~ MANNHEIM

».\ L ,;f- g -
Knowledge Graphs
Labeled Property Graphs

Heiko Paulheim

Previously on “Knowledge Graphs”
-

* Principles:
— RDF, RDF-S, SPARQL & co
— Public Knowledge Graphs

* Today:
— Some modeling shortcomings of RDF
— Labeled Property Graphs as an alternative
— RDF*/SPARQL*
— Cipher

10/26/22 Heiko Paulheim

Previously on “Knowledge Graphs”

* Classes in DBpedia
— What's a CareerStation?

10/26/22 Heiko Paulheim

Verbosity of RDF Graphs

Dirk Nowitzki

* Example from DBpedia:
— Modeling careers of athletes

* (QObservation:

— The information is more complex

than pure triples

Position Special advisor
League MBA
Born June 19, 1978 (age 44)

Wiirzburg, West Germany
Listed height TROIN(2A3 m)
Listed weight 2451b (111 ka}

NBA draft 1992/ Round: 1/ Pick: 9th overall
Selected by the Milwaukee Bucks
Playing career 1994-2019

Position Fower forward

Number 41

1994-1993 DJK Wirzburg

1998-2019 Dallas Mavericks

10/26/22 Heiko Paulheim

Verbosity of RDF Graphs
-

* [Each career station adds one entity and ~seven statements

ra
@ FREEZE ~ ® UNFREEZE IIFIT Vocabularies/prefixes:

dbo: hitp://dbpedia.org/ontology/
I dbpedia: hitp://dbpedia.org/resource/
; dul: http:/fwww.ontologydesignpatterns.org/font/dul/DUL owl#
rdf: hitp:/fwwwe w3 org/1999/02/22-rdf-syntax-ns#

Legend:

Type/Class
O Instance/Individual
3 value/Literal

i — Object property
+ L £ — Data property
-. Quoted triple
- _'b Blank node
y

Visualization: https://issemantic.net/rdf-visualizer

10/26/22 Heiko Paulheim

Verbosity of RDF Graphs

Dirk Nowitzki

* Example from DBpedia:

— ~2.6M nodes of type
dbo:CareerStation®
« ~37% of all entities!

— 13M RDF statements
describe those nodes

Nowitzki in 2019

Dallas Mavericks

Position Special advisor
League MBA
Born June 19, 1978 (age 44)

Wiirzburg, West Germany
Listed height TROIN(2A3 m)
Listed weight 2451b (111 ka}

NBA draft 1992/ Round: 1/ Pick: 9th overall
Selected by the Milwaukee Bucks
Playing career 1994-2019

Position Fower forward

Number 41

1994-1993 DJK Wirzburg

1998-2019 Dallas Mavericks

* As of October 2022

10/26/22 Heiko Paulheim

Verbosity of RDF Graphs
-

 Alternatives:
— RDF Reification

. 1994010
® FREEZE ® UNFREEZE LIFT [] Vocabularies/prefixes:
dbo: hitp://dbpedia_org/ontology/

g dbpedia: hitp://dbpedia.org/resource/

@ rdf: hitp-/fwwnwe w3 org/1999/02/22-rdf-syntax-ns#
.

E]

s

[dbpedizDirk_Novitdd_ Caree rStaiol..)]
—

7
F1N S,
F N e
BN i,
/ %II N
g’ | \\ 1998-01-01]
= |
g | N f
| lI dhoteam /
/ /
. |
i | Legend:

. & Type/Class
] 3 i -
s 3 O Instance/Individual
dbpediaDik_Nowi=d N, e !
l 3] h Lﬁs g O Value/Literal
]

AN
™ A ||§ / — Ohbject property
@ — Data property
a e N\ |/ prop
™~ \\ | [e I Quoted triple
- S il :
[dhpecia:Di‘k_Ncn.ijd_CamerSIaﬁu(...}] _b Blank node
A

