
Knowledge Graphs
Public Knowledge Graphs

Heiko Paulheim



10/17/22 Heiko Paulheim 2 

Previously on “Knowledge Graphs”

• Principles: 

– RDF, RDF-S, SPARQL & co

– Linked Open Data

• Today

– A closer look on actually existing knowledge graphs

– Some useful, large-scale resources
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Introduction

• Knowledge Graphs out there (not guaranteed to be complete)

public

private

Paulheim: Knowledge graph refinement: A survey of approaches and evaluation 
methods. Semantic Web 8:3 (2017), pp. 489-508
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Knowledge Graph Creation: CyC

• The beginning

– Encyclopedic collection of knowledge

– Started by Douglas Lenat in 1984

– Estimation: 350 person years and 250,000 rules 
should do the job
of collecting the essence of the world’s knowledge

• The present (as of June 2017)

– ~1,000 person years, $120M total development cost

– 21M axioms and rules

– Used to exist until 2017
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Knowledge Graph Creation: CyC
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Knowledge Graph Creation

• Lesson learned no. 1:

– Trading efforts against accuracy

Min. efforts Max. accuracy
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Knowledge Graph Creation: Freebase

• The 2000s

– Freebase: collaborative editing

– Schema not fixed

• Present

– Acquired by Google in 2010

– Powered first version of Google’s Knowledge Graph

– Shut down in 2016

– Partly lives on in Wikidata (see in a minute)

coming up soon:
was it a good deal or not?
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Knowledge Graph Creation: Freebase

• Community based

• Like Wikipedia,
but more structured
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Knowledge Graph Creation

• Lesson learned no. 2:

– Trading formality against number of users

Max. user involvement Max. degree of formality
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Knowledge Graph Creation: Wikidata

• The 2010s

– Wikidata: launched 2012

– Goal: centralize data from Wikipedia languages

– Collaborative

– Imports other datasets

• Present

– One of the largest public knowledge graphs
(see later)

– Includes rich provenance
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Knowledge Graph Creation: Wikidata

• Collaborative
editing
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Knowledge Graph Creation: Wikidata

• Provenance



10/17/22 Heiko Paulheim 13 

Wikidata
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Knowledge Graph Creation

• Lesson learned no. 3:

– There is not one truth (but allowing for plurality adds complexity)

Max. simplicity Max. support for 
plurality
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Knowledge Graph Creation: DBpedia & YAGO

• The 2010s

– DBpedia: launched 2007

– YAGO: launched 2008

– Extraction from Wikipedia 
using mappings & heuristics

• Present

– Two of the most used knowledge graphs

– ...with Wikidata catching up
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DBpedia
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DBpedia

Lehmann et al.: DBpedia – A Large-scale, Multilingual Knowledge Base 
Extracted from Wikipedia. 2014
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DBpedia
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DBpedia
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YAGO

• Wikipedia categories for types

– Plus WordNet as upper structure

• Manual mappings for properties

https://www.cs.princeton.edu/courses/archive/spring07/cos226/assignments/wordnet.html



10/17/22 Heiko Paulheim 21 

YAGO
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YAGO
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Knowledge Graph Creation

• Lesson learned no. 4:

– Heuristics help increasing coverage (at the cost of accuracy)

Max. accuracy Max. coverage
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Knowledge Graph Creation: NELL

• The 2010s

– NELL: Never ending language learner

– Input: ontology, seed examples, text corpus

– Output: facts, text patterns

– Large degree of automation, 
occasional human feedback

• Until 2018

– Continuously ran for ~8 years

– New release every few days

http://rtw.ml.cmu.edu/rtw/overview
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Knowledge Graph Creation: NELL

• Extraction of a Knowledge Graph from a Text Corpus

Nine Inch Nails 
singer Trent Reznor, 
born 
1965...as stated by Filter

singer Richard 
Patrick...says Slipknot 

singer Corey Taylor,
44, in the interview.

