
Knowledge Graphs
Labeled Property Graphs

Heiko Paulheim

10/26/22 Heiko Paulheim 2

Previously on “Knowledge Graphs”

• Principles:

– RDF, RDF-S, SPARQL & co

– Public Knowledge Graphs

• Today:

– Some modeling shortcomings of RDF

– Labeled Property Graphs as an alternative

– RDF*/SPARQL*

– Cipher

10/26/22 Heiko Paulheim 3

Previously on “Knowledge Graphs”

• Classes in DBpedia

– What’s a CareerStation?

10/26/22 Heiko Paulheim 4

Verbosity of RDF Graphs

• Example from DBpedia:

– Modeling careers of athletes

• Observation:

– The information is more complex
than pure triples

10/26/22 Heiko Paulheim 5

Verbosity of RDF Graphs

• Each career station adds one entity and ~seven statements

Visualization: https://issemantic.net/rdf-visualizer

10/26/22 Heiko Paulheim 6

Verbosity of RDF Graphs

• Example from DBpedia:

– ~2.6M nodes of type
dbo:CareerStation*

• ~37% of all entities!

– 13M RDF statements
describe those nodes

* As of October 2022

10/26/22 Heiko Paulheim 7

Verbosity of RDF Graphs

• Alternatives:

– RDF Reification

Visualization: https://issemantic.net/rdf-visualizer

10/26/22 Heiko Paulheim 8

Verbosity of RDF Graphs

• Alternative: Named Graphs

Visualization: https://issemantic.net/rdf-visualizer

10/26/22 Heiko Paulheim 9

Verbosity of RDF Graphs

• Intermediate summary:

– RDF seems particularly bad at representing non-triple information

– Choice:

• Blow up RDF graph (like DBpedia)

• Use non-straightforward representation
– Reification

– Named Graphs

• Other approaches in academia (singleton property, NDFluents, …)
– Not very hand either

– Little adoption

• In any case:
– Querying gets harder

10/26/22 Heiko Paulheim 10

Verbosity of RDF Graphs

• Motivation for labeled property graphs

• Modeling would be much easier

– If we could simply attach information to edges

• Attempt in the Semantic Web Technologies Toolstack:

– RDF* / SPARQL*

10/26/22 Heiko Paulheim 11

Hello RDF*

• RDF:

– Subjects are URIs or blank nodes

– Predicates are URIs

– Objects are URIs, blank nodes, or literals

• RDF*:

– Subjects are URIs, blank nodes, or quoted statements

– Predicates are URIs

– Objects are URIs, blank nodes, literals, or quoted statements

10/26/22 Heiko Paulheim 12

Hello RDF*

• Quoting triples

<<dbr:Dirk_Nowitzki dbo:team dbr:DJK_Wuerzburg>>
dbo:activeYearsStartYear 1994 ;
dbo:activeYearsEndYear 1998 .

• In this example, the subject of the statement is a triple.

10/26/22 Heiko Paulheim 13

The CareerStation Example in RDF*

• Annotations are added to edges

10/26/22 Heiko Paulheim 14

Nesting in RDF*

• RDF* statements can be subjects and objects themselves

<<
<<dbr:Dirk_Nowitzki dbo:team dbr:DJK_Wuerzburg>>

dbo:activeYearsStartYear 1994 ;
dbo:activeYearsEndYear 1998 .

>>
rdfs:definedBy
<http://dbpedia.org/>

10/26/22 Heiko Paulheim 15

Nesting in RDF*

• Visualized:

10/26/22 Heiko Paulheim 16

Interpretation of RDF* Graphs

• Or: is RDF* just syntactic sugar
for representing reification more nicely?

10/26/22 Heiko Paulheim 17

Interpretation of RDF* vs. RDF

• RDF example

:s1 a rdf:Statement ;
rdf:subject :Hamburg ;
rdf:predicate rdf:type ;
rdf:object :City .

:s2 a rdf:Statement ;
rdf:subject :Hamburg ;
rdf:predicate rdf:type ;
rdf:object :Country .

:Peter :says :s1 .
:Mary :says :s2 .

:City owl:disjointWith :Country .

10/26/22 Heiko Paulheim 18

Interpretation of RDF* vs. RDF

• Observation

– In RDF, we cannot make statements
about two contradictory statements A and B

– ...without the entire graph being contradictory

• This is not in line with “everyday semantics”. Compare

– Hamburg is a city and a country,
and nothing is a city and a country at the same time.