Visualization: https://issemantic.net/rdf-visualizer

10/26/22 Heiko Paulheim

Verbosity of RDF Graphs

e
* Alternative: Named Graphs

@ FREEZE

———
® UNFREEZE IIFIT | Vocabularies/prefixes:
cwmnmiaws | \ dbo: http://dbpedia.org/ontology/
\\ \ dbpedia: http://dbpedia_org/resource/
\ \ dul: hitp:/fwww.ontologydesignpatterns_orgfont/dul/DUL_owl#
\ \\ rdf: hitp:/fuww.w3 org/1999/02/22-rdf-syntax-ns#
\\ \\\
\ \
\ \
\\ \\
\\ \\
\ \
\ \
\ \
\ \
\\ \\
\\ \\
\\ \\
\ \
\ \
| \
\\ \ Legend:
\ = \ Type/Class
\\ = O Instance/Individual
: & e O ValuelLiteral
v I = !ce:,.'v — Object property
3 e (e — Data property
e) o [zaaa Quoted tripl
£ ple
- _:b Blank node
A
Visualization: https://issemantic.net/rdf-visualizer

Heiko Paulheim

Verbosity of RDF Graphs
-

* Intermediate summary:
— RDF seems particularly bad at representing non-triple information
— Choice:
* Blow up RDF graph (like DBpedia)
* Use non-straightforward representation
— Reification
— Named Graphs
* Other approaches in academia (singleton property, NDFluents, ...)

— Not very hand either
— Little adoption

* In any case:
— Querying gets harder

10/26/22 Heiko Paulheim

Verbosity of RDF Graphs
-

* Motivation for labeled property graphs

* Modeling would be much easier
— If we could simply attach information to edges

* Attempt in the Semantic Web Technologies Toolstack:
— RDF*/ SPARQL*

10/26/22 Heiko Paulheim

Hello RDF*

* RDF:
— Subjects are URIs or blank nodes
— Predicates are URIs
— Objects are URIs, blank nodes, or literals

* RDF*:
— Subjects are URIs, blank nodes, or quoted statements
— Predicates are URIs
— Objects are URIs, blank nodes, literals, or quoted statements

10/26/22 Heiko Paulheim

Hello RDF*

e
* Quoting triples

<<dbr:Dirk Nowilitzki dbo:team dbr:DJK Wuerzburg>>
dbo:activeYearsStartYear 1994 ;
dbo:activeYearsEndYear 1998

* In this example, the subject of the statement is a triple.

10/26/22 Heiko Paulheim

The CareerStation Example in RDF*
e

* Annotations are added to edges

I
@ FREEZE ~ ® UNFREEZE IIFIT N Vocabularies/prefixes:
"y
?i
%
[Y
& Ly

% '

4 Y

' L

s gl e TS A .-:;i’?
\ £ Legend:
bg?’ Type/Class
ri . O Instance/Individual
Vi - O value/Literal
e — Object property
PRy — Data property
) Quoted triple
- _b Blank node
-zots
Y

10/26/22 Heiko Paulheim

Nesting in RDF*
-

* RDF* statements can be subjects and objects themselves

<<

<<dbr:Dirk Nowiltzki dbo:team dbr:DJK Wuerzburg>>
dbo:activeYearsStartYear 1994 ;
dbo:activeYearskEndYear 1998

>>

rdfs:definedBy

<http://dbpedia.org/>

10/26/22 Heiko Paulheim

Nesting in RDF*
-

* Visualized:

ra
® FREEZE ~ ®UNFREEZE [IFIT Vocabularies/prefixes:
—
#
_ig’
£ i
E=] of %
bt =7{: é.‘ :v._‘
T, "’5;.:,;_ R e L
5 £ T ?i
“ J“'._, 3 x'é :
¥, ‘_,f
&
&
(Mm_mauw 1 !
/ “’a& Legend:
i & "‘a,}. Type/Class
et - i _ AN (3 instance/individual
- O value/Literal
E— — Object property
= C=) — Data property
Quoted triple
_’b Blank node

10/26/22 Heiko Paulheim 15

Interpretation of RDF* Graphs
e

* Or: is RDF* just syntactic sugar
for representing reification more nicely?

