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Previously on “Knowledge Graphs”

• Principles: 

– RDF, RDF-S, SPARQL & co

– Public Knowledge Graphs

• Today:

– Some modeling shortcomings of RDF

– Labeled Property Graphs as an alternative

– RDF*/SPARQL*

– Cipher
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Previously on “Knowledge Graphs”

• Classes in DBpedia

– What’s a CareerStation?
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Verbosity of RDF Graphs

• Example from DBpedia:

– Modeling careers of athletes

• Observation:

– The information is more complex
than pure triples
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Verbosity of RDF Graphs

• Each career station adds one entity and ~seven statements

Visualization: https://issemantic.net/rdf-visualizer
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Verbosity of RDF Graphs

• Example from DBpedia:

– ~2.6M nodes of type 
dbo:CareerStation*

• ~37% of all entities!

– 13M RDF statements
describe those nodes

* As of October 2022
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Verbosity of RDF Graphs

• Alternatives:

– RDF Reification

Visualization: https://issemantic.net/rdf-visualizer
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Verbosity of RDF Graphs

• Alternative: Named Graphs

Visualization: https://issemantic.net/rdf-visualizer
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Verbosity of RDF Graphs

• Intermediate summary:

– RDF seems particularly bad at representing non-triple information

– Choice:

• Blow up RDF graph (like DBpedia)

• Use non-straightforward representation
– Reification

– Named Graphs

• Other approaches in academia (singleton property, NDFluents, …)
– Not very hand either

– Little adoption

• In any case:
– Querying gets harder
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Verbosity of RDF Graphs

• Motivation for labeled property graphs

• Modeling would be much easier

– If we could simply attach information to edges

• Attempt in the Semantic Web Technologies Toolstack:

– RDF* / SPARQL*
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Hello RDF*

• RDF:

– Subjects are URIs or blank nodes

– Predicates are URIs

– Objects are URIs, blank nodes, or literals

• RDF*:

– Subjects are URIs, blank nodes, or quoted statements

– Predicates are URIs

– Objects are URIs, blank nodes, literals, or quoted statements
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Hello RDF*

• Quoting triples

<<dbr:Dirk_Nowitzki dbo:team dbr:DJK_Wuerzburg>>
dbo:activeYearsStartYear 1994 ;
dbo:activeYearsEndYear 1998 .

• In this example, the subject of the statement is a triple.
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The CareerStation Example in RDF*

• Annotations are added to edges
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Nesting in RDF*

• RDF* statements can be subjects and objects themselves

<<
<<dbr:Dirk_Nowitzki dbo:team dbr:DJK_Wuerzburg>> 

dbo:activeYearsStartYear 1994 ; 
dbo:activeYearsEndYear 1998 .

>>
rdfs:definedBy
<http://dbpedia.org/>
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Nesting in RDF*

• Visualized:
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Interpretation of RDF* Graphs

• Or: is RDF* just syntactic sugar 
for representing reification more nicely?
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Interpretation of RDF* vs. RDF

• RDF example

:s1 a rdf:Statement ;
rdf:subject :Hamburg ;
rdf:predicate rdf:type ;
rdf:object :City .

:s2 a rdf:Statement ; 
rdf:subject :Hamburg ; 
rdf:predicate rdf:type ; 
rdf:object :Country . 

:Peter :says :s1 .
:Mary :says :s2 .

:City owl:disjointWith :Country .
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Interpretation of RDF* vs. RDF

• Observation

– In RDF, we cannot make statements 
about two contradictory statements A and B

– ...without the entire graph being contradictory

• This is not in line with “everyday semantics”. Compare

– Hamburg is a city and a country, 
and nothing is a city and a country at the same time.

• to

– Peter says Hamburg is a city, Mary says Hamburg is a country,
and nothing is a city and a country at the same time.
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Interpretation of RDF* vs. RDF

• Observation:

– In RDF, when we make a statement about a statement S,
S is automatically assumed to be true.

• In RDF*, this is not the case:

:Peter :says <<:Hamburg rdf:type :City >> .
:Mary :says <<:Hamburg rdf:type :Country >> .

:City owl:disjointWith :Country .
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RDF*: Quoted vs. Asserted Triples

• Quoted triples are not automatically true

• If we want to make them true (asserted), we have to do so explicitly:

dbr:Dirk_Nowitzki dbo:team dbr:DJK_Wuerzburg .
<<dbr:Dirk_Nowitzki dbo:team dbr:DJK_Wuerzburg>> 

dbo:activeYearsStartYear 1994 ; 
dbo:activeYearsEndYear 1998 .

