: NdFluents
Design Decisions: Provenance in WebIsALOD

- Variant 5: RDF (Named) Graphs

ISA: Web_Service

ISA: GMail

skos:broader

prov:wasDerivedFrom

_:0924372

prov:wasGeneratedBy

_:3214353
Design Decisions: Provenance in WebIsALOD

• Challenge 1: Verbosity
 – WebIsALOD has 400M core statements
 – RDF Graphs are least verbose

• Challenge 2: Usability
 – Querying should not be overly complex
 – (see later)
 – NDFluents and reification lead to longer queries

• Challenge 3: Understandability
 – We should keep the learning curve low
 – Reification and RDF Graphs are standardized

• Challenge 4: Scalability
 – Support by RDF store should be considered
 – Virtuoso recommends RDF Graphs
Wrap Up

- RDF is a language for describing arbitrary things
 - interpretation: set of statements or directed graph
 - Notations: RDF/XML, Turtle
- Special language constructs
 - Blank nodes
 - Reification and its variants
- Semantics
 - Non-unique name assumption
 - Open world assumption
- Embedding in HTML is possible
- Large set of tools is available
A Critical Look in the Rear View Mirror

- Is RDF more powerful than XML?
- XML is a markup language for information
- In XML, arbitrary elements and attributes can be defined
- XML tag names are meaningless for a computer
- RDF is a markup language for information
- In RDF, arbitrary classes and predicates can be defined
- RDF class and predicate names are meaningless for a computer
A Critical Look in the Rear View Mirror

• So, why did we spend an entire lecture on RDF?
A Critical Look in the Rear View Mirror

How Standards Proliferate:
(see: A/C chargers, character encodings, instant messaging, etc.)

Situation: There are 14 competing standards.

14?! Ridiculous! We need to develop one universal standard that covers everyone's use cases. Yeah!

Soon:

Situation: There are 15 competing standards.

http://xkcd.com/927/
The Semantic Web Stack

here be dragons...

Knowledge Graph Technologies
(This lecture)

Technical Foundations

User Interface and Applications

Trust

Proof

Unifying Logic

Query: SPARQL

Ontology: OWL

Rules: RIF

Schema: RDF-S

Data Interchange: RDF

Data Interchange: XML

URI

Unicode

Cryptography

Berners-Lee (2009): Semantic Web and Linked Data
Questions?