A
-0

am

10/26/22 Heiko Paulheim

Interpretation of RDF* vs. RDF

* RDF example

:s1 a rdf:Statement ;
rdf:subject :Hamburg ;
rdf:predicate rdf:type ;
rdf:object :City

:s2 a rdf:Statement ;
rdf:subject :Hamburg ;
rdf:predicate rdf:type ;
rdf:object :Country

:Peter :says :sl

:Mary :says :82

:City owl:disjointWith :Country

10/26/22 Heiko Paulheim

Interpretation of RDF* vs. RDF
e

* (Observation

— In RDF, we cannot make statements
about two contradictory statements A and B

— ...without the entire graph being contradictory

* This is not in line with “everyday semantics”. Compare

— Hamburg is a city and a country,
and nothing is a city and a country at the same time.

* to

— Peter says Hamburg is a city, Mary says Hamburg is a country,
and nothing is a city and a country at the same time.

10/26/22 Heiko Paulheim

Interpretation of RDF* vs. RDF
e

* (Observation:

— In RDF, when we make a statement about a statement S,
S is automatically assumed to be true.

* |n RDF¥, this is not the case:

:Peter :says <<:Hamburg rdf:type :City >>
:Mary :says <<:Hamburg rdf:type :Country >>

:City owl:disjointWith :Country

10/26/22 Heiko Paulheim

RDF*: Quoted vs. Asserted Triples
e

* Quoted triples are not automatically true
* If we want to make them true (asserted), we have to do so explicitly:

dbr:Dirk Nowitzki dbo:team dbr:DJK Wuerzburg

<<dbr:Dirk Nowiltzki dbo:team dbr:DJK Wuerzburg>>
dbo:activeYearsStartYear 1994 ;
dbo:activeYearskEndYear 1998

* Forthis, there is a syntactic shortcut:

dbr:Dirk Nowitzki dbo:team dbr:DJK Wuerzburg
{|] dbo:activeYearsStartYear 1994 ;
dbo:activeYearsEndYear 1998 |}

10/26/22 Heiko Paulheim

SPARQL*: Querying RDF* Graphs

« SPARQL*:
— Just like ordinary SPARQL
— Triple patterns can contain
* Quoted triples
* Triple annotations
— Plus a few more builtin functions

« SPARQL* Results:
— A few devils in the details

10/26/22 Heiko Paulheim

Hello SPARQL*

* When did Dirk Nowitzki play for
DJK Wurzburg?

SELECT ?startyear ?endyear WHERE {

dbr:Dirk Nowitzkl dbo:team :dbr:DJK Wirzburg
{|] dbo:activeYearsStartYear ?startyear ;
dbo:activeYearskEndYear ?endyear |} }

* Returns
{ (?startyear=1994; ?2?endyear=1998) }

10/26/22 Heiko Paulheim

Hello SPARQL*

* When did Dirk Nowitzki play for
DJK Wurzburg?

SELECT ?startyear ?endyear WHERE {

dbr:Dirk Nowitzkl dbo:team :dbr:DJK Wirzburg
<<dbr:Dirk Nowiltzki

dbo:team :dbr:DJK Wirzburg>>
dbo:activeYearsStartYear ?startyear ;
dbo:activeYearsEndYear ?endyear '

}

* Returns
{ (?startyear=1994; ?endyear=1998) }

Note: these are the same short/longhand AN S
notations as for RDF*

10/26/22 Heiko Paulheim

SPARQL* Return Types

e
* Consider the following RDF* graph:

:Julia :loves :Peter .
:Jane :knows :Julia .
:Jane :knows <<:Julila :loves :Peter>> .