• to

– Peter says Hamburg is a city, Mary says Hamburg is a country,
and nothing is a city and a country at the same time.

10/26/22 Heiko Paulheim 19

Interpretation of RDF* vs. RDF

• Observation:

– In RDF, when we make a statement about a statement S,
S is automatically assumed to be true.

• In RDF*, this is not the case:

:Peter :says <<:Hamburg rdf:type :City >> .
:Mary :says <<:Hamburg rdf:type :Country >> .

:City owl:disjointWith :Country .

10/26/22 Heiko Paulheim 20

RDF*: Quoted vs. Asserted Triples

• Quoted triples are not automatically true

• If we want to make them true (asserted), we have to do so explicitly:

dbr:Dirk_Nowitzki dbo:team dbr:DJK_Wuerzburg .
<<dbr:Dirk_Nowitzki dbo:team dbr:DJK_Wuerzburg>>

dbo:activeYearsStartYear 1994 ;
dbo:activeYearsEndYear 1998 .

• For this, there is a syntactic shortcut:

dbr:Dirk_Nowitzki dbo:team dbr:DJK_Wuerzburg
{| dbo:activeYearsStartYear 1994 ;

dbo:activeYearsEndYear 1998 |} .

10/26/22 Heiko Paulheim 21

SPARQL*: Querying RDF* Graphs

• SPARQL*:

– Just like ordinary SPARQL

– Triple patterns can contain

• Quoted triples

• Triple annotations

– Plus a few more builtin functions

• SPARQL* Results:

– A few devils in the details

10/26/22 Heiko Paulheim 22

Hello SPARQL*

• When did Dirk Nowitzki play for
DJK Würzburg?

SELECT ?startyear ?endyear WHERE {
dbr:Dirk_Nowitzki dbo:team :dbr:DJK_Würzburg
{| dbo:activeYearsStartYear ?startyear ;
 dbo:activeYearsEndYear ?endyear |} }

• Returns
{(?startyear=1994; ?endyear=1998)}

10/26/22 Heiko Paulheim 23

Hello SPARQL*

• When did Dirk Nowitzki play for
DJK Würzburg?

• SELECT ?startyear ?endyear WHERE {
dbr:Dirk_Nowitzki dbo:team :dbr:DJK_Würzburg .
<<dbr:Dirk_Nowitzki

dbo:team :dbr:DJK_Würzburg>>
dbo:activeYearsStartYear ?startyear ;
dbo:activeYearsEndYear ?endyear

}

• Returns
{(?startyear=1994; ?endyear=1998)}

• Note: these are the same short/longhand
notations as for RDF*

10/26/22 Heiko Paulheim 24

SPARQL* Return Types

• Consider the following RDF* graph:

:Julia :loves :Peter .
:Jane :knows :Julia .
:Jane :knows <<:Julia :loves :Peter>> .

• We can query with SPARQL*

SELECT ?x WHERE {:Jane :knows ?x}

• Results:

{(?x = :Julia), (?x = <<:Julia :loves :Peter>>)}

10/26/22 Heiko Paulheim 25

SPARQL* Return Types

• SPARQL return types:

– Resource with URI

– Blank node

– Literal

– Number

• SPARQL* adds a fifth return type:

– Triple

isURI

isBLANK

isLITERAL

isNUMERIC

isTRIPLE

10/26/22 Heiko Paulheim 26

SPARQL* Return Types

• Consider the following RDF* graph:

:Julia :loves :Peter .
:Jane :knows :Julia .
:Jane :knows <<:Julia :loves :Peter>> .

• We can query with SPARQL*

SELECT ?x WHERE {:Jane :knows ?x .
FILTER(isTRIPLE(?x)}

• Results:

{(?x= <<:Julia :loves :Peter>>)}

10/26/22 Heiko Paulheim 27

Other Query Types with SPARQL*

• ASK and DESCRIBE: work as in SPARQL

• CONSTRUCT: can also construct RDF*

CONSTRUCT {<<?x ?y ?z>> :definedIn :myDataSet}
WHERE {?x ?y ?z}

• Result on this example:

<<:Julia :loves :Peter >> :definedIn :myDataSet .
<<:Jane :knows :Julia >> :definedIn :myDataSet .
<<:Jane :knows <<:Julia :loves :Peter>> >>

 :definedIn :myDataSet .