• For this, there is a syntactic shortcut:

dbr:Dirk_Nowitzki dbo:team dbr:DJK_Wuerzburg 
{| dbo:activeYearsStartYear 1994 ; 

dbo:activeYearsEndYear 1998 |} .
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SPARQL*: Querying RDF* Graphs

• SPARQL*:

– Just like ordinary SPARQL

– Triple patterns can contain 

• Quoted triples

• Triple annotations

– Plus a few more builtin functions

• SPARQL* Results:

– A few devils in the details
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Hello SPARQL*

• When did Dirk Nowitzki play for 
DJK Würzburg?

SELECT ?startyear ?endyear WHERE {
dbr:Dirk_Nowitzki dbo:team :dbr:DJK_Würzburg
{| dbo:activeYearsStartYear ?startyear ;
   dbo:activeYearsEndYear ?endyear |} }

• Returns
{(?startyear=1994; ?endyear=1998)}
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Hello SPARQL*

• When did Dirk Nowitzki play for 
DJK Würzburg?

• SELECT ?startyear ?endyear WHERE {
dbr:Dirk_Nowitzki dbo:team :dbr:DJK_Würzburg .
<<dbr:Dirk_Nowitzki 

dbo:team :dbr:DJK_Würzburg>>
dbo:activeYearsStartYear ?startyear ;
dbo:activeYearsEndYear ?endyear 

}

• Returns
{(?startyear=1994; ?endyear=1998)}

• Note: these are the same short/longhand 
notations as for RDF*
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SPARQL* Return Types

• Consider the following RDF* graph:

:Julia :loves :Peter .
:Jane :knows :Julia .
:Jane :knows <<:Julia :loves :Peter>> .

• We can query with SPARQL*

SELECT ?x WHERE {:Jane :knows ?x}

• Results:

{(?x = :Julia), (?x = <<:Julia :loves :Peter>>)}



10/26/22 Heiko Paulheim 25 

SPARQL* Return Types

• SPARQL return types:

– Resource with URI

– Blank node

– Literal

– Number

• SPARQL* adds a fifth return type:

– Triple

isURI

isBLANK

isLITERAL

isNUMERIC

isTRIPLE
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SPARQL* Return Types

• Consider the following RDF* graph:

:Julia :loves :Peter . 
:Jane :knows :Julia . 
:Jane :knows <<:Julia :loves :Peter>> .

• We can query with SPARQL*

SELECT ?x WHERE {:Jane :knows ?x . 
FILTER(isTRIPLE(?x)}

• Results:

{(?x= <<:Julia :loves :Peter>>)}
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Other Query Types with SPARQL*

• ASK and DESCRIBE: work as in SPARQL

• CONSTRUCT: can also construct RDF*

CONSTRUCT {<<?x ?y ?z>> :definedIn :myDataSet} 
WHERE {?x ?y ?z}

• Result on this example:

<<:Julia :loves :Peter >> :definedIn :myDataSet .
<<:Jane :knows :Julia >> :definedIn :myDataSet .
<<:Jane :knows <<:Julia :loves :Peter>> >>

 :definedIn :myDataSet .
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Mind the Assertion Gap

• Remember: not all quoted triples are asserted

• The default graph of SPARQL results is only
asserted triples

• Consider the following RDF* graph:

:Julia :loves :Peter . 
:Jane :knows :Julia . 
:Jane :knows <<:Julia :loves :Peter>> .
:Julia :thinks <<:Jane :loves :Peter>> .

• Query:

SELECT ?x WHERE {?x :loves :Peter}

• Result:

{(?x = :Julia)}
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Mind the Assertion Gap

• Remember: not all quoted triples are asserted

• The default graph of SPARQL results is only
asserted triples

• Consider the following RDF* graph:

:Julia :loves :Peter . 
:Jane :knows :Julia . 
:Jane :knows <<:Julia :loves :Peter>> .
:Julia :thinks <<:Jane :loves :Peter>> .

• On the other hand:

SELECT ?x WHERE {:Julia :thinks ?x}

• Result:

{(?x = <<:Jane :loves :Peter>>)}
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RDF*/SPARQL*: Not (yet) a standard, but...

• Lots of tools support RDF* and/or SPARQL*:
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Semantic Web Technology Stack (revisited)

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technical
Foundations

Knowledge Graph 
Technologies
(This lecture)

here be dragons...

*

*

???
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RDF* and Inference

• Consider the following RDF* graph and RDFS schema:

<<:Berlin :capitalOf :Germany>> 
{| :statedBy :Wikipedia |}

:capitalOf rdfs:subpropertyOf :locatedIn

• Would you consider the following inference legit?