* We can query with SPARQL*
SELECT ?x WHERE {:Jane :knows ?x}

* Results:

{(?x = :Julia), (?x = <<:Julia :loves :Peter>>)}

10/26/22 Heiko Paulheim

SPARQL* Return Types

e
 SPARAQL return types

— Resource with URI o surr

_ Blank node | isBLANK

— Literal | isLITERAL

— Number | isNUMERIC
 SPARQL* adds a fifth return type:

_ Triple | isTRIPLE

10/26/22 Heiko Paulheim

SPARQL* Return Types

e
* Consider the following RDF* graph:

:Julia :loves :Peter .
:Jane :knows :Julia .
:Jane :knows <<:Julila :loves :Peter>> .

* We can query with SPARQL*

SELECT ?x WHERE {:Jane :knows ?7x .
FILTER(1isTRIPLE (?x) }

* Results:

{ (?x= <<:Julia :loves :Peter>>)}

10/26/22 Heiko Paulheim

Other Query Types with SPARQL*

« ASK and DESCRIBE: work as in SPARQL

* CONSTRUCT: can also construct RDF*

CONSTRUCT {<<?x ?y ?z>> :definedIn :myDataSet}
WHERE {?x ?y 7z}

* Result on this example:

<<:Julia :loves :Peter >> :definedIn :myDataSet .

<<:Jane :knows :Julia >> :definedIn :myDataSet .

<<:Jane :knows <<:Julia :loves :Peter>> >>
:definedIn :myDataSet .

10/26/22 Heiko Paulheim

Mind the Assertion Gap

* Remember: not all quoted triples are asserted

* The default graph of SPARQL results is only
asserted triples

* Consider the following RDF* graph:

:Julia :loves :Peter .
:Jane :knows :Julia .
:Jane :knows <<:Julia :loves :Peter>> .
:Julia :thinks <<:Jane :loves :Peter>> .

* Query:

SELECT ?x WHERE {?x :loves :Peter}
* Result:

{(?x = :Julia)}

10/26/22 Heiko Paulheim

Mind the Assertion Gap

* Remember: not all quoted triples are asserted

* The default graph of SPARQL results is only
asserted triples

* Consider the following RDF* graph:

:Julia :loves :Peter .
:Jane :knows :Julia .
:Jane :knows <<:Julia :loves :Peter>> .
:Julia :thinks <<:Jane :loves :Peter>> .

* On the other hand:
SELECT ?x WHERE {:Julia :thinks ?x}

* Result:

{(?x = <<:Jane :loves :Peter>>)}

10/26/22 Heiko Paulheim

RDF*/SPARQL*: Not (yet) a standard, but...

e
* Lots of tools support RDF* and/or SPARQL*:

Implementation : Source Notes

AllegroGraph mailing list PG mode, in the works
AnzoGraph documentation PG mode

BlazeGraph documentation PG mode

Corese documentation PG mode

EYE implementation report

GraphDB documentation

Apache Jena implementation report, documentation

Eclipse rdf4j documentation

Morph-KGC github, documentation RML-star

Oxigraph implementation reports: Rio Turtle, SPARQL

RDF.ex implementation report, documentation

rdfjs/N3.js github

RubyRDF implementation reports: RDF:TriG, SPARQL

Stardog documentation PG mode

TopBraid EDG blog post PG mode with custom annotation syntax

10/26/22 Heiko Paulheim

Semantic Web Technology Stack (revisited)

User Interface and Applications

a Trust
" < Proof
&, here be dragons...
3 Unifying Logic
Ontology: Rules:
5 OWL RIF
uery: 0
27?77
Knowledge Graph » SPARQL™ E
Technologies Sehema: ROES g
(This lecture) 2
Data Interchange: RDF
Technical Data Interchange: XML
Foundations
URI Unicode
N

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.0rg/2009/Talks/0120-campus-party-tbl/

10/26/22 Heiko Paulheim

RDF* and Inference

e
* Consider the following RDF* graph and RDFS schema:

<<:Berlin :capitalOf :Germany>>
{|] :statedBy :Wikipedia |}

:capitalOf rdfs:subpropertyOf :locatedIn

* Would you consider the following inference legit?