10/26/22 Heiko Paulheim 28

Mind the Assertion Gap

• Remember: not all quoted triples are asserted

• The default graph of SPARQL results is only
asserted triples

• Consider the following RDF* graph:

:Julia :loves :Peter .
:Jane :knows :Julia .
:Jane :knows <<:Julia :loves :Peter>> .
:Julia :thinks <<:Jane :loves :Peter>> .

• Query:

SELECT ?x WHERE {?x :loves :Peter}

• Result:

{(?x = :Julia)}

10/26/22 Heiko Paulheim 29

Mind the Assertion Gap

• Remember: not all quoted triples are asserted

• The default graph of SPARQL results is only
asserted triples

• Consider the following RDF* graph:

:Julia :loves :Peter .
:Jane :knows :Julia .
:Jane :knows <<:Julia :loves :Peter>> .
:Julia :thinks <<:Jane :loves :Peter>> .

• On the other hand:

SELECT ?x WHERE {:Julia :thinks ?x}

• Result:

{(?x = <<:Jane :loves :Peter>>)}

10/26/22 Heiko Paulheim 30

RDF*/SPARQL*: Not (yet) a standard, but...

• Lots of tools support RDF* and/or SPARQL*:

10/26/22 Heiko Paulheim 31

Semantic Web Technology Stack (revisited)

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technical
Foundations

Knowledge Graph
Technologies
(This lecture)

here be dragons...

*

*

???

10/26/22 Heiko Paulheim 32

RDF* and Inference

• Consider the following RDF* graph and RDFS schema:

<<:Berlin :capitalOf :Germany>>
{| :statedBy :Wikipedia |}

:capitalOf rdfs:subpropertyOf :locatedIn

• Would you consider the following inference legit?

<<:Berlin :locatedIn :Germany>>
{| :statedBy :Wikipedia |}

10/26/22 Heiko Paulheim 33

RDF* and Inference

• OK, so what about

<<:Bonn :capitalOf :Germany>>
{| :from "1949" ; :until "1990" |}

:capitalOf rdfs:subpropertyOf :locatedIn

• RDF* and inference is still an open research topic

10/26/22 Heiko Paulheim 34

Labeled Property Graphs in the Industry

• For a while, RDF had little adoption
in the industry

– Perceived as too verbose and cumbersome

• We saw that earlier today, too

– Underlying semantic properties impractical
in many cases

• Meanwhile, NoSQL gained a lot of traction

– i.e., property/value stores

• Labeled Property graphs

– A combination of property/value stores
and graphs

10/26/22 Heiko Paulheim 35

A Brief History of Cypher

• Started as a proprietary query language
for the graph database system neo4j in 2011

• Since 2015: Open Cypher

– Most recent version: Cypher v9, 2018

• Wider adoption, e.g.,

– Amazon Neptune

– SAP HANA Graph

– ...and many others

10/26/22 Heiko Paulheim 36

Labeled Property Graphs – Definition

• A graph consists of

– Entities (with one or more labels)

– Property keys

– Property values

– Relations (with exactly one type)

• Entities and relations can have property key/value pairs

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = {Agent Smith}

10/26/22 Heiko Paulheim 37

Basics of Cypher

• Like SPARQL, Cypher is based on pattern matching

– () denotes a node

– [] denotes a relation

– ()-[]->() denotes a directed path

– ()-[]-() denotes an undirected path

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = {Agent Smith}

10/26/22 Heiko Paulheim 38

Hello Cypher!

• Simple query: matching any node

– MATCH (n) return n

• Would return all nodes

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]

10/26/22 Heiko Paulheim 39

Hello Cypher!

• Simple query: matching nodes with labels

– MATCH (n:Movie) return n

• Would return only movie nodes

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]

10/26/22 Heiko Paulheim 40

Restrictions on Keys

• Simple query: matching any node

– MATCH (n:Movie {title: “The Matrix”}) return n

• Would return only the specific movie

• Also possible:

– MATCH (n {title: “The Matrix”) return n

• Would return any node with a title “The Matrix”

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]

10/26/22 Heiko Paulheim 41

Querying for Node Types

• What kind of node is “The Matrix”?

match(m {title:"The Matrix"}) return labels(m)

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]