<<:Berlin :locatedIn :Germany>> 
{| :statedBy :Wikipedia |}
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RDF* and Inference

• OK, so what about

<<:Bonn :capitalOf :Germany>> 
{| :from "1949" ; :until "1990" |}

:capitalOf rdfs:subpropertyOf :locatedIn

• RDF* and inference is still an open research topic
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Labeled Property Graphs in the Industry

• For a while, RDF had little adoption 
in the industry

– Perceived as too verbose and cumbersome

• We saw that earlier today, too

– Underlying semantic properties impractical
in many cases

• Meanwhile, NoSQL gained a lot of traction

– i.e., property/value stores

• Labeled Property graphs

– A combination of property/value stores
and graphs
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A Brief History of Cypher

• Started as a proprietary query language 
for the graph database system neo4j in 2011

• Since 2015: Open Cypher

– Most recent version: Cypher v9, 2018

• Wider adoption, e.g.,

– Amazon Neptune

– SAP HANA Graph

– ...and many others
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Labeled Property Graphs – Definition

• A graph consists of

– Entities (with one or more labels)

– Property keys

– Property values

– Relations (with exactly one type)

• Entities and relations can have property key/value pairs

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = {Agent Smith}
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Basics of Cypher

• Like SPARQL, Cypher is based on pattern matching

– () denotes a node

– [] denotes a relation

– ()-[]->() denotes a directed path

– ()-[]-() denotes an undirected path

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = {Agent Smith}
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Hello Cypher!

• Simple query: matching any node

– MATCH (n) return n

• Would return all nodes

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]
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Hello Cypher!

• Simple query: matching nodes with labels

– MATCH (n:Movie) return n

• Would return only movie nodes

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]
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Restrictions on Keys

• Simple query: matching any node

– MATCH (n:Movie {title: “The Matrix”}) return n

• Would return only the specific movie

• Also possible:

– MATCH (n {title: “The Matrix”) return n

• Would return any node with a title “The Matrix”

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]
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Querying for Node Types

• What kind of node is “The Matrix”?

match(m {title:"The Matrix"}) return labels(m)

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]
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Path Expressions

• Using paths in patterns

– MATCH (n:Movie {title: “The Matrix”)-[r]-(e)
return m,r,e

• All ingoing and outgoing edges
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Path Expressions

• Combining restrictions on labels

– MATCH (n:Movie {title: “The Matrix”)-[r:ACTED_IN]-(e)
return m,r,e

• All ingoing and outgoing edges with a particular label
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Path Expressions

• Combining restrictions on labels

– MATCH (n:Movie {title: “The Matrix”)-[r:ACTED_IN]-(e)
return m,r,e

• All ingoing and outgoing edges with a particular label
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Path Expressions

• Combining restrictions on labels

– MATCH (m:Movie {title:"The Matrix"})
<-[r:PRODUCED|DIRECTED]-(e)

return m,r,e

• All ingoing and outgoing edges with a particular label
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Querying for Relation Types

• What kind of relation does Hugo Weaving have to the Matrix?

Match
(Movie {title:"The Matrix"})
  <-[r]-(Person {name:"Hugo Weaving"}) 
return type(r)

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]
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Path Expressions

• Combining restrictions on properties

• Who played Agent Smith in The Matrix?

– match({title: "The Matrix"})
<-[ACTED_IN {roles:["Agent Smith"]}]-(e) return e

• All ingoing and outgoing edges with a particular label

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]
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Return Types in Cypher

• So far, our return types were nodes or relations

• We can also query for specific properties:

– match(m:Movie {title: "The Matrix"}) 
return m.released

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]
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Querying for Property Values

• The return value can also be a property of a relation:

• Which role(s) did Hugo Weaving play in The Matrix?

– match(Movie {title: "The Matrix"})
  <-[r:ACTED_IN]-(Person {name:"Hugo Weaving"}) 
return r.roles

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]
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Complex Paths

• So far, we have only considered one hop paths

• Which movies did both Hugo Weaving and Keanu Reeves act in?

– match 
(p1:Person {name:"Hugo Weaving"})-[r1:ACTED_IN]->
(m:Movie)

<-[r2:ACTED_IN]-(p2:Person {name:"Keanu Reeves"}) 
return m

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]

OK, but how about
three actors?
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Combining Match Clauses

• We can have multiple match clauses

– By default, they are conjunctive

• Which movies did Hugo Weaving, Keanu Reeves, and Carrie-Anne 
Moss act in?

– match (p1:Person {name:"Hugo Weaving"})
-[r1:ACTED_IN]->(m:Movie) 

match (p2:Person {name:"Keanu Reeves"})
-[r2:ACTED_IN]->(m:Movie) 

match (p3:Person {name:"Carrie-Anne Moss"})
-[r3:ACTED_IN]->(m:Movie) 

return m

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]

Common variable 
in the clauses

Common variable 
in the clauses

Common variable 
in the clauses
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Combining Match Clauses

• There can also be more than one common variable

• Which movies where directed by people who also acted in them?