<<:Berlin :locatedIn :Germany>>
{| :statedBy :Wikipedia |}

10/26/22 Heiko Paulheim

RDF* and Inference

* OK, so what about

<<:Bonn :capitalOf :Germany>>
{| :from "1949" ,; :until "1990" |}

:capitalOf rdfs:subpropertyOf :locatedIn

* RDF* and inference is still an open research topic

10/26/22 Heiko Paulheim

Labeled Property Graphs in the Industry

* For a while, RDF had little adoption HOW TO WRITE A CV
in the industry

— Perceived as too verbose and cumbersome

we\
* We saw that earlier today, too 2 °
— Underlying semantic properties impractical (NB % g \

in many cases

=\
» Meanwhile, NoSQL gained a lot of traction M
— i.e., property/value stores

eek & poke

g

DOESN'T
MATTER.

* Labeled Property graphs 4 WRITE:

"EXPERT IN

— A combination of property/value stores
and graphs

Leverage the NoSQL boom

10/26/22 Heiko Paulheim

A Brief History of Cypher
-

« Started as a proprietary query language 1
-Ne0qj

for the graph database system neo4jin 2011

* Since 2015: Open Cypher

— Most recent version: Cypher v9, 2018
* Wider adoption, e.g.,

— Amazon Neptune

— SAP HANA Graph

— ...and many others

10/26/22 Heiko Paulheim

Labeled Property Graphs — Definition
e

* A graph consists of
— Entities (with one or more labels)
— Property keys
— Property values
— Relations (with exactly one type)

* Entities and relations can have property key/value pairs

Movie Person, Actor
- (11 - ” ACTED IN (11 - b}
title: “The Matrix roles = {Agent Smith} name: “Hugo Weaving
released: “1999” born: “1960”

10/26/22 Heiko Paulheim

Basics of Cypher

e
* Like SPARQL, Cypher is based on pattern matching

denotes a node
denotes a relation

()
[]
() -[1->() denotes a directed path
() -

[1- () denotes an undirected path

Movie Person, Actor
0 1; g L ¢ ACTED IN 1; H ”
title: “The Matrix roles = {Agent Smith} name: “Hugo Weaving
released: “1999” born: “1960”

10/26/22 Heiko Paulheim

Hello Cypher!
-

* Simple query: matching any node
— MATCH (n) return n

* Would return all nodes

Movie Person, Actor
0 1; g L ¢ ACTED IN 1; H ”
title: “The Matrix roles = [{Agent Smith}] |Name: Hugo Weaving
released: “1999” born: “1960”

10/26/22 Heiko Paulheim

Hello Cypher!
-

* Simple query: matching nodes with labels

— MATCH (n:Movie) return n

* Would return only movie nodes

Movie Person, Actor
0 1; g L ¢ ACTED IN 1; H ”
title: “The Matrix roles = [{Agent Smith}] |Name: Hugo Weaving
released: “1999” born: “1960”

10/26/22 Heiko Paulheim

Restrictions on Keys
e

* Simple query: matching any node
— MATCH (n:Movie {title: “The Matrix”}) return n
* Would return only the specific movie

* Also possible:
— MATCH (n {title: “The Matrix”) return n

* Would return any node with a title “The Matrix”

Movie Person, Actor
. .’ ACTED IN) .
title: “The Matrix roles = [{Agent Smith)] |name: Hugo Weaving
released: “1999” born: “1960”

10/26/22 Heiko Paulheim

Querying for Node Types

 What kind of node is “The Matrix”?
match(m {title:"The Matrix"}) return labels (m)

Movie Person, Actor
. .’ ACTED IN) .
title: “The Matrix roles = [{Agent Smith)] |name: Hugo Weaving
released: “1999” born: “1960”