10/26/22 Heiko Paulheim 42

Path Expressions

• Using paths in patterns

– MATCH (n:Movie {title: “The Matrix”)-[r]-(e)
return m,r,e

• All ingoing and outgoing edges

10/26/22 Heiko Paulheim 43

Path Expressions

• Combining restrictions on labels

– MATCH (n:Movie {title: “The Matrix”)-[r:ACTED_IN]-(e)
return m,r,e

• All ingoing and outgoing edges with a particular label

10/26/22 Heiko Paulheim 44

Path Expressions

• Combining restrictions on labels

– MATCH (n:Movie {title: “The Matrix”)-[r:ACTED_IN]-(e)
return m,r,e

• All ingoing and outgoing edges with a particular label

10/26/22 Heiko Paulheim 45

Path Expressions

• Combining restrictions on labels

– MATCH (m:Movie {title:"The Matrix"})
<-[r:PRODUCED|DIRECTED]-(e)

return m,r,e

• All ingoing and outgoing edges with a particular label

10/26/22 Heiko Paulheim 46

Querying for Relation Types

• What kind of relation does Hugo Weaving have to the Matrix?

Match
(Movie {title:"The Matrix"})
 <-[r]-(Person {name:"Hugo Weaving"})
return type(r)

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]

10/26/22 Heiko Paulheim 47

Path Expressions

• Combining restrictions on properties

• Who played Agent Smith in The Matrix?

– match({title: "The Matrix"})
<-[ACTED_IN {roles:["Agent Smith"]}]-(e) return e

• All ingoing and outgoing edges with a particular label

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]

10/26/22 Heiko Paulheim 48

Return Types in Cypher

• So far, our return types were nodes or relations

• We can also query for specific properties:

– match(m:Movie {title: "The Matrix"})
return m.released

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]

10/26/22 Heiko Paulheim 49

Querying for Property Values

• The return value can also be a property of a relation:

• Which role(s) did Hugo Weaving play in The Matrix?

– match(Movie {title: "The Matrix"})
 <-[r:ACTED_IN]-(Person {name:"Hugo Weaving"})
return r.roles

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]

10/26/22 Heiko Paulheim 50

Complex Paths

• So far, we have only considered one hop paths

• Which movies did both Hugo Weaving and Keanu Reeves act in?

– match
(p1:Person {name:"Hugo Weaving"})-[r1:ACTED_IN]->
(m:Movie)

<-[r2:ACTED_IN]-(p2:Person {name:"Keanu Reeves"})
return m

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]

OK, but how about
three actors?

10/26/22 Heiko Paulheim 51

Combining Match Clauses

• We can have multiple match clauses

– By default, they are conjunctive

• Which movies did Hugo Weaving, Keanu Reeves, and Carrie-Anne
Moss act in?

– match (p1:Person {name:"Hugo Weaving"})
-[r1:ACTED_IN]->(m:Movie)

match (p2:Person {name:"Keanu Reeves"})
-[r2:ACTED_IN]->(m:Movie)

match (p3:Person {name:"Carrie-Anne Moss"})
-[r3:ACTED_IN]->(m:Movie)

return m

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]

Common variable
in the clauses

Common variable
in the clauses

Common variable
in the clauses

10/26/22 Heiko Paulheim 52

Combining Match Clauses

• There can also be more than one common variable

• Which movies where directed by people who also acted in them?

– match(p:Person)-[r1:ACTED_IN]->(m:Movie)
match(p:Person)-[r2:DIRECTED]->(m:Movie)
return p,m

10/26/22 Heiko Paulheim 53

Variable Binding

• Let’s try to find people who have at least two relations to a movie
(e.g., director, actor, producer…)

– match(p:Person)-[r1]->(m:Movie)
match(p:Person)-[r2]->(m:Movie)
return p,m
LIMIT 25

We haven’t seen LIMIT
for Cypher yet,

but it’s straight forward

???

10/26/22 Heiko Paulheim 54

Variable Binding

• Let us investigate this more closely

– match(p:Person)-[r1]->(m:Movie)
match(p:Person)-[r2]->(m:Movie)
return p,m,r1,r2
LIMIT 25

r1 and r2 have the
same binding!