“X singer Y”
→ band_member(X,Y)

band_member(Nine_Inch_Nails, Trent_Reznor)
band_member(Filter,Richard_Patrick)
band_member(Slipknot,Corey_Taylor)

patterns

facts
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Knowledge Graph Creation: NELL
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Knowledge Graph Creation

• Lesson learned no. 5:

– Quality cannot be maximized without human intervention

Min. human intervention Max. accuracy
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Summary of Trade Offs

• (Manual) effort vs. accuracy and completeness

• User involvement (or usability) vs. degree of formality

• Simplicity vs. support for plurality and provenance

→ all those decisions influence the shape of a knowledge graph!
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Non-Public Knowledge Graphs

• Many companies have their
own private knowledge graphs

– Google: Knowledge Graph,
Knowledge Vault

– Yahoo!: Knowledge Graph

– Microsoft: Satori

– Facebook: Entities Graph

– Thomson Reuters: permid.org
(partly public)

• However, we usually know only little about them

See: Noy et al. (2019): Industry-scale Knowledge Graphs: Lessons and Challenges: 
Five diverse technology companies show how it’s done
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Comparison of Knowledge Graphs

• Release cycles

Instant updates:
DBpedia live,

Freebase
Wikidata

Days:
NELL

Months:
DBpedia

Years:
YAGO

Cyc

• Size and density

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017

Caution!
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Comparison of Knowledge Graphs

• What do they actually contain?

• Experiment: pick 25 classes of interest

– And find them in respective ontologies

• Count instances (coverage)

• Determine in and out degree (level of detail)
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Comparison of Knowledge Graphs

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017
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Comparison of Knowledge Graphs

• Summary findings:

– Persons: more in Wikidata 
(twice as many persons as DBpedia and YAGO)

– Countries: more details in Wikidata

– Places: most in DBpedia

– Organizations: most in YAGO

– Events: most in YAGO

– Artistic works:

• Wikidata contains more movies and albums

• YAGO contains more songs

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017
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Caveats

• Reading the diagrams right…

• So, Wikidata contains more persons

– but less instances of all the interesting subclasses?

• There are classes like Actor in Wikidata

– but they are hardly used

– rather: modeled using profession relation
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Caveats

• Reading the diagrams right… (ctd.)

• So, Wikidata contains more data on countries, but less countries?

• First: Wikidata only counts current, actual countries

– DBpedia and YAGO also count historical countries

• “KG1 contains less of X than KG2” can mean

– it actually contains less instances of X

– it contains equally many or more instances, 
but they are not typed with X (see later)

• Second: we count single facts about countries

– Wikidata records some time indexed information, e.g., population

– Each point in time contributes a fact
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Overlap of Knowledge Graphs

• How largely do knowledge graphs overlap?

• They are interlinked, so we can simply count links

– For NELL, we use links to Wikipedia as a proxy

DBpedia

YAGO
Wikidata

NELL Open
Cyc

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017
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Overlap of Knowledge Graphs

• How largely do knowledge graphs overlap?

• They are interlinked, so we can simply count links

– For NELL, we use links to Wikipedia as a proxy

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017
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Overlap of Knowledge Graphs

• Links between Knowledge Graphs are incomplete

– The Open World Assumption also holds for interlinks

• But we can estimate their number

• Approach: 

– find link set automatically with different heuristics

– determine precision and recall on existing interlinks

– estimate actual number of links

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017
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Overlap of Knowledge Graphs

• Idea:

– Given that the link set F is found

– And the (unknown) actual link set would be C

• Precision P: Fraction of F which is actually correct

– i.e., measures how much |F| is over-estimating |C|

• Recall R: Fraction of C which is contained in F

– i.e., measures how much |F| is under-estimating |C|

• From that, we estimate |C|=|F|⋅P⋅1
R

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017
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Overlap of Knowledge Graphs

• Mathematical derivation:

– Definition of recall: 

– Definition of precision: 

• Resolve both to            , substitute, and resolve to 

R=
|Fcorrect|

|C|

P=
|F correct|

|F|

|Fcorrect| |C|

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017

|C|=|F|⋅P⋅1
R

unknown
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Overlap of Knowledge Graphs

• Experiment:

– We use the same 25 classes as before

– Measure 1: overlap relative to smaller KG (i.e., potential gain)