– match(p:Person)-[r1:ACTED_IN]->(m:Movie) 
match(p:Person)-[r2:DIRECTED]->(m:Movie) 
return p,m
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Variable Binding

• Let’s try to find people who have at least two relations to a movie 
(e.g., director, actor, producer…)

– match(p:Person)-[r1]->(m:Movie) 
match(p:Person)-[r2]->(m:Movie) 
return p,m 
LIMIT 25

We haven’t seen LIMIT 
for Cypher yet, 

but it’s straight forward

???
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Variable Binding

• Let us investigate this more closely

– match(p:Person)-[r1]->(m:Movie) 
match(p:Person)-[r2]->(m:Movie) 
return p,m,r1,r2 
LIMIT 25

r1 and r2 have the
same binding!
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WHERE Clauses

• Used to impose additional restrictions (like in SQL, SPARQL, …)

– match(p:Person)-[r1]->(m:Movie) 
match(p:Person)-[r2]->(m:Movie) 
where(r1<>r2) 
return p,m

visualization
artifact
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WHERE Clauses

• Numeric comparisons

• All movies starring Hugo Weaving released in the 1990s

– Match
(m:Movie)←[ACTED_IN]-
(p:Person {name:"Hugo Weaving"}) 

where m.released>1990 and m.released<2000 
return m

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]
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WHERE Clauses

• String comparisons

• All actors whose first name is “Hugo” 
(approximate solution: name starts with “Hugo”)

– match(Movie)<-[ACTED_IN]-(p:Person) 
where (p.name STARTS WITH ("Hugo")) 
return p

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]



10/26/22 Heiko Paulheim 58 

Path Quantifiers

• Find all people connected via two ACTED_IN relations to Keanu 
Reeves (i.e., all people who co-starred with Keanu Reeves)

– match 
(p1:Person {name: "Keanu Reeves"})
-[ACTED_IN*2]-(p2:Person) 

return p2
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Path Quantifiers

• Extract find all one and two hop neighbors of Keanu Reeves (no 
particular edge type)

match
(p:Person {name: "Keanu Reeves"})-[*1..2]-(e) 
return p,e
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• Find all paths of length up to 4 between Keanu Reeves and Hugo 
Weaving

match p = (p1:Person {name: "Keanu Reeves"})
-[*1..4]-(p2:Person {name: "Hugo Weaving"}) 

return p

Pathfinding with Quantifiers
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Graph Updates

• Cypher also allows for adding and deleting information

• This requires a set instead of a return statement, e.g.,

match (p:Person)-[ACTED_IN]->(m:Movie) 
set p:Actor

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]
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Graph Updates

• Cypher also allows for adding and deleting labels

• This requires a set instead of a return statement, e.g.,

match (p:Person)-[ACTED_IN]->(m:Movie) 
set p:Actor

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]
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Graph Updates

• Cypher also allows for adding and deleting properties

• This requires a set instead of a return statement, e.g.,

match(p:Person)-[ACTED_IN]->(m:Movie) 
with p,count(m) as moviecount 
where (moviecount>10) 
set p.famous="true"

• Notes on this query:

– Cipher allows counting (closed world semantics)

– The with construct is used for variable scoping

• Compute with first

• Compute where second

• cf. having in SQL
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Graph Updates

• Cypher also allows for adding and deleting nodes and edges

• This requires a create instead of a return statement, e.g.,

match (p1:Person)-[r1:ACTED_IN]->(m:Movie) 
match (p2:Person)-[r2:ACTED_IN]->(m:Movie) 
create (p1)-[:KNOWS]->(p2)

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Neo}]

KNOWS
Person, Actor

name: “Keanu Reeves”
born: “1960”

Movie

title: “The Matrix”
released: “1999”

ACTED_IN
roles = [{Agent Smith}]
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Graph Updates vs. Reasoning

• Inference in Cipher

– We can infer additional edges using SET/CREATE commands

– Those only apply for the current state of the graph

– i.e., later changes are not respected

• Consider again

match (p:Person)-[ACTED_IN]->(m:Movie) 
set p:Actor

– Here, a later addition of a person acting in a movie would not get the 
Actor label!

• Inference in RDF/S

– Can be updated and/or evaluated at query time
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Comparison LPG+Cypher vs. RDF*/SPARQL*

• Semantics

– Open vs. closed

• Expressivitiy

– LPG: does not support quoted statements

– LPG: only simple properties (literal valued) on the edges, 
no relations from edges to entities

→ RDF*: slightly better support for n-ary relations

– SPARQL*: limited support for path queries (e.g., no quantifiers)

• Inference

– LPG: only graph updates

– RDF*: subject to ongoing research
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Summary

• Labeled Property Graphs

– Close some modeling gaps of RDF

– In particular: complex relations, properties on relations

• RDF*/SPARQL*

– Quoted vs. asserted statements

• LPG/Cipher:

– Pattern based graph language

– Querying and manipulating LPGs
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Questions?
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