10/26/22 Heiko Paulheim 55

WHERE Clauses

• Used to impose additional restrictions (like in SQL, SPARQL, …)

– match(p:Person)-[r1]->(m:Movie)
match(p:Person)-[r2]->(m:Movie)
where(r1<>r2)
return p,m

visualization
artifact

10/26/22 Heiko Paulheim 56

WHERE Clauses

• Numeric comparisons

• All movies starring Hugo Weaving released in the 1990s

– Match
(m:Movie)←[ACTED_IN]-
(p:Person {name:"Hugo Weaving"})

where m.released>1990 and m.released<2000
return m

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]

10/26/22 Heiko Paulheim 57

WHERE Clauses

• String comparisons

• All actors whose first name is “Hugo”
(approximate solution: name starts with “Hugo”)

– match(Movie)<-[ACTED_IN]-(p:Person)
where (p.name STARTS WITH ("Hugo"))
return p

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]

10/26/22 Heiko Paulheim 58

Path Quantifiers

• Find all people connected via two ACTED_IN relations to Keanu
Reeves (i.e., all people who co-starred with Keanu Reeves)

– match
(p1:Person {name: "Keanu Reeves"})
-[ACTED_IN*2]-(p2:Person)

return p2

10/26/22 Heiko Paulheim 59

Path Quantifiers

• Extract find all one and two hop neighbors of Keanu Reeves (no
particular edge type)

match
(p:Person {name: "Keanu Reeves"})-[*1..2]-(e)
return p,e

10/26/22 Heiko Paulheim 60

• Find all paths of length up to 4 between Keanu Reeves and Hugo
Weaving

match p = (p1:Person {name: "Keanu Reeves"})
-[*1..4]-(p2:Person {name: "Hugo Weaving"})

return p

Pathfinding with Quantifiers

10/26/22 Heiko Paulheim 61

Graph Updates

• Cypher also allows for adding and deleting information

• This requires a set instead of a return statement, e.g.,

match (p:Person)-[ACTED_IN]->(m:Movie)
set p:Actor

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]

10/26/22 Heiko Paulheim 62

Graph Updates

• Cypher also allows for adding and deleting labels

• This requires a set instead of a return statement, e.g.,

match (p:Person)-[ACTED_IN]->(m:Movie)
set p:Actor

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Agent Smith}]

10/26/22 Heiko Paulheim 63

Graph Updates

• Cypher also allows for adding and deleting properties

• This requires a set instead of a return statement, e.g.,

match(p:Person)-[ACTED_IN]->(m:Movie)
with p,count(m) as moviecount
where (moviecount>10)
set p.famous="true"

• Notes on this query:

– Cipher allows counting (closed world semantics)

– The with construct is used for variable scoping

• Compute with first

• Compute where second

• cf. having in SQL

10/26/22 Heiko Paulheim 64

Graph Updates

• Cypher also allows for adding and deleting nodes and edges

• This requires a create instead of a return statement, e.g.,

match (p1:Person)-[r1:ACTED_IN]->(m:Movie)
match (p2:Person)-[r2:ACTED_IN]->(m:Movie)
create (p1)-[:KNOWS]->(p2)

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = [{Neo}]

KNOWS
Person, Actor

name: “Keanu Reeves”
born: “1960”

Movie

title: “The Matrix”
released: “1999”

ACTED_IN
roles = [{Agent Smith}]

10/26/22 Heiko Paulheim 65

Graph Updates vs. Reasoning

• Inference in Cipher

– We can infer additional edges using SET/CREATE commands

– Those only apply for the current state of the graph

– i.e., later changes are not respected

• Consider again

match (p:Person)-[ACTED_IN]->(m:Movie)
set p:Actor

– Here, a later addition of a person acting in a movie would not get the
Actor label!

• Inference in RDF/S

– Can be updated and/or evaluated at query time

10/26/22 Heiko Paulheim 66

Comparison LPG+Cypher vs. RDF*/SPARQL*

• Semantics

– Open vs. closed

• Expressivitiy

– LPG: does not support quoted statements

– LPG: only simple properties (literal valued) on the edges,
no relations from edges to entities

→ RDF*: slightly better support for n-ary relations

– SPARQL*: limited support for path queries (e.g., no quantifiers)

• Inference

– LPG: only graph updates

– RDF*: subject to ongoing research

10/26/22 Heiko Paulheim 67

Summary

• Labeled Property Graphs

– Close some modeling gaps of RDF

– In particular: complex relations, properties on relations

• RDF*/SPARQL*

– Quoted vs. asserted statements

• LPG/Cipher:

– Pattern based graph language

– Querying and manipulating LPGs

10/26/22 Heiko Paulheim 68

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68