– Measure 2: overlap relative to explicit links 
(i.e., importance of improving links)

• Link generation with 16 different metrics and thresholds

– Intra-class correlation coefficient for |C|: 0.969

– Intra-class correlation coefficient for |F|: 0.646

• Bottom line: 

– Despite variety in link sets generated, the overlap is estimated reliably

– The link generation mechanisms do not need to be overly accurate

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017
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Overlap of Knowledge Graphs

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017
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Overlap of Knowledge Graphs

• Summary findings:

– DBpedia and YAGO cover roughly the same instances
(not much surprising)

– NELL is the most complementary to the others

– Existing interlinks are insufficient for out-of-the-box parallel usage

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017
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Intermezzo: Knowledge Graph Creation Cost

• There are quite a few metrics for evaluating KGs

– size, degree, interlinking, quality, licensing, ...

Färber et al.: Linked data quality of 
DBpedia, Freebase, OpenCyc, 
Wikidata, and YAGO  SWJ 9(1), 2018

Zaveri et al.: Quality Assessment for 
Linked Open Data: A Survey. SWJ 7(1), 
2016
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Intermezzo: Knowledge Graph Creation Cost

• ...but what is the cost of a single statement?

Some back of the envelope calculations...
Paulheim: How much is a triple? 

Estimating the Cost of Knowledge Graph Creation, 2018



10/17/22 Heiko Paulheim 46 

Intermezzo: Knowledge Graph Creation Cost

• Case 1: manual curation

– Cyc: created by experts
Total development cost: $120M
Total #statements: 21M

→ $5.71 per statement

– Freebase: created by laymen
Assumption: adding a statement to Freebase 
equals adding a sentence to Wikipedia

• English Wikipedia up to April 2011: 41M working hours
(Geiger and Halfaker, 2013), 

size in April 2011: 3.6M pages, avg. 36.4 sentences each

• Using US minimum wage: $2.25 per sentence

→ $2.25 per statement

(Footnote: total cost of creating Freebase would be $6.75B)

acquisition by Google
estimated as $60-300M
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Intermezzo: Knowledge Graph Creation Cost

• Case 2: automatic/heuristic creation

– DBpedia: 4.9M LOC, 2.2M LOC for mappings

software project development: ~37 LOC per hour
(Devanbu et al., 1996)

we use German PhD salaries as a cost estimate

→ 1.85c per statement

– YAGO: made from 1.6M LOC

uses WordNet: 117k synsets, we treat each synset like a Wiki page

→ 0.83c per statement

– NELL: 103k LOC

→ 14.25c per statement

• Compared to manual curation: saving factor 16-250
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Intermezzo: Knowledge Graph Creation Cost

• Graph error rate against cost

– we can pay for accuracy

– NELL is a bit of an outlier
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New Kids on the Block

Subjective age:
Measured by the fraction 

of the audience
that understands a reference

to your young days’
pop culture...
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Enhancing the Coverage of Knowledge Graphs

• Study for KG-based 
Recommender Systems*

– DBpedia (likewise: YAGO) 
has a coverage of

• 85% for movies

• 63% for music artists

• 31% for books

*) Di Noia, et al.: SPRank: Semantic Path-based Ranking for Top-n 
Recommendations using Linked Open Data. In: ACM TIST, 2016

https://grouplens.org/datasets/
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Enhancing the Coverage of Knowledge Graphs

• Only existing pages have categories

– Lists may also link to non-existing pages
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Entity Extraction from List Pages

• Lists form (shallow) hierarchies
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Entity Extraction from List Pages

• Idea: align with category graph

• Equivalence: 

– “List of Japanese Writers”
↔ Category:Japanese Writers

• Subsumption:

– “List of Japanese 
Speculative Fiction Writers”
→ Category:Japanese Writers
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Classifying Red Links

• Not all entities on a list page 
belong to the same category

• Idea:

– Learn classifier to tell subject
entities from non-subject entities

• Distant learning approach

– Positive examples:

• Entities that are in the 
corresponding category

– Negative examples

• Entities that are in a category
which is disjoint

• e.g., Book <> Writer
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Increasing Level of Detail

• YAGO uses categories for types

– e.g., Category:American Industrial Groups

– but does not analyze them further

• :NineInchNails a :AmericanIndustrialGroup
– “Things, not Strings”?