10/26/22 Heiko Paulheim

Path Expressions

* Using paths in patterns

— MATCH (n:Movie {title: “The Matrix”)-[r]-(e)
return m,r,e

* Allingoing and outgoing edges

10/26/22 Heiko Paulheim

Path Expressions

* Combining restrictions on labels

— MATCH (n:Movie {title: “The Matrix”)-[r:ACTED IN]- (e)
return m,r,e

* All ingoing and outgoing edges with a particular label

10/26/22 Heiko Paulheim

Path Expressions

* Combining restrictions on labels

— MATCH (n:Movie {title: “The Matrix”)-[r:ACTED IN]- (e)
return m,r,e

* All ingoing and outgoing edges with a particular label

10/26/22 Heiko Paulheim

Path Expressions

Combining restrictions on labels
— MATCH

(m:Movie {title:"The Matrix"})

<-[r:PRODUCED|DIRECTED] - (e)
return m,r,e

All ingoing and outgoing edges with a particular label

B

=
s
E
j=)
Py
O
DRE‘C}.E_D

Heiko Paulheim

10/26/22

Querying for Relation Types
e

* What kind of relation does Hugo Weaving have to the Matrix?

Match
(Movie {title:"The Matrix"})
<-[r]-(Person {name:"Hugo Weaving"})

return type(r)

Movie Person, Actor
. .’ ACTED IN) .
title: “The Matrix roles = [{Agent Smith)] |name: Hugo Weaving
released: “1999” born: “1960”

10/26/22 Heiko Paulheim

Path Expressions
e

* Combining restrictions on properties

* Who played Agent Smith in The Matrix?

— match({title: "The Matrix"})
<-[ACTED IN {roles:["Agent Smith"]}]-(e) return e

* Allingoing and outgoing edges with a particular label

Movie Person, Actor
. .’ ACTED IN) .
title: “The Matrix roles = [{Agent Smith)] |name: Hugo Weaving
released: “1999” born: “1960”

10/26/22 Heiko Paulheim

Return Types in Cypher
-

* So far, our return types were nodes or relations

* We can also query for specific properties:

— match(m:Movie {title: "The Matrix"})
return m.released

Movie Person, Actor
. .’ ACTED IN) .
title: “The Matrix roles = [{Agent Smith)] |name: Hugo Weaving
released: “1999” born: “1960”

10/26/22 Heiko Paulheim

Querying for Property Values
e

* The return value can also be a property of a relation:

* Which role(s) did Hugo Weaving play in The Matrix?

— match (Movie {title: "The Matrix"})
<-[r:ACTED IN]-(Person {name:"Hugo Weaving"})
return r.roles

Movie Person, Actor
. .’ ACTED IN) .
title: “The Matrix roles = [{Agent Smith)] |name: Hugo Weaving
released: “1999” born: “1960”

10/26/22 Heiko Paulheim

Complex Paths
e

* So far, we have only considered one hop paths
* Which movies did both Hugo Weaving and Keanu Reeves act in?

— match
(pl:Person {name:"Hugo Weaving"})-[rl:ACTED IN]->
(m:Movie)
<-[r2:ACTED IN]-(p2:Person {name:"Keanu Reeves"})

return m i :
——y OK, but how about
L three actors?

Movie Person, Actor
. .’ ACTED IN) .
title: “The Matrix roles = [{Agent Smith)] |name: Hugo Weaving
released: “1999” born: “1960”

10/26/22 Heiko Paulheim

Combining Match Clauses

We can have multiple match clauses
— By default, they are conjunctive

Which movies did Hugo Weaving, Keanu Reeves, and Carrie-Anne
Moss act in?