• :NineInchNails a :MusicalGroup ;
hometown :United_States ;
genre :Industrial .
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Cat2Ax: Axiomatizing Wikipedia Categories

 dbo:Album

 dbo:artist.{dbr:Nine_Inch_Nails}

 dbo:genre.{dbr:Rock_Music}
Heist & Paulheim (2019): Uncovering the Semantics of Wikipedia Categories
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Cat2Ax: Axiomatizing Wikipedia Categories

 dbo:genre.{dbr:Rock_Music} ?

 dbo:artist.{dbr:Rock_(Rapper)} ?
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Cat2Ax: Axiomatizing Wikipedia Categories

– Frequency: how often does the pattern occur in a category?

• i.e.: share of instances that have dbo:genre.{dbr.Rock_Music}?

– Lexical score: likelihood of term as a surface form of object

• i.e.: how often is Rock used to refer to dbr:Rock_Music?

– Sibling score: how likely are sibling categories sharing similar patterns?

• i.e., are there sibling categories with a high score for dbo:genre?
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CaLiGraph Example

Category: Musical Groups established 
in 1987

List of symphonic metal bands

Category: Swedish death metal bands
List of Swedes in Music
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Pushing Entity Coverage Further

• Beyond red links (2020) • Beyond explicit lists (2021)
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Entity Extraction from List Pages

• Red and grey links

– Red links point to entities
that do not exist

– “Grey links”

• are actually not links

• i.e., entities to be 
discovered



10/17/22 Heiko Paulheim 62 

Beyond List Pages

• Many pages
contain list-like
constructs

• Usually

– small

– same type

– same relation
to page entity

– more grey links

…
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Beyond List Pages
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Beyond List Pages

• Learning descriptive rules for listings, e.g.

– topSection(“Discography”) → artist.{>PageEntity<}

– Learning across pages to mitigate small data problems

• Metrics:

– Support: no. of listings covered by rule antecedent

– Confidence: frequency of rule consequent over all covered listings

– Consistency: mean absolute deviation 
of overall confidence and listing confidence

• i.e., does the rule work equally well across all covered listings
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CaLiGraph at a Glance

• Latest version 2.1

– 15M entities

• incl. 8M from listings

– Caveat:

• disambiguation!
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Entity Disambiguation

• Examples: Wikipedia pages of Die Krupps and Eisbrecher

?
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CaLiGraph Glitches
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From DBpedia to DBkWik

• Wikipedia-based Knowledge Graphs will remain 
an essential building block of Semantic Web applications

• But they suffer from...

– ...a coverage bias

– ...limitations of the creating heuristics
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From DBpedia to DBkWik

• One (but not the only!) possible source of coverage bias

– Articles about long-tail entities become deleted
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From DBpedia to DBkWik

• Why stop at Wikipedia?

• Wikipedia is based on the MediaWiki software

– ...and so are thousands of Wikis

– Fandom by Wikia: >385,000 Wikis on special topics

– WikiApiary: reports >20,000 installations of MediaWiki on the Web
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From DBpedia to DBkWik

• Collecting Data from a Multitude of Wikis
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From DBpedia to DBkWik

• The DBpedia Extraction Framework consumes MediaWiki dumps

• Experiment (started as team project 2017)

– Can we process dumps from arbitrary Wikis with it?

– Are the results somewhat meaningful?
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From DBpedia to DBkWik

• Example from Harry Potter Wiki

http://dbkwik.org/



10/17/22 Heiko Paulheim 74 

From DBpedia to DBkWik

• Differences to DBpedia

– DBpedia has manually created mappings to an ontology

– Wikipedia has one page per subject

– Wikipedia has global infobox conventions (more or less)

• Challenges

– On-the-fly ontology creation

– Instance matching

– Schema matching

Hertling & Paulheim: DBkWik: A Consolidated Knowledge Graph from
Thousands of Wikis. ICBK 2018
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From DBpedia to DBkWik

Dump 
Downloader

DBpedia
Extraction

Framework

Interlinking
Instance
Matcher

Schema
Matcher

MediaWiki Dumps

Extracted RDF

Internal Linking
Instance
Matcher

Schema
Matcher

Consolidated
Knowledge Graph

DBkWik
Linked
Data
Endpoin
t

Ontology
Knowledge 

Graph 
Fusion 

Instance
Matcher

Domain/
Range

Type
SDType

Light

SubclassMaterialization

• Heuristics

– Ontology induction

– Instance/Schema Matching

Hertling & Paulheim: DBkWik: A Consolidated Knowledge Graph from
Thousands of Wikis. ICBK 2018
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From DBpedia to DBkWik

• Downloaded ~15k Wiki dumps from Fandom

– 52.4GB of data, roughly the size of the English Wikipedia

• Prototype: extracted data for ~250 Wikis

– 4.3M instances, ~750k linked to DBpedia

– 7k classes, ~1k linked to DBpedia

– 43k properties, ~20k linked to DBpedia

– ...including duplicates!

• Link quality

– Good for classes, OK for properties (F1 of .957 and .852)

– Needs improvement for instances (F1 of .641)
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From DBpedia to DBkWik

• Scalability of matching:

– Pairwise matching does not scale

– 300k Wikis, 1 minute for each pair → 171k years

• Iteratively match and merge

– 300k Wikis, 1 minute for each match&merge run → 200 days

• Tree-shaped execution plan

– Parallelizable

– Hierarchical clustering by topic

– Whole run under a week
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WebIsALOD

• Background: Web table interpretation

• Most approaches need typing information

– DBpedia etc. have too little coverage
on the long tail

– Wanted: extensive type database

Hertling & Paulheim: WebIsALOD: Providing Hypernymy Relations extracted 
from the Web as Linked Open Data. ISWC 2017
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WebIsALOD

• Extraction of type information using Hearst-like patterns, e.g.,

– T, such as X

– X, Y, and other T

• Text corpus: common crawl

– ~2 TB crawled web pages

– Fast implementation: regex over text

– “Expensive” operations only applied once regex has fired

• Resulting database

– 400M hypernymy relations

Seitner et al.: A large DataBase of hypernymy relations extracted from the Web.  
LREC 2016
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WebIsALOD

• Example:

http://webisa.webdatacommons.org/
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WebIsALOD

• Initial effort: transformation to a LOD dataset

– including rich provenance information

Hertling & Paulheim: WebIsALOD: Providing Hypernymy Relations extracted 
from the Web as Linked Open Data. ISWC 2017
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WebIsALOD

• Estimated contents breakdown

Hertling & Paulheim: WebIsALOD: Providing Hypernymy Relations extracted 
from the Web as Linked Open Data. ISWC 2017
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WebIsALOD

• Main challenge

– Original dataset is quite noisy (<10% correct statements)

– Recap: coverage vs. accuracy

– Simple thresholding removes too much knowledge

• Approach

– Train RandomForest model for predicting correct vs. wrong statements

– Using all the provenance information we have

– Use model to compute confidence scores

• Current ongoing research

– Using transformers and a larger training set

Hertling & Paulheim: WebIsALOD: Providing Hypernymy Relations extracted 
from the Web as Linked Open Data. ISWC 2017
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WebIsALOD

• Current challenges and works in progress

– Distinguishing instances and classes

• i.e.: subclass vs. instance of relations

– Splitting instances

• Bauhaus is a goth band

• Bauhaus is a German school

– Knowledge extraction from pre and post modifiers

• Bauhaus is a goth band → genre(Bauhaus, Goth)

• Bauhaus is a German school → location(Bauhaus, Germany)

Hertling & Paulheim: WebIsALOD: Providing Hypernymy Relations extracted 
from the Web as Linked Open Data. ISWC 2017
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Summary

• We have seen a couple of Knowledge Graphs

– How they are built

– What they contain

• For your project

– Have a look at the fit for your domain

– Try different options

• For a master’s thesis later

– Work on recent developments in our group
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Questions?
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