— match (pl:Person {name:"Hugo Weaving"})
- [r1:ACTED IN]->(m:Movie)
match (p2:Person {name:"Kean

- [r2:ACTED IN]->(m:Movie)
match (p3:Person {name:"Carrie- "1)

_[r3:ACTED_IN]—>(m;MOVie) —~~—
return m -

Common variable
in the clauses

Movie Person, Actor
. . ACTED IN) .
title: “The Matrix roles = [{Agent Smith}] |Name: Hugo Weaving
released: “1999”

born: “1960”

10/26/22 Heiko Paulheim

91

Combining Match Clauses

* There can also be more than one common variable

* Which movies where directed by people who also acted in them?
— match(p:Person)-[rl:ACTED IN]->(m:Movie)

match (p:Person) - [r2:DIRECTED] -> (m:Movie)
return p,m

10/26/22 Heiko Paulheim

Variable Binding

Let’s try to find people who have at least two relations to a movie
(e.g., director, actor, producer...)

— match (p:Person)-[rl]->(m:Movie) . T O

match (p:Person)-[r2]->(m:Movie) %

" 40?55—‘5

o

return p,m

LIMIT 25 e - O

/
4 g3Lo3ya
A

| ?‘6‘0-. OACTEDJ

10/26/22 Heiko Paulheim

Variable Binding
-

* Let us investigate this more closely

— match (p:Person)-[rl]->(m:Movie)
match (p:Person)-[r2]->(m:Movie)
return p,m,rl,r2

_
r1 and r2 have the
same binding!

LIMIT 25
p m r1 r2
{ Q { (8] { (8] { ©
"identity": 8, "identity": 0, "identity": 7, "identity": 7,
"labels": ["labels": ["start": 8, "start": 8,
"Person” "Movie" "end": @, "end": @,
1, I "type": "type":
"properties”: { "properties": { “"ACTED_IN", "ACTED_IN",
"born": 1978, "tagline": "Welcome to the Real World", "properties": { "properties": {
"name": "Emil Eifrem" "title": "The Matrix", "roles": ["roles": [
} "released": 1909 "Emil" "Emil"
} } 1 1
¥ } F
1 1

10/26/22 Heiko Paulheim

WHERE Clauses

e
* Used to impose additional restrictions (like in SQL, SPARQL, ...)

— match (p:Person)-[rl]->(m:Movie) C)
match (p:Person)-[r2]->(m:Movie) <> o
where (r1<>r2) R %@Cj

return p,m C) C)
A %O)’
40000 S
@19
%IO?E@)UDED
%y

O

@ O
ey
2
/ o o Ry

l visualizatiorﬂ O - O
artifact

10/26/22 Heiko Paulheim

WHERE Clauses
e

* Numeric comparisons

* All movies starring Hugo Weaving released in the 1990s

— Match
(m:Movie)e[ACTED_IN]—
(p:Person {name:"Hugo Weaving"})
where m.released>1990 and m.released<2000
return m

Movie Person, Actor
. D ACTED IN) .
title: “The Matrix roles = [{Agent Smith}] |Name: Hugo Weaving
released: “1999” born: “1960”

10/26/22 Heiko Paulheim 56

WHERE Clauses
e

* String comparisons

* All actors whose first name is “Hugo”
(approximate solution: name starts with “Hugo”)
— match (Movie)<-[ACTED IN]- (p:Person)
where (p.name STARTS WITH ("Hugo"))
return p

Movie Person, Actor
. D ACTED IN) .
title: “The Matrix roles = [{Agent Smith}] |Name: Hugo Weaving
released: “1999” born: “1960”

10/26/22 Heiko Paulheim S7

Path Quantifiers
e

* Find all people connected via two ACTED _IN relations to Keanu
Reeves (i.e., all people who co-starred with Keanu Reeves)

— match
(pl:Person {name: "Keanu Reeves"})
- [ACTED IN*2]- (p2:Person)
return p2 ® e ®

10/26/22 Heiko Paulheim

Path Quantifiers
e

* Extract find all one and two hop neighbors of Keanu Reeves (no

particular edge type)
match
(p:Person {name: "Keanu Reeves"})-[*1..2]-(e)
return p,e O @) (1) o

8

vo)%
“c. * °
780 Ko O
%,
g

10/26/22 Heiko Paulheim

Pathfinding with Quantifiers

* Find all paths of length up to 4 between Keanu Reeves and Hugo
Weaving
match p (pl:Person {name: "Keanu Reeves"})
-[*1..4]-(p2:Person {name: "Hugo Weaving"})
return p <:i>
O PRCEIUCED %?\9 HOQQ & g g
%Oo PROB g @A{:rmw O
o éj? o P@@)‘\
c“\(,p)‘"\ Acﬁo__m ?% ?&o@%q - O
"y, O
10/26/22

Heiko Paulheim

Graph Updates
e

* Cypher also allows for adding and deleting information

* This requires a set instead of a return statement, e.g.,

match (p:Person)-[ACTED IN]->(m:Movie)
set p:Actor

Movie Person, Actor
. .’ ACTED IN) .
title: “The Matrix roles = [{Agent Smith)] |name: Hugo Weaving
released: “1999” born: “1960”

10/26/22 Heiko Paulheim

Graph Updates
e

* Cypher also allows for adding and deleting labels

* This requires a set instead of a return statement, e.g.,

match (p:Person)-[ACTED IN]->(m:Movie)
set p:Actor

Movie Person, Actor
. .’ ACTED IN) .
title: “The Matrix roles = [{Agent Smith)] |name: Hugo Weaving
released: “1999” born: “1960”

10/26/22 Heiko Paulheim

Graph Updates
e

* Cypher also allows for adding and deleting properties

* This requires a set instead of a return statement, e.g.,

match (p:Person) - [ACTED IN]->(m:Movie)
with p,count (m) as moviecount

where (moviecount>10)

set p.famous="true"

* Notes on this query:

— Cipher allows counting (closed world semantics)
— The with construct is used for variable scoping
* Compute with first
* Compute where second
* cf. havingin SQL

10/26/22 Heiko Paulheim

Graph Updates
e

* Cypher also allows for adding and deleting nodes and edges

* This requires a create instead of a return statement, e.g.,

match (pl:Person)-[rl:ACTED IN]->(m:Movie)
match (p2:Person)-[r2:ACTED IN]->(m:Movie)
create (pl)-[:KNOWS]->(p2)

Person, Actor

name: “Keanu Reeves”
born: “1960” \

ACTED_IN
roles = [{Neo}] v
Movie Person, Actor
Y .’ ACTED IN » .
title: “The Matrix roles = [{Agent Smith}] |Name: Hugo Weaving
released: “1999” born: “1960”

10/26/22 Heiko Paulheim 64

Graph Updates vs. Reasoning
e

* Inference in Cipher
— We can infer additional edges using SET/CREATE commands
— Those only apply for the current state of the graph
— i.e., later changes are not respected

* Consider again

match (p:Person)-[ACTED IN]->(m:Movie)
set p:Actor

— Here, a later addition of a person acting in a movie would not get the
Actor label!

* Inference in RDF/S
— Can be updated and/or evaluated at query time

10/26/22 Heiko Paulheim

Comparison LPG+Cypher vs. RDF*/SPARQL*
e

* Semantics
— Open vs. closed

* Expressivitiy
— LPG: does not support quoted statements

— LPG: only simple properties (literal valued) on the edges,
no relations from edges to entities

— RDF*: slightly better support for n-ary relations
— SPARQL*: limited support for path queries (e.g., no quantifiers)

* Inference
— LPG: only graph updates
— RDF*: subject to ongoing research

10/26/22 Heiko Paulheim

Summary

* Labeled Property Graphs
— Close some modeling gaps of RDF
— In particular: complex relations, properties on relations

* RDF*/SPARQL*
— Quoted vs. asserted statements

* LPG/Cipher:
— Pattern based graph language
— Querying and manipulating LPGs

10/26/22 Heiko Paulheim

Questions?

iy

10/26/22 Heiko Paulheim

